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Supplementary Note 1 11 

Mixture Model Distribution 12 

The mathematics used for BayesR3 is given in detail in the methods section of the main manuscript, 13 

but briefly the SNP effects are modelled by a mixture of four normal distributions with zero mean 14 

and increasing variances as specified by: 15 

 𝑝(𝑔𝑗|𝜋, 𝜎g
2) =   𝜋1 ×  𝑁(0, 0 × 𝜎g

2) +  𝜋2 × 𝑁(0, 10−4 × 𝜎g
2) +

 𝜋3 × 𝑁(0, 10−3 × 𝜎g
2) +  𝜋4 × 𝑁(0, 10−2 × 𝜎g

2)  
 

(1) 

Where 𝜎g
2 is the additive genetic variance explained by the SNPs cumulatively and is estimated from 16 

the data. The mixing proportions 𝜋 are also estimated from the data and are assumed to be drawn 17 

from a Dirichlet distribution with parameter = (1,1,1,1), a uniform prior, such that any SNP a priori is 18 

equally likely to be assigned to any one of the 4 distributions. The choice of 4 distributions, is 19 

historical (1), but any number of distributions can be used. For example, in very large datasets, 20 

adding the variance group 10−5 × 𝜎g
2 can help capture SNPs with very small effects (2). However, 21 

the allocations values (0, 10−4, 10−3, 10−2) seen in Equation (1) can mimic a broad range of 22 

parametric distributions, such as a 𝑡 or a reflected gamma, by varying the proportions 𝜋 in each 23 

distribution. They can describe a distribution with long tails as we expect for SNP effects where there 24 

are many small effects and the occasional large effect (Figure S1).  25 

The 10x scaling between the allocation values is arbitrary but convenient in practice. It allows the 26 

distributions generated to be relatively smooth and effects can shuffle from one distribution to the 27 

next between MCMC cycles. Figure S1 shows a distribution that is a mixture of 3 normal distributions 28 

with variances (0.0001, 0,001 and 0.01) in blue compared to a mixture of 6 distribution with 29 

variances 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01 in red. They are very similar and the use of 30 

either one as the prior would have little effect on the resulting estimated SNP effects. 31 

These allocation variances could be estimated from the data, but this is unnecessary and introduces 32 

additional complexity. The fact that similar distributions can be generated by different mixtures is a 33 

warning that the data cannot distinguish a variety of possible distributions because they are 34 

essentially the same. Also, if the variances were sampled within the MCMC process the large 35 

variance and small variance would at times swop, otherwise the chain is not mixing fully. This makes 36 

it difficult to interpret the summary statistics from the chain. 37 
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Therefore, we think that allowing the proportions 𝜋 and 𝜎g
2 to be derived from the data gives the 38 

model ample flexibility to fit a variety of useful distributions. It is also worth noting that Bayes R has 39 

been published many times with this arrangement of variances. 40 

 41 

 42 

Figure S1: Mixture distributions. A distribution made up of equal parts of 0.0001, 0.001 and 0.01 variances (blue dots) and a 43 
2nd mixture distribution made from 6 normal distributions with variances 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01 in 44 
proportions 0.11, 0.16, 0.16, 0.17, 0.17, 0.23 in orange. 45 
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Supplementary Note 2 54 

Determining an Optimal Block Size 55 

Here we look at two methods for determining the optimal block size and one method to determining 56 
the number of inner iterations.  57 
 58 

Optimizing Block Size and the Number of Inner Cycles by Constraining Accuracy and 59 

Minimizing Time. 60 

In determining the optimal block size, it is noted with respect to a given chain length, that as block 61 

size increases BayesR3 predication accuracy decreases, albeit only slightly, (see Figure 4 main 62 

manuscript), as processing time rapidly decreases. This occurs, until a certain block size is reached, 63 

after which processing time remains essentially constant and at times may even increase as block 64 

size increases. Therefore, we looked for a simple method to define in generally terms the optimal 65 

block size and number of inner iterations.   66 
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Let  67 

𝑛𝑀 = No. of SNPs  68 

𝑛 = No. of SNPs per block 69 
𝑛𝑀

𝑛
= No. of blocks 70 

𝑛𝑅 = No. of Records 71 

𝑥 = No. of inner cycles 72 

𝑦 = No. of outer cycles 73 

𝑥𝑦 =  total no. of cycles  74 

The number of blocks is determined by the smallest integer larger or equal to the ratio 
𝑛𝑀

𝑛
, this 75 

means that all blocks will be the same size except for the last block, which can be smaller. 76 

 78 

Time taken: 77 

The major contributors to the processing time are: 79 

1. Calculating the sum for each SNP when processing a new block. This is proportional to: 80 

𝑦𝑛𝑀𝑛𝑅. 81 

2. Cycling around a block, sampling a SNP effect, and updating the total for all other SNPs in 82 

the block. This is proportional to 𝑦𝑛𝑀𝑥𝑛 83 

Then: 84 

Time = 𝑦𝑛𝑀𝑛𝑅 + 𝑦𝑛𝑀𝑥𝑛 85 

 86 

Accuracy: 87 

We wish to take enough samples of each SNP effect to reduce the Monte Carlo sampling error of the 88 

mean to an acceptably low value. Each individual sampled value of a SNP effect (𝑏̂) can be modelled 89 

as: 90 

𝑏̂𝑖𝑗 = 𝑏 + 𝑢𝑖 +  𝑒𝑖𝑗 91 

 92 

where 𝑏̂𝑖𝑗 is the sampled value of 𝑏 in outer cycle 𝑖 and inner cycle 𝑗. 𝑢𝑖 = effect common to all 93 

samples in outer cycle 𝑖, and 𝑒𝑖𝑗  is the effect of the inner cycle 𝑗 within outer cycle 𝑖. 94 

 95 

The variation of the samples within the same block are correlated because they are based on the 96 

sampled values from all other blocks. This correlation is the reason why 𝑢𝑖 is included in the above 97 

formula for 𝑏̂𝑖𝑗. The importance of 𝑢𝑖 depends on the LD between SNPs in the current block and 98 

SNPs in all other blocks. This LD decreases as block size increases. Therefore, we will assume: 99 

 100 

𝑣(𝑢𝑖) ∝  
1

𝑛
 101 

𝑣(𝑏̂𝑖𝑗) =  
𝜎2

𝑛
+  𝜎2 102 

 103 

and the Monte Carlo variance of the average 𝑏̂𝑖𝑗 is:  
𝜎2

𝑦𝑛
+ 

𝜎2

𝑥𝑦
. 104 

 105 
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We wish to optimize 𝑥  and  𝑛 by minimizing the time taken while holding constant the Monte Carlo 106 

sampling variance. Using a Lagrange multiplier, the objective is: 107 

 108 

 𝑦𝑛𝑀(𝑛𝑅 + 𝑥𝑛) +  𝜆(
1

𝑛𝑦
+ 

1

𝑥𝑦
− 𝑘) 109 

𝛿

𝛿𝑛
= 𝑦𝑛𝑀𝑥 −  𝜆 

1

𝑛2𝑦
= 0 ⇒  𝑛2 =  

𝜆

𝑛𝑀𝑥𝑦2
 110 

𝛿

𝛿𝑥
= 𝑦𝑛𝑀𝑛 −  𝜆 

1

𝑥2𝑦
= 0 ⇒  𝑥2 =  

𝜆

𝑛𝑀𝑛𝑦2
 111 

 112 

Therefore, 𝑛 = 𝑥 and the constraint becomes 
2

𝑛𝑦
− 𝑘 = 0, and hence  113 

 114 

𝑦 =  
2

𝑛𝑘
 115 

Time = 𝑦𝑛𝑀(𝑛𝑅 + 𝑥𝑛) 116 

=  
2𝑛𝑀

𝑛𝑘
(𝑛𝑅 + 𝑛2) 117 

=  
2𝑛𝑀

𝑘
(

𝑛𝑅

𝑛
+ 𝑛) 118 

𝛿

𝛿𝑛
=  

2𝑛𝑀

𝑘
(

−𝑛𝑅

𝑛2
+ 1) = 0 119 

    ⇒ 𝑛 =  √𝑛𝑅 120 

 121 

Thus, the approximate optimum is  𝑛 = 𝑥 =  √𝑛𝑅. This is approximate because of the assumptions 122 

made and the exact optimum may be data set dependent. However, it is intuitively reasonable: If 123 

there are many SNPs per block, the value for each SNP depends on the current value if all the other 124 

SNPs in the block so it is worthwhile to take many cycles around the block. The time saved by 125 

blocking is due to processing the individual records only once per block and therefore as 𝑛𝑅 126 

increases the optimum 𝑛 also increases.  127 

 128 

Determining the optimal block size using a curvature equation 129 

Given the number of inner iterations is set to equal the number of SNPs within a block, we note the 130 

observed change in processing time with respect to block size for a given genomic data set as shown 131 

in Figure 5b (main manuscript), was successfully model using the function 𝑓(𝑛) =
n𝑅+𝑛

𝑛
. This 132 

function has one point on the curve where the curvature is a maximum, and which corresponds to a 133 

transition from high to low curvature. The derivative of 𝑓(𝑛) is  𝑓′(𝑛) = 
−n𝑅

𝑛2 ,  𝑓′′(𝑛) = 
2n𝑅

𝑛3 , and the 134 

curvature of the curve, in Figure 5c main manuscript, is given by 𝜅(𝑛) =  |
𝑓′′(𝑛)

(1+(𝑓′(𝑛)2)
3
2

|.  When the 135 

derivative of 𝜅 is set to zero, it has a corresponding positive root where the curvature is maximized 136 

and where 𝑛 =  √𝑛𝑅. In terms of optimization this represents an elbow or knee point and is the 137 

optimum between the benefit achieved between a reduced processing time and the loss in 138 
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prediction accuracy as 𝑛 increases. Therefore, we suggest that the block size should not increase 139 

beyond √𝑛𝑅. 140 

 141 

Supplementary Tables 142 

 143 

Supplementary Table 1: Details of the QTL annotated in Error! Reference source not found. for milk composition traits 144 
discovered in the multi-trait BayesR3 MIR analysis as well as the multi-trait Milk, Fat and Protein Yield BayesR3 (MFP_BR3) 145 
and BayesR3C (MFP_BR3C) analyses. Details include the underlying candidate genes and previously reported overlapping 146 
milk trait QTL.    147 

QTL midpoint 
position (bp: see 
Error! Reference 
source not found.) 

Multi-trait 
analysis 
detecting 
the QTL 

Candidate gene(s) and 
start…stop position (bp) 

Examples of 
published 
reports for 
milk traits 

Examples of milk 
traits previously 
reported for this 
QTL position 

Chr1:142827704 MIR  
 

SLC37A1 
142772300…142873917 

(30, 41) 
 

P, Milk Yield 
 
P, Mg, K, Na 

Chr2:131204809 MIR ALPL 
131181421..131268191 

(30) Na 

Chr3:15387272-
15484820 

MIR 
MFP_BR3 
MFP_BR3C 

SLC50A1 
15463149...15465593 
DPM3 15462231...15462806  
EFNA1 
15466565...15473164 
LOC107132270 (ncRNA) 
15465686…15496399 
 

(30, 31) Lactose percentage 
 
Na 

Chr5:93534138-
93538860 

MIR 
MFP_BR3 
MFP_BR3C 

MGST1 
93495438…93520998 
SLC15A5 
93602194…93699207 

(25, 31, 42)  fat percentage 
 
Lactose yield 
 
Milk and Fat yield, 
Fat percentage 

Chr6:45052030 
 

MIR LOC112447058 
ncRNA 
45060561…45065030 

(30) 
 

P, K  

Chr6:85419916-
85475175 

MIR 
MFP_BR3 
MFP_BR3C 

CSN2 85449173...85457867 
CSN1S1 
85411601…85429256 

(25, 30, 41) protein yield, protein 
percent 
 
Na, Ca 
 
Milk and Protein 
Yield 

Chr11:103243985 MIR 
MFP_BR3 
MFP_BR3C 

PAEP 
103255963…103260862 

(30, 41, 43) 
 

Milk, fat and Protein 
Yield, Fat percentage 
Protein percentage 
 
Citrate, P 

Chr11:104186080 MFP_BR3 
MFP_BR3C 

ABO 
104176830…104214758 
 

(25, 44)  Protein yield 
 
oligosaccharides 

Chr14: 263754 - 
792410 

MIR 
MFP_BR3 
MFP_BR3C 

DGAT1 603981…614153 (29, 45) Milk, fat and protein 
yield, fat and protein 
percentage 
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(many other genes including 
solute carriers SLC39A4 and 
SLC52A2) 

Chr15:81098284 MFP_BR3 
MFP_BR3C 

CTNND1 and olfactory 
receptor genes 

No reports 
found 

- 

Chr16:1750054 - 
1803090 

MFP_BR3 
MFP_BR3C 

SOX13 1867662...1912526 
LOC104974354 
1791622...1806028 

No reports 
found 

- 

Chr20:31887560 MFP_BR3 
MFP_BR3C 

GHR 
31869704…32043372 

(43, 46, 47) Milk, Fat and Protein 
Yield, Fat and 
Protein percentage, 
Milk Yield 
 
 Protein percent 
 

Chr20:58389561 MIR 
MFP_BR3 
MFP_BR3C 

ANKH 
58307527…58477499 

(30, 31, 41) 
 

Fat yield, protein 
percentage 
 
Lactose percentage 
 
K  

Chr27:36499460 MIR GPAT4 (AGPAT6) 
36508780…36539760 

(30, 48) 
 

Fat and protein 
percentage, protein 
yield, lactose yield 
and percentage, milk 
fatty acids 
Mg 
 

 148 

 149 

Supplementary Table 2: Distribution of SNP effects on PCs derived from milk, fat, and protein yield and PC heritabilities. 150 
Note the loadings give the coefficients of the linear combinations of the centered and scaled continuous variables for milk, 151 
fat, and protein yield. Distributions 1-4 are each normal distributions with mean = 0 and variances = 0, 0.0001, 0.001, 0.01 152 
times the genetic variance, respectively. 153 

PC 
PC loadings Distribution 

𝒉𝟐 
Milk Fat Protein 𝒌𝟏 𝒌𝟐 𝒌𝟑 𝒌𝟒 

1 -0.603 -0.493 0.627 140 9801 5 2 0.42 

2 -0.443 0.861 0.251 2688 7219 12 30 0.48 

3 -0.663 -0.126 -0.738 2293 7555 79 21 0.52 
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 154 

Supplementary Table 3: Distribution of SNP effects on PCs derived from milk, fat and protein yield when using prior 155 
information from analysis of milk MIR spectra. 156 

Class 
Total 

Number 
of SNPs 

Number of 
 SNPs in 
Model 

PC 
Distribution 

𝒌𝟏 𝒌𝟐 𝒌𝟑 𝒌𝟒 

1 992 48 (4.8%) 

1 7 30 9 2 

2 5 4 27 11 

3 2 2 32 12 

2 238677 4084 (1.6%) 

1 138 3940 5 1 

2 614 3460 8 12 

3 348 3660 58 5 

3 238667 4061 (1.6%) 

1 438 3520 3 0 

2 1880 2100 4 4 

3 1340 2640 5 3 

4 157535 2665 (1.5%) 

1 202 2400 3 0 

2 1140 1440 2 0 

3 1560 1036 2 0 

 157 

 158 

Supplementary Table 4: Multi-Trait Analysis of Milk Production Traits of Dairy Cattle – accuracy of prediction using BayesR3 159 
and BayesR3C. BayesR3C used the multi-trait MIR Q2 probabilities to allocate variants to four classes (see Materials & 160 
Methods in full paper). Reference N=65,637, & Validation populations were as described for the Single Trait Analyses: 161 
HOL_Bull was 702 Holstein bulls, JER_Bull was 675 Jersey bulls and RDC_Cows included 3082 Australian Red cows. Accuracy 162 
was averaged across 5 MCMC chains for each PC trait.  163 

Validation Set PC Trait BayesR3 Accuracy BayesR3C Accuracy 

Hol_Bull 1 0.708 0.710  
2 0.819 0.818  
3 0.841 0.840 

JER_Bull 1 0.753 0.753  
2 0.799 0.800  
3 0.852 0.854 

RDC_Cows 1 0.235 0.231  
2 0.396 0.384  
3 0.255 0.263 

 164 

 165 


