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Supplementary Table 1. The increasing solids loading reactor operating-time length and

steady state-time length at each condition at a 10 day residence time. The data for 30 g/L

was published prior in Liang et al. *.

Solids loading  Total operation per solids Steady state duration (days)
(g/L) loading (days)

30 50 20

75 204 44

120 85 55

150 217 187



Supplementary Table 2. Reactor steady state data summary. Results are expressed as

mean + one standard deviation. The data for 30 g/L was published prior in Liang et al. .

Solids loading Mean + standard Number of
solids (g/L) deviation (g/L) samples
Fractional carbohydrate solubilization
30 0.664+0.026 7
75 0.670+0.004 6
120 0.652+0.011 8
150 0.686+0.033 11
Biogas production rate (mL/day)
30 851.3+65.5 10
75 2703.3+77.1 44
120 4294.1+261.7 53
150 6030.1+481.2 187
Biogas composition
CH4 (%) CO2 (%)
30 49.1£1.3 47.2 +1.3 10
75 49.9+1.5 48.0+1.8 12
120 49.6+1.1 49.0+1.3 17
150 48.7+1.0 48.8+1.3 31
Volatile fatty acids (g/L Propionic acid)
30 0.0+0.0 7
75 0.0+0.0 6
120 0.035+0.031 8
150 0.004+0.010 15
Electron balance
30 89.3% 1
75 98.8+1.7% 2
120 107.0% 1
150 98.7+2.2% 4
Mass balance
30 95.8% 1
75 103.8+0.3% 3
120 102.6+2.5% 3
150 106.2+1.4% 3
Remaining solids concentration (g/L)
30 16.4+0.361 g/L 7
75 38.8+0.356 3
120 59.6+1.03 3
150 72.9+2.81 3
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Supplementary Figure 1. Microbiome performance at increasing solids loadings shown
by time-course measurements (residence time=10 days). (a) Biogas production rate
(mL/day) and composition (CH, and CO: content) vs. time; (b) Fractional carbohydrate
solubilization (FCS) and volatile fatty acids concentration (g/L) vs. time. The data for 30g/L
solids loading was published in Liang et al.}, the data for increasing solids loadings of 75 g/L,
120 g/L and 150 g/L was collected did not occur in Liang et al, 2018*. Each solids loading period
is divided by solid black vertical lines. Between 30 g/L and 75 g/L solids loading in the feed at a
residence time of 10 days the residence time was further decreased, before returning to 10 day
RT, therefore ellipsis was used between 30 g/L and other solids loadings to indicate non
continuous data. Biogas production was recorded once per day. Biogas composition is shown
by fractional content of CHs and CO,. FCS data were calculated based on total carbohydrates
loaded and total residual carbohydrate in each sample. Acid concentration and FCS results are
expressed as mean * one standard deviation.



30g/L =75g/L =120g/L =150 g/L

50000
o
Plalrktnni: 45000 g g
Cells
® 40000
2
T 35000
&
2. 30000
s
s 5 25000
5
£ 20000
=
15000
10000
50001 Q.0
0 d
Supernatant  Substrate-Bound Planktonic Cells
a) Supernatant b) Planktonic Cells | c) Substrate Bound |
® 30gL PCA Plot (67.3%) - ® 30gL PEA Plot (618%1 * 30gL Pt Plof (58.3%)
o 7591 E | o 75gL +] ° 5L |,
o 120gL b s 120gL 3 » 120gL ¢ ...
o 150gL » 150gL ® 1500L .
o" ‘- ° *
L) . P
g ™ z . N ¢ I' 4 ) 3
= » € ] 7 L i
i =3 . o i |6 I"
. — : T = -
rer s R stz
d .
J | 30gl | 7seL || 12091 || 1s0gn | e [ 3091 J7sgn |[ 12090 | 1500L | f IENENETNEED
— e = - o -
[ =]

Supplementary Figure 2. Metaproteome metrics and distribution of measured proteins in
each fraction. (A) Venn diagram shows the overlap of quantifiable proteins across the
fractions. (B) Count of distinct peptides measured across the solids loadings in each fraction.
Error bars show zstandard error of mean (n=4 for 30 and 120 g/L, n=3 for 75 g/L, and n=5 for
150 g/L). (C) Top half (a-c) PCA plots of the replicates in each solids loading condition in each
fraction. The colors mark the switchgrass substrate loading. Bottom half (d-f) Correlation
matrices showing Pearson correlation within the replicates of a solids loading and among the
different solids loading conditions in the different fractions. To note, the color scales from low to
high correlation are different in the fractions to bring out the contrasts. Source data are provided
as a Source Data file.
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Supplementary Figure 3. Methanogenesis occurs primarily via the hydrogenotrophic
pathway. (A) Enumeration of enzymes from methanogenesis pathways quantified in each
fraction (darker shade of red scales with quantified proteins for the pathway enzyme) along with
their taxonomic origin- Bacterial (blue) and Archaeal (orange). (B) Metaproteomics results
mapped on the prevalent methanogenesis pathways in the system- acetoclastic and
hydrogenotrophic. The heatmap for each reaction in the pathways shows the aggregate
abundance trends (log. fold difference from 30 g/L) of respective Archaeal enzymes in each
fraction. (C) The relative contribution of Euryarchaeota proteins to the total metaproteome
intensity in each fraction. Data are presented as mean values +SEM (n=4 for 30 and 120 g/L,
n=3 for 75 g/L, and n=5 for 150 g/L). SNT: Supernatant, PC: Planktonic cells, and SB: Substrate
bound fraction. Source data are provided as a Source Data file.

ack, acetate kinase; pta, phosphotransacetylase; cdh, acetyl-CoA decarbonylase/synthase; mtr

(acetoclastic), methyl- H4PST:CoA methyltransferase; fwd/fmd, formylmethanofuran dehydrogenase; ftr,
formylmethanofuran:HsMPT formyltransferase; mch, methenyl-HsMPT cyclohydrolase; hmd, Hz-forming
methylene-HsMPT dehydrogenase; mer, Fazo-dependent methylene-HsMPT reductase; mtr
(hydrogenotrophic), methyl-HsMPT:coenzyme M methyltransferase; mtaB, methanol-5-
hydroxybenzimidazolylcobamide Co-methyltransferase; mtaA, methanol-CoM methyltransferase; mtbA,
methylated [methylamine-specific corrinoid protein]:coenzyme M methyltransferase; mtmB, methylamine-
-corrinoid protein Co-methyltransferase; mttB, trimethylamine--corrinoid protein Co-methyltransferase;
mtbB1, dimethylamine--[corrinoid protein] Co-methyltransferase; mcr, methyl-coenzyme M reductase;
mmo/mdh, methane monooxygenase/ methanol dehydrogenase; THSPT, tetrahydrosarcinapterin;
THMPT, tetrahydromethanopterin.
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Supplementary Figure 4. All methanogenesis pathways for the supernatant (SNT)
fraction. All identified proteins and proteins from only Archaea were mapped to these
pathways. Presence of a heatmap (“heat block”) beside an enzyme indicates presence, and the
colors indicate fold change in log. units from 30 g/L. Order of the heatmap boxes — 30 g/L-75
g/L-120 g/L-150 g/L. Source data are provided as a Source Data file.
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Supplementary Figure 5. All methanogenesis pathways for the planktonic cells fraction.
All identified proteins and proteins from only Archaea were mapped to these pathways.
Presence of a heatmap (“heat block”) beside an enzyme indicates presence, and the colors
indicate fold change in log. units from 30 g/L. Order of the heatmap boxes — 30 g/L-75 g/L-120
g/L-150 g/L. Source data are provided as a Source Data file.
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Supplementary Figure 6. All methanogenesis pathways for the substrate bound fraction.
All identified proteins and proteins from only Archaea were mapped to these pathways.
Presence of a heatmap (“heat block”) beside an enzyme indicates presence, and the colors
indicate fold change in log. units from 30 g/L. Order of the heatmap boxes — 30 g/L-75 g/L-120
g/L-150 g/L. Source data are provided as a Source Data file.
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Supplementary Figure 7. Summed abundance trends of the Archaeal proteins mapping to
two major methanogenesis pathways. It shows that hydrogenotrophic pathway is more
abundant in each fraction and exhibits an increasing trend with solids loading. Data are
presented as mean values +SD (n=4 for 30 and 120 g/L, n=3 for 75 g/L, and n=5 for 150 g/L).
SNT: Supernatant, PC: Planktonic cells, and SB: Substrate bound fraction. Source data are

provided as a Source Data file.
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Supplementary Figure 8. Proportion of tethered and free CAZymes as a function of solids
loadings across fractions. Summed abundance of microbial origin proteins mapping to
different Carbohydrate Active enZymes (CAZymes) (shown as bars) and the relative
contributions from the free and tethered (those with CBM/ cohesin/ dockerin) CAZymes (shown
as lines) in the (A) Supernatant (SNT), (B) Planktonic cells (PC), and (C) Substrate bound (SB)
fractions. Data are presented as mean values £SD (h=4 for 30 and 120 g/L, n=3 for 75 g/L, and
n=5 for 150 g/L). Overall, the number of free enzymes is greater than that of the tethered
enzymes. As expected, the SB fraction has the highest proportion of its CAZymes’ abundance
coming from tethered enzymes compared to the other fractions. With change in solids loadings,
in the three fractions, there appears to be partitioning between the free and tethered enzymes,
which is especially evident in the supernatant fraction. The relative prevalence of free enzymes
at the high solids suggest that they could be more important for solubilization. Source data are
provided as a Source Data file.
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Supplementary Figure 9. Total abundance patterns of select CAZyme subcategories with
increasing solids loadings. Summed abundance trends of proteins annotated as CAZymes
(A) with one or more binding modules (CBM, dockerin, cohesin), (B) without any binding
modules, and (C) with glycosyl transferase (GT) activity across the four switchgrass solids
loadings in the three fractions. No significant change was seen in the cumulative abundances of
GTs. SNT: Supernatant, PC: Planktonic cells, and SB: Substrate bound fraction. Source data
are provided as a Source Data file.
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Supplementary Figure 10. Fraction specific fold changes in all identified CAZyme families
as a function of solids loadings. Heatmap shows the abundance trend of proteins from
CAZyme families that make up the hydrolytic CAZyme classes, grouped into potential C5/C6
activities based on the annotated function of the proteins that make up the respective family. On
the right, the count of proteins that map that contain the respective CAZyme family domain are
represented. A two-tailed Welch’s t-test was performed from each solids loading versus the 30
g/L loading. Significant means p-value <0.05 and absolute log. fold change =1 vs. 30 g/L
condition. Source data are provided as a Source Data file.
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Supplementary Figure 11. Proportion of enzymatic activities differ across fractions and
with substrate loadings. Abundance contributions of different substrate activities to the total
CAZyme abundance in the three fractions- Supernatant (SNT), Planktonic cells (PC), and
Substrate bound (SB) fraction across the four solids loadings. Here, each protein abundance
has been accounted for only once in each fraction. Certain proteins had multiple domains and
hence multiple activities, or their potential activity was indistinguishable based on annotation
alone- in both these cases the proteins were considered to have all possible functions. Data are
presented as mean values £SD (n=4 for 30 and 120 g/L, n=3 for 75 g/L, and n=5 for 150 g/L).
Error bars are shown for those categories with >=10% contribution to the total CAZyme
intensity. Source data are provided as a Source Data file.
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Supplementary Figure 12. Alterations in taxonomic drivers underlie total abundance
changes in different enzymatic activities. Phylum-resolved abundance trends of proteins
annotated as (A) beta-glucosidase, (B) xylosidase, (C) exoglucanase, (D) endoglucanase, (E)
arabinosidase, (F) galactosidase, (G) xylanase, and (H) AA6 (benzoquinone reductase). The
numbers correspond to the count of proteins with the taxonomic origin identified for the
respective activity in the three fractions — (SNT, PC, SB). A two-tailed Welch’s t-test was
performed with Benjamini Hochberg FDR correction from each solids loading versus the 30 g/L
loading. * means t-test p-value <0.05 and absolute log: fold change =1 vs. 30 g/L condition.
Exact P values for each comparison are listed in Supplementary Data 6. Data are presented as
mean values £SD (n=4 for 30 and 120 g/L, n=3 for 75 g/L, and n=5 for 150 g/L). SNT:
Supernatant, PC: Planktonic cells, and SB: Substrate bound fraction. Source data are provided
as a Source Data file.
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Supplementary Figure 13. Multiple taxonomic groups contribute to lignin-acting and
stress responsive enzymes. Phylum-resolved abundance trends of proteins annotated as (A)
AA2-Peroxidase (identified in PC fraction only), (B) AA3-GMC oxidoreductase (identified in PC
fraction only), (C) Bacterioferritin, and (D) superoxide dismutase. The numbers correspond to
the count of proteins identified with respective activity in the three fractions — (SNT, PC, SB).
Data are presented as mean values +SD (n=4 for 30 and 120 g/L, n=3 for 75 g/L, and n=5 for
150 g/L). SNT: Supernatant, PC: Planktonic cells, and SB: Substrate bound fraction. Source
data are provided as a Source Data file.
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Supplementary Figure 14. Multiple sequence alignment of AA6 proteins against ZMO1116
using MUSCLE 3.8 program. Source data are provided as a Source Data file.
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Supplementary Figure 15. 4-hydroxymandelate degradation pathway mapped with
identified proteins. Presence is indicated by a heatmap beside the enzyme. Close examination
revealed presence of very few proteins for most of those that were identified. Pathway diagram
was generated using MetaCyc pathway collages. SNT: Supernatant, PC: Planktonic cells, and
SB: Substrate bound fraction. Source data are provided as a Source Data file.
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Supplementary Figure 16. Beta-ketoadipate pathway for degradation of aromatic
compounds mapped with identified proteins. Presence is indicated by a heatmap beside the
enzyme. Close examination revealed presence of very few proteins for most of those that were
identified. Pathway diagram was generated using MetaCyc pathway collages. SNT:

Supernatant, PC: Planktonic cells, and SB: Substrate bound fraction. Source data are provided
as a Source Data file.
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superpathway of aerobic toluene degradation
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Supplementary Figure 17. Toluene degradation pathways mapped with identified
proteins. Presence is indicated by a heatmap beside the enzyme. Close examination revealed
presence of very few proteins for most of those that were identified. Additionally, those with
increasing abundance seemed to be involved in catechol conversion as highlighted. Pathway
diagram was generated using MetaCyc pathway collages. SNT: Supernatant, PC: Planktonic
cells, and SB: Substrate bound fraction. Source data are provided as a Source Data file.
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superpathway of aromatic compound degradation via 2-hydroxypentadienoate
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hydroxypentadienoate mapped with identified proteins. Presence is indicated by a heatmap
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that were identified. Pathway diagram was generated using MetaCyc pathway collages. SNT:
Supernatant, PC: Planktonic cells, and SB: Substrate bound fraction. Source data are provided

as a Source Data file.
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Supplementary Figure 19. Benzoate degradation pathway. The identified enzymes are
colored (green or yellow- green were more numerous) and those highlighted in red constitute
benzene degradation and Catechol meta-cleavage pathways. Pathway map was generated
using KEGG pathways. Source data are provided as a Source Data file.
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Supplementary Figure 20. Aminobenzoate degradation pathway with identified enzymes
colored. Green or yellow- green were more numerous. Pathway map was generated using
KEGG pathways. Source data are provided as a Source Data file.
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Supplementary Figure 21. Total microbial biomass in the bioreactor with increasing
solids loadings. Microbial biomass was estimated by conducting a metaproteomic analysis on
equal volumes of samples at each solids loading. (a) The resultant relative contribution of the
different taxonomic categories to the total protein abundance at each solids loading. (b) The
aggregate abundance of identified microbial peptides (considered proportional to microbial
biomass) compared across the solids loadings. (c) The abundance trend of cellulolytic (and
saccharolytic) and methanogenic organisms (inferred from aggregate abundance of identified
CAZyme and Euryarchaeota peptides, respectively) (top plot), aggregate abundance trend of
peptides mapping AA6 and methyl-coenzyme M proteins (bottom left) with solids loading. Error
bars are +standard deviation (n=4 for 30 and 120 g/L, n=3 for 75 g/L, and n=5 for 150 g/L with
three methodological replicates for each). A two-tailed Welch’s t-test was performed for each
solids loading versus the 30 g/L loading. Presence of *’ means t-test p-value <0.05 vs. 30 g/L
condition. Exact P values for each comparison are listed in Supplementary Data 1. NS, not
significant; CAZyme, Carbohydrate Active enZyme. Source data are provided as a Source Data
file.
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Supplementary Figure 22. Summed abundance trends of peptides from select
housekeeping proteins based on the volume-normalized metaproteomic analysis. Error
bars show tstandard deviation (n=4 for 30 and 120 g/L, n=3 for 75 g/L, and n=5 for 150 g/L with
three methodological replicates for each). Source data are provided as a Source Data file.
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Supplementary Note 1. Total microbial biomass in the bioreactor does not scale
with the 5-fold increase in solid substrate loading

The observations above demonstrated that dynamic and customized tuning of the various
lignocellulolytic enzymes and methanogenic pathways are clearly linked with sustained
lignocellulosic deconstruction at high solids. However, a question remains about whether a
change in total microbial biomass could also explain the solubilization results presented in Fig.
1B. Microbial cell biomass is usually limited by availability of substrates®®; hence increased
substrate concentrations can result in an equivalent proliferation in microbial cell biomass in the
bioreactor (i.e., increased microbial density), which would also support the observation of
undiminished solubilization at higher solids. Direct quantification of microbial biomass in the
presence of solids is challenging as cells adhered to the plant substrate can complicate cell
counting and optical density measurements; hence, microbial biomass can thus only be inferred
based on indirect measurements®. For microbial communities, peptide and protein abundance
data from metaproteomic measurements have been utilized to estimate the biomass amounts in
the presence of solid substrates or otherwise murky environmental samples®. While traditional
metaproteomic measurements provide detailed information about the diversity and relative
abundance of proteins present in a fixed amount/mass of total protein extracted from a sample
(“protein-normalized”, as reported above), evaluation and comparison of total protein
abundance obtained from a fixed volume of samples (“volume-normalized”) is more relevant to
estimate the concentration and yield of microbial biomass. In control experiments undertaken
for this study, we demonstrated that such volume-normalized measurements positively correlate
with microbial biomass for C. thermocellum and mock communities. Thus, a volume-normalized
metaproteomic analysis was performed on unfractionated samples as a proxy to estimate

microbial biomass changes across solids loadings.

To circumvent issues relating to shared peptides among orthologous proteins/domains, a
peptide-centric approach was adopted to compare total peptide content. A total of 14,386
distinct peptides (highly confident, FDR <1%) were quantifiable across all samples. When
peptides were mapped to kingdom of origin, we found that ~95% of peptide abundance was
microbially-derived (Bacteria or Archaea), a metric that was consistent across the four solids
loadings (Supplementary Fig. 21a, Supplementary Data 1). Given the increase in absolute
carbohydrate solubilization rate from 30 g/L to 150 g/L (glucose, xylose, and arabinose), as well

as a corresponding increase in methane production, microbial biomass would increase ~5-fold if
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the cell yield per substrate consumed remained constant. However, we observed no significant
change in total, volume-normalized microbial peptide abundance with increasing solids loading
(Supplementary Fig. 21b), suggesting the microbial biomass (or cell-density) did not increase
proportionately across the solids loadings conditions. This observation was further corroborated
by the analysis of peptides from different housekeeping proteins which followed a similar trend
(Supplementary Fig. 22) and showed no significant increase in aggregate abundance at higher
solids loadings. Although the samples at 150 g/L demonstrated some biological variability, the
increase in microbial biomass was still less than 2-fold for cultures with a 5-fold difference in
substrate loading and substrate utilized. Thus, the rate of carbohydrate utilization normalized to
total, volume-normalized microbial peptide abundance was more than twice as high in cultures

with 150 g/L substrate loading as compared to cultures with 30 g/L substrate loading.

Since changes in community structure can still occur without changes in total amount®, the
abundance of select constituent subpopulations was further assessed at this unfractionated
volume-normalized scale (Supplementary Fig. 21c, 22). This more quantitative viewpoint
underscored and substantiated the observations made above: that no change in the total
cellulolytic subpopulation (CAZyme) occurred while increases in specific enzymatic categories
such as B-glucosidases and benzoquinone reductases (AA6) correlated with increased solids
content. Furthermore, the aggregate abundance of peptides mapping to methanogens
(Euryarchaeota) and methyl-coenzyme M reductase both maintained an increasing trend with

solids loadings as was observed in the protein-normalized analysis presented earlier.
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Supplementary Note 2. Methanogenesis primarily via the hydrogenotrophic
pathway is observed in the microbiome

Enzymes associated with different methanogenesis pathways were explored across all
fractions and solids loadings (Supplementary Fig. 3A, 4-6, Supplementary Data 5). The PC and
SB fractions, which both include whole cells, had a greater representation of enzymes mapping
to the different methanogenic pathways (Supplementary Fig. 3A). Although no proteins from
methane oxidation were identified, complete (100%) pathway coverage was obtained for both
acetoclastic and hydrogenotrophic methanogenesis in these two fractions (Supplementary Fig.
3A-B, 4-6). Enzymes from both pathways were generally represented by multiple proteins.
Further analysis revealed that while the majority of enzymes associated with the
hydrogenotrophic pathway were derived from Euryarchaeota, enzymes associated with the
acetoclastic pathway also belonged to non-methanogenic bacteria. In an anaerobic community,
bacterial members employ these enzymes to either produce acetate through the acetyl-CoA
(Wood-Ljungdahl; WL) pathway or utilize acetate (via reversed WL pathway) as syntrophic
acetate oxidizers to generate intermediates for the hydrogenotrophic pathway®’, so these were
eliminated from methanogenesis consideration. Among the archaeal proteins, both the
aggregate abundance and diversity (protein count) of those mapping the hydrogenotrophic
pathway markedly exceeded that of the acetoclastic pathway (Supplementary Fig. 3A, 7),
suggesting this to be the major route for methanogenesis. Coupled with syntrophic acetate
oxidation for acetate degradation, hydrogenotrophic methanogenesis is the favored route under
thermophilic temperatures®® and has been observed previously in anaerobic thermophilic
microbiomes®. At the level of individual reactions in the pathways, the abundance of archaeal
enzymes from both methanogenic pathways increased uniformly with solids loadings, which
was consistent with the measured increase in methane production (Fig. 1D, Supplementary Fig.
3B, 4-6).

All the methanogenesis pathway enzymes had a clearly increasing trend in the PC fraction
which correlated with increasing solids loadings. This fraction also had the greatest
representation of enzymes involved in the methanogenesis process (Supplementary Fig. 3A-B,
5). Closer inspection revealed that the PC fraction contained the highest total abundance of
proteins from Euryarchaeota such that the phylum contributed a substantial portion of PC
metaproteome compared to the other fractions (Supplementary Fig. 3C). This proportion
increased from ~7% to ~14% from low to high solids loadings in the PC fraction, whereas it

remained relatively steady in the other two fractions (SNT ~2% and SB ~5%) (Supplementary
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Fig. 3C). These results indicate that this Archaea is primarily present in the PC fraction and is
thus a cell-based or intracellular phenomenon that is not substrate-associated. Indeed,
methanogenesis does not require proximity to lignocellulosic substrate but access to H,; and
CO;, and the fractional observations made here, specifically its enrichment in non-substrate-

associated planktonic cells, supports this interpretation.
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