Appendix: Life expectancy by county, race, and ethnicity in the USA, 2000–2019: a systematic analysis of health disparities

Contents

1 GATHER Checklist
2 Supplemental Methods
2.1 Deaths and population data processing4
2.2 Covariate imputation and smoothing4
2.3 Small area model specification8
County-race/ethnicity model
County-level model
Hyper-prior sensitivity analysis12
2.4 Small area model validation
Approach13
Results
2.5 Derivation of misclassification ratios by county, age, sex, and race/ethnicity17
Extraction
Combination17
Mortality rate adjustment18
Impact of misclassification adjustment and calibration18
2.6 Life table calculations
2.7 References
3 Supplemental Methods Tables
3.1 Counties combined to create historically stable units of analysis24
3.2 Deaths and population data sources25
3.3 Covariate data sources
3.4 Population and uncertainty mask
Population and uncertainty mask, by census region29
Population and uncertainty mask, by 2013 NCHS urban-rural classification
3.5 Hyper-parameter posterior means and standard errors33

	3.6 County-racial/ethnic groups in the validation set	35
	3.7 Validation results for life expectancy at birth for all models and racial/ethnic groups	40
4	Supplemental Methods Figures	42
	4.1 Analysis flow chart	42
	4.2 Hyper-prior sensitivity analysis results	43
	4.3 Model validation results	45
	4.4 Impact of misclassification adjustment on national life expectancy estimates	46
	4.5 Impact of misclassification adjustment on county life expectancy estimates	47
5	Supplemental Results Figures	48
	5.1 County life expectancy by racial/ethnic group, 2000	48
	5.2 County life expectancy by racial/ethnic group, 2010	50
	5.3 Differences in county life expectancy among racial/ethnic groups compared to the White population, 2000	51
	5.4 Differences in county life expectancy among racial/ethnic groups compared to the White population, 2010	52
	5.5 Change in county life expectancy by racial/ethnic group, 2000–2010	53
	5.6 Change in county life expectancy by racial/ethnic group, 2010–2019	55
	5.7 Change in county life expectancy by racial/ethnic group compared to the White population, 20 2010	00– 57
	5.8 Change in county life expectancy by racial/ethnic group compared to the White population, 20 2019	10– 59
	5.9 Change in differences in county life expectancy among racial/ethnic groups compared to the White population, 2000–2010	61
	5.10 Change in differences in county life expectancy among racial/ethnic groups compared to the White population, 2010–2019	63
	5.11 County life expectancy and the composition of the API population	65

1 1 GATHER Checklist

ltem #	Checklist item	Description of Compliance
Objectives	and funding	
1	Define the indicator(s), populations (including age, sex, and geographic entities), and time period(s) for which estimates were made.	Abstract, Introduction, and Methods sections
2	List the funding sources for the work.	Abstract, Methods, and Acknowledgements sections
Data Input	S	
For all do	ata inputs from multiple sources that are synthesized as part of the study:	
3	Describe how the data were identified and how the data were accessed.	Methods section
4	Specify the inclusion and exclusion criteria. Identify all ad-hoc exclusions.	Methods section
5	Provide information on all included data sources and their main characteristics. For each data source used, report reference information or contact name/institution, population represented, data collection method, year(s) of data collection, sex and age range, diagnostic criteria or measurement method, and sample size, as relevant.	Methods section, Appendix sections 2.1–2.2, 2.5, and 3.2–3.3
6	Identify and describe any categories of input data that have potentially important biases (e.g., based on characteristics listed in item 5).	Methods section
For data	inputs that contribute to the analysis but were not synthesized as part of the study:	
7	Describe and give sources for any other data inputs.	N/A
For all do	ata inputs:	
8	Provide all data inputs in a file format from which data can be efficiently extracted (e.g., a spreadsheet rather than a PDF), including all relevant meta-data listed in item 5. For any data inputs that cannot be shared because of ethical or legal reasons, such as third-party ownership, provide a contact name or the name of the institution that retains the right to the data.	GHDx link (upon publication)
Data analy	sis	
9	Provide a conceptual overview of the data analysis method. A diagram may be helpful.	Methods section, Appendix section 4.1
10	Provide a detailed description of all steps of the analysis, including mathematical formulae. This description should cover, as relevant, data cleaning, data pre- processing, data adjustments and weighting of data sources, and mathematical or statistical model(s).	Methods section, Appendix section 2
11	Describe how candidate models were evaluated and how the final model(s) were selected.	Appendix section 2
12	Provide the results of an evaluation of model performance, if done, as well as the results of any relevant sensitivity analysis.	Appendix section 2
13	Describe methods for calculating uncertainty of the estimates. State which sources of uncertainty were, and were not, accounted for in the uncertainty analysis.	Methods section, Appendix section 2
14	State how analytic or statistical source code used to generate estimates can be accessed.	GitHub link (upon publication)
Results an	d Discussion	
15	Provide published estimates in a file format from which data can be efficiently extracted.	GHDx link (upon publication)
16	Report a quantitative measure of the uncertainty of the estimates (e.g. uncertainty intervals).	Results section, GHDx link (upon publication)
17	Interpret results in light of existing evidence. If updating a previous set of estimates, describe the reasons for changes in estimates.	Introduction and Discussion sections
18	Discuss limitations of the estimates. Include a discussion of any modelling assumptions or data limitations that affect interpretation of the estimates.	Discussion section

Checklist template obtained from: http://gather-statement.org/

5 2 Supplemental Methods

6 2.1 Deaths and population data processing

7 We used de-identified death records from the National Vital Statistics System (NVSS) and population 8 estimates from the National Center for Health Statistics (NCHS) for the years 2000–2019 for this analysis 9 (section 3.2). Deaths and population were tabulated by county, age group (0, 1–4, 5–9, ..., 80–84, 85+ 10 years of age), sex, race/ethnicity, and year. In cases where age was missing (0.0177% of deaths), we 11 calculated the proportion of deaths within each age group by state, year, sex, and race/ethnicity among 12 those entries with age information and then reapportioned deaths without age information by using 13 these proportions. This approach effectively assumes that age is missing at random. We are unable to 14 verify this assumption; however, we believe it's unlikely that violations of this assumption would 15 substantively impact the results of our analysis, given the rarity of missing age in the deaths data. In cases 16 where death records were missing information on race or where race was coded as "other" (0.63%), 17 NVSS imputed a value; in cases where multiple race information was collected and decedents were 18 identified as two or more races (0.29%), NVSS included an imputed or "bridged" race value that corresponds to the predicted "primary" race for each decedent.¹ We used the imputed and bridged 19 20 values for the present analysis. NVSS does not impute missing Latino ethnicity (0.29%); for the purposes 21 of this analysis, deaths among individuals with unknown Latino ethnicity were redistributed in proportion 22 to the size of the Latino and non-Latino populations in the same county, race, age, sex, and time period. 23 To ensure stable ratios for this redistribution, we pooled data over time as needed to achieve a minimum 24 population of 50. This threshold of 50 is somewhat arbitrary, but was selected in an attempt to balance 25 the need for stable ratios with the desire to have ratios that reflect the distribution of the population 26 within as specific a time-range as possible.

27

28 2.2 Covariate imputation and smoothing

The small area estimation models used in the present study to estimate mortality rates leverage observed relationships between the level of mortality and sociodemographic and socioeconomic factors (covariates) to improve estimates where populations are small and the observed number of deaths is an imprecise indicator of the underlying mortality rate. Among the five covariates used in this analysis, educational attainment (bachelor's degree or higher), poverty rate, and proportion foreign-born were stratified by both county and race/ethnicity, while median household income and population density were stratified only by county and represent estimates for the total population in that county (section

3.2). The race/ethnicity-stratified covariates contained missing values and displayed instability and low 36 37 precision for some strata with small populations. As covariate estimates are required for all space-time-38 race/ethnicity combinations in order to derive mortality predictions, small area imputation models were 39 developed for race/ethnicity-specific covariates to derive smoothed covariate estimates in all years, 40 counties, and racial/ethnic groups prior to including these covariates in the mortality models. Covariates 41 that were not stratified by race/ethnicity in addition to county were incorporated in the mortality models 42 in their original (non-imputed) forms due to their larger effective sample sizes and complete spatial and 43 temporal coverage.

44

45 The race/ethnicity-stratified covariates were modelled as binomial variables without stratification by age 46 or sex. Covariate data were derived primarily from the American Community Survey (ACS) and decennial 47 population census. Racial classifications in the tabulated ACS and census data include separate groups for Asians and for Native Hawaiians and Other Pacific Islanders (NHOPI); covariate data for these groups were 48 49 combined into an Asian or Pacific Islander (API) group for consistency with the mortality models. 50 Covariate data were also combined for merged counties to derive a stable location set matching that 51 used in the mortality models (section 3.1). ACS provides estimates of uncertainty as Margins of Error 52 (MOE) at a confidence level of 90%, rather than providing variance estimates. Per guidance from the Census Bureau,² variance was calculated for each subgroup as: 53

54

55

 $\operatorname{Var}(X_i) = \left(\frac{\operatorname{MOE}(X_i)}{1.645}\right)^2$

56

where X_i is the mean estimate for subgroup *i*. Again per Census guidance, variances for merged
geographic and demographic entities were then calculated as the sum of the variances over component
subgroups, assuming independence:

- 60 61
- $\operatorname{Var}(X_1 + X_2) = \operatorname{Var}(X_1) + \operatorname{Var}(X_2)$
- 62
- 63 where X_1 and X_2 are mean estimates for two subgroups that are to be merged.
- 64

65 As the ACS and decennial census data were derived from population samples but are reported as values

scaled to total population sizes, their effective sample sizes were estimated in order to appropriately

67 scale sampling variance in the imputation models, using a three-pronged strategy. The long-form

68 decennial census questionnaires in 1990 and 2000, from which the education, poverty, and foreign-born

69 data were derived for those years, were collected from a 20% and 17% population sample, respectively.³

70 Effective sample sizes were therefore assumed to be 20% or 17% of the total population for each county-

71 year-race/ethnicity stratum in 1990 and 2000, respectively.

72

Figure 273 Effective sample sizes for ACS data, for which variances were calculated as above, were estimated using 74 the relationship between effective sample size, \hat{n}_{eff} , estimates of the population proportion, \hat{p} , and its 75 variance, Var(\hat{p}):⁴

76

$$\hat{n}_{eff} = \frac{\hat{p}(1-\hat{p})}{\operatorname{Var}(\hat{p})}$$

78

As observations with observed proportions of 0.0 or 1.0 yield effective sample sizes of 0.0, the reported population fractions (\hat{p}) for these county-year-race/ethnicity strata were transformed via an empirical logit transformation⁵ and then inverse-transformed using the standard inverse logit function before calculating the corresponding effective sample sizes:

83

84

$$\hat{p}_{emp} = \text{logit}^{-1} \left(\log \left(\frac{\hat{p} + \frac{\varepsilon}{2}}{1 - \hat{p} + \frac{\varepsilon}{2}} \right) \right)$$

85

86 where $logit^{-1}$ is the standard inverse logit function and ε is defined as the smallest non-zero proportion 87 in the data set. Effective sample sizes were calculated using these transformed proportions and the 88 original reported $Var(\hat{p})$. Counts of individuals with the modelled outcome (attainment of a bachelor's 89 degree or higher, living below the poverty line, or foreign-born) were then calculated for each row by 90 multiplying their original reported proportions and estimated effective sample sizes.

91

Bayesian imputation models were fit in R-INLA⁶ v.20.09.25 in R v3.5.1⁷ using binomial likelihood models,
and explicitly borrow strength over space, time, and race/ethnicity in an approach analogous to the small
area mortality models:

96

 $Y_{j,t,r} \sim \text{Binomial}(p_{j,t,r}, \hat{n}_{eff,j,t,r})$

97

$$logit(p_{j,t,r}) = \beta_0 + \gamma_{1,j} + \gamma_{2,j,t,r} + \gamma_{3,j,t} + \gamma_{4,r}$$

98

99 where $Y_{j,t,r}$ is the estimated count of individuals in county *j*, year *t*, and race/ethnicity group *r* with the 100 modelled outcome, among an effective sample size of $\hat{n}_{eff,j,t,r}$ with proportion $p_{i,t,r}$. Model terms 101 consist of:

- 102 β_0 , a global intercept with a Normal(0, 10) prior;
- γ_{1,j}, a county-level random effect with a Besag-York-Mollie-type prior (BYM2) combining a
 conditional autoregressive distribution for spatial autocorrelation, based on county adjacency,
 with independent-and-identically-distributed (IID) Gaussian distribution;
- 106 $\gamma_{2,j,t,r}$, a county-, race/ethnicity-, and year-level random effect with a first-order autoregressive 107 (AR1) temporal prior, grouped by county and race/ethnicity;
- 108 $\gamma_{3,j,t}$, a county- and year-level random effect with an AR1 temporal prior grouped by county;
- and $\gamma_{4,r}$, a race/ethnicity-level random effect with an IID Gaussian prior.
- 110

Default INLA hyper-priors were used. The BYM2 parameterization includes a parameter, φ , which 111 112 indicates the contribution of the structured spatial effect to the marginal variance; $logit(\varphi)$ had a penalized complexity (PC) prior⁸ corresponding to $Pr(\varphi < 0.5) = 0.5$, and the log precision of the 113 BYM2 model had a PC prior corresponding to $Pr(\sigma > 1.0) = 0.1$. The AR1 models had Gamma(shape = 114 1.0, inverse-scale = $5*10^{-5}$) priors on the precision and Normal(mean = 0.0, precision = 0.15) priors on the 115 116 logit of the 1-year lagged correlation (ρ). The race/ethnicity IID term had a Gamma(shape = 1.0, inversescale = $5*10^{-5}$) prior on the precision. These default priors were used as we considered them suitably 117 118 vague, in the absence of a priori information with which to establish more informative priors. The INLA 119 model employed a Gaussian approximation strategy, an empirical Bayes integration strategy, and a steplength for hyper-parameter gradient calculations of $1*10^{-3}$. Due to numerical instability in the model for 120 121 foreign-born proportion, a series of model fits were performed with iteratively decreasing values added 122 to the diagonal of the joint precision matrix (100, 10, and 1, respectively) to derive starting parameter 123 values for the final model run. Mean posterior predictions from the small area covariate models were 124 used as covariate estimates in the small area mortality models.

126 2.3 Small area model specification

127 County-race/ethnicity model

128 The following model was estimated separately for males and females:

129

- 130 $D_{j,t,a,r} \sim \text{Poisson}(m_{j,t,a,r} \cdot P_{j,t,a,r})$
- 131 $\log(m_{j,t,a,r}) = \beta_0 + \boldsymbol{\beta}_1 \cdot \boldsymbol{X}_{1,j,t} + (\boldsymbol{\beta}_2 + \boldsymbol{\gamma}_{1,r}) \cdot \boldsymbol{X}_{2,j,t,r}$

132
$$+ \gamma_{2,j} + \gamma_{3,t,a,r} + \sum_{t'=1}^{k_t} \sum_{a'=1}^{k_a} \left(\gamma_{4,j,t',a',r} \cdot S_{t'}(t) \cdot S_{a'}(a) \right)$$

133	Priors:
134	$\gamma_1 \sim \text{IID}(\sigma_1)$
135	$\gamma_2 \sim \text{LCAR}(\rho_2, \sigma_2)$
136	$\gamma_3 \sim \text{LCAR: LCAR: IID}(\rho_{3,t}, \rho_{3,a}, \sigma_3)$
137	$\boldsymbol{\gamma_4} \sim \text{LCAR: LCAR: MVN}(\rho_{4,a'}, \rho_{4,t'}, \rho_{4,j}, \boldsymbol{\sigma_4}, \theta)$
138	
139	Hyper-priors:
140	$\sigma^{-2} \sim PC(\sigma_0 = 5, \alpha = 0.05) \rightarrow \Pr(\sigma > 5) = 0.05$
141	$logit(\rho) \sim Normal(0, 1.5)$
142	
143	where
144	• j , t , a , and r are indices for the county, calendar year (2000–2019, renumbered sequentially from
145	0 to 19), age group (0, 1–4, 5–9,, 80–84, and 85+ years old, recoded sequentially from 0 to 18),
146	and race/ethnicity (White, Black, AIAN, API, and Latino, recoded in that order from 0 to 4),
147	respectively;
148	• $D_{j,t,a,r}$ and $P_{j,t,a,r}$ are the observed number of deaths and the population count, respectively, in
149	county j , year t , age group a , and race/ethnicity r ;
150	• $m_{j,t,a,r}$ is the underlying mortality rate in county j , year t , age group a , and race/ethnicity r ;
151	• $X_{1,j,t}$ is a vector of covariates for county j and year t, and β_1 is the associated vector of
152	regression coefficients;

153 • $X_{2,j,t,r}$ is a vector of covariates for county j, year t, and race/ethnicity r, and $\beta_2 + \gamma_{1,r}$ is the 154 associated vector of regression coefficients, made up of a fixed component (β_2) shared by all 155 racial/ethnic groups, and a random component ($\gamma_{1,r}$) that varies by race/ethnicity;

156	• $\gamma_{2,j}$ is a county-level random intercept;
157	• $\gamma_{3,a,t,r}$ is an age group-, year-, and race/ethnicity-level random intercept;
158	• $\gamma_{4,j,t',a',r}$ is a county-, race/ethnicity-, year spline basis-, and age spline basis-level random
159	intercept;
160	• k_t is the number of time knots (four knots, evenly spaced from 2000–2019) and t' is the
161	corresponding index;
162	• k_a is the number of age knots (five knots, at age groups 0, 25–29, 45–49, 65–69, and 85+ years
163	old) and a^\prime is the corresponding index;
164	• $S_{t'}(t)$ is the value of spline basis t' for a linear spline on year, evaluated at year t ;
165	• and $S_{a'}(a)$ is the value of spline basis a' for a linear spline on age, evaluated at age a .
166	
167	Prior distributions were assigned for each random component:
168	• Each element of γ_1- corresponding to each covariate in X_1- was assumed to follow an
169	independent and identically distributed (IID) mean-0 Normal distribution. $m{\gamma_1}$ is associated with
170	three hyper-parameters (σ_1^2), corresponding to the variance of this random effect for each
171	covariate.
172	• γ_2 was assumed to follow a conditional autoregressive distribution of the form described by
173	Leroux, Lei, and Breslow (LCAR), ⁹ which corresponds to the following full conditional distribution
174	for each individual element of $oldsymbol{\gamma_2}$:
175	
176	$\gamma_j \gamma_{k \sim j}, \sigma^2, \rho \sim \text{Normal}\left(\frac{\rho \cdot \sum_{k \sim j} \gamma_k}{n_j \cdot \rho + 1 - \rho}, \frac{\sigma^2}{n_j \cdot \rho + 1 - \rho}\right)$
177	
178	where $k \sim j$ indicates the set of counties that are adjacent to county j and n_j is the number of
179	counties in $k\sim j$. In this distribution, the σ^2 parameter controls the amount of spatial variation,
180	while the $ ho$ parameter, which varies between 0 and 1, determines the degree of spatial
181	smoothness.
182	• γ_3 was assumed to follow a mean-0, multivariate Normal distribution with a separable covariance
183	structure defined via the Kronecker product of the covariance matrix of three distributions: 10,11 a
184	conditional autoregressive distribution as in γ_2 but defined for age groups rather than counties; a
185	second conditional autoregressive distribution as in γ_2 but defined for time period rather than
186	counties; and a multivariate Normal distribution with a diagonal covariance matrix. This random

187 effect is associated with three hyper-parameters: $\rho_{3,a}$ and $\rho_{3,t}$, which control the correlation 188 across age groups and time, respectively; and σ_3^2 which controls variation.

 γ_4 was also assumed to follow a mean-0, multivariate Normal distribution, in this case with a 189 separable covariance structure defined via the Kronecker product of the covariance matrix of four 190 191 distributions: three conditional autoregressive distributions as described above, for county, age 192 spline basis, and year spline basis; and a multivariate Normal distribution for race/ethnicity. For 193 this random effect, there are three sets of hyper-parameters: $\rho_{4,a'}$, $\rho_{4,t'}$, and $\rho_{4,j}$, which control the smoothness over the age spline, year spline, and county, respectively; σ_4^2 (length = 5) which 194 controls the variation for each race/ethnicity group; and θ (length = 10), the elements of a lower-195 triangular matrix **L** which defines the correlation matrix over race/ethnicity: $\Sigma = D^{-\frac{1}{2}}LL'D^{-\frac{1}{2}}$. 196 197 where D = diag(LL').

198

199 Finally, hyper-priors were defined for the standard deviation (σ) and, where applicable, autocorrelation 200 (ρ) hyper-parameters:

• Penalized complexity (PC) priors⁸ were specified for the inverse variance $(1/\sigma^2)$ of each random effect. PC priors shrink toward a base model, which in this case is where the marginal variance is 0. They are specified by setting the tail probability on each hyper-parameter. We followed the recommendation by Fuglstad et al.,⁸ selecting priors that satisfy $Pr(\sigma > \sigma_0) = 0.05$ where σ_0 is between 2.5 and 40 times the expected true marginal standard deviation. Specifically, we set $\sigma_0 = 5$; $Pr(\sigma > \sigma_0) = 0.05$.

Normal(0, 1.5) priors were specified for the logit-transform of the correlation parameters (*ρ*).
 Posterior means and standard errors for these hyper-parameters are provided in section 3.5.

209

210 Descriptively, this model specifies the log of the underlying mortality rate $(m_{i,t,a,r})$ as a function of 211 covariates and additional variation by county, year, age, and race/ethnicity. The covariates we included in 212 this model—educational attainment, poverty rate, proportion foreign-born, median household income, 213 and population density—were selected based on data availability and previously observed relationships 214 with mortality. The fixed effects (β_1, β_2) on both the county- and county-race/ethnicity-specific 215 covariates $(X_{1,j,t}, X_{2,j,t,r})$ capture the relationships between each covariate and mortality. For the race/ethnicity-specific covariates, we additionally include random effects, γ_1 , to allow for the relationship 216 217 between these variables and mortality to vary by race/ethnicity. The covariates do not explain all

218 variation in mortality across time, age, geography, and race/ethnicity, so further random effects are 219 included in the model to capture additional variation. The random effect γ_2 allows for spatial (ie, 220 between-county) variation in the level of mortality, shared across age, year, and race/ethnicity. The 221 random effect γ_3 allows for variation in mortality by age, time, and race/ethnicity group, shared across all 222 counties. Finally, the random effect γ_4 was included to allow for county-specific deviations in the 223 mortality patterns by age, time, and race/ethnicity, compared to the general pattern captured by γ_3 . This 224 random effect incorporates a linear spline in the age and time dimensions to reduce computational 225 complexity: the equivalent model for all age groups and years was found to be computationally infeasible. 226 Although the splines in this random effect are linear, we are not assuming that the time or age trends for $\log(m_{i,t,a,r})$ are linear, as both the contributions from the covariates as well as γ_3 allow for non-linear 227 228 variation. The purpose of these splines is rather to allow for additional variation along these dimensions 229 for each county-race/ethnicity combination. The number of age and year knots were chosen to maximize 230 flexibility while maintaining a reasonable runtime—this is the largest number of knots that we were able 231 to include in a model that could be fitted in under two weeks. The placement of the age knots was 232 determined by including the oldest and youngest ages and then spacing the inner age knots to align with 233 common inflection points in the age pattern (excluding age 1 since we already included age 0). In testing 234 several alternatives, we found that including the first and last ages proved to be most important for 235 properly fitting the data, whereas the placement of the inner age knots typically did not have a large 236 effect on the estimates. The year knots were simply distributed evenly over the study period. In testing, 237 reasonable alternative placements of the year knots typically did not have a large effect on the resulting 238 estimates.

239

240 In addition to the more formal model validation we describe below, we assessed model fit by inspecting 241 plots comparing the estimated time and age trends in mortality to the observed data at the national, 242 state, and (in selected counties) county level. Additionally, we used graphical posterior predictive checks¹² 243 to assess if the observed data are over-dispersed and/or zero-inflated relative to our model; we found no 244 evidence that this is the case. Finally, we examined plots of the binned residuals compared to each 245 covariate in order to assess the assumption that the relationship between log mortality and each 246 covariate is linear; we found no evidence of bias in our estimates as a result of non-linearity in these 247 relationships.

248

249 We used the Template Model Builder (TMB) package¹³ to fit these models using an empirical Bayes

- 250 approach. TMB calculates analytic approximations to the posterior distribution based on Laplace
- approximations. We use TMB for fitting these models rather than INLA—another common alternative to
- 252 classic Markov chain Monte Carlo (MCMC) methods and the tool that we used for the covariate
- imputation and smoothing models (section 2.2)—as TMB is substantially more flexible with respect to the
- 254 model specification.¹⁴ Of particular importance for this analysis: random effects in INLA are restricted to
- two-way interactions, whereas TMB allows us to incorporate higher-order interactions (γ_3 and γ_4) in our
- 256 modelling approach.

257

258 County-level model

A similar model was estimated for all racial/ethnic groups combined. This was included in order to

- 260 perform model calibration of the race/ethnicity-specific estimates in order to prevent the race/ethnicity
- 261 misclassification adjustment from altering the overall (all racial/ethnic groups combined) mortality rate in

any given county. This model is as follows, with all terms defined as described above:

263

264
$$D_{j,t,a} \sim \text{Poisson}(m_{j,t,a} \cdot P_{j,t,a})$$

 $\log(m_{j,t,a}) = \beta_0 + \boldsymbol{\beta_1} \cdot \boldsymbol{X_{1,j,t}}$

266
$$+ \gamma_{2,j} + \gamma_{3,t,a} + \sum_{t'=1}^{k_t} \sum_{a'=1}^{k_a} \left(\gamma_{4,j,t',a'} \cdot S_{t'}(t) \cdot S_{a'}(a) \right)$$

- 267
- 268 Priors:

269
$$\gamma_2 \sim \text{LCAR}(\rho_2, \sigma_2)$$

- 270 $\gamma_3 \sim \text{LCAR: LCAR}(\rho_{3,t}, \rho_{3,a}, \sigma_3)$
- 271 $\gamma_4 \sim \text{LCAR: LCAR: LCAR}(\rho_{4,a'}, \rho_{4,t'}, \rho_{4,j}, \sigma_4)$
- 272
- 273 Hyper-priors:
- 274 $\sigma^{-2} \sim PC(\sigma_0 = 5, \alpha = 0.05) \rightarrow \Pr(\sigma > 5) = 0.05$
- 275 $\operatorname{logit}(\rho) \sim \operatorname{Normal}(0, 1.5)$
- 276

277 Hyper-prior sensitivity analysis

278 We considered a range of alternative specifications for the priors on standard deviation (σ) terms. This

279 included three families of distributions—penalized complexity, Gamma, and half-Normal—and a range of

280 parametrizations for each. For the penalized complexity priors, we tested all permutations of the 281 following parameters: $\sigma_0 = 1, 5$; $Pr(\sigma > \sigma_0) = 0.05, 0.02, 0.1, 0.4, 0.8$. The Gamma priors were 282 specified for the inverse variance $(1/\sigma^2)$ and were parameterized by shape and scale. Permutations of 283 the following parameterizations were considered: shape = 0.25, 0.5, 1, 2; scale = 1, 100, 1000. The 284 half-Normal priors were specified for the standard deviation (σ) and were parameterized by the mean 285 (μ_d) and standard deviation (σ_d) of the corresponding Normal distribution. Permutations of the following 286 parameterizations were tested: μ_d = 0; σ_d = 1, 2, 4. The figure in section 4.2 shows the difference in the 287 estimates derived from models using these alternate prior specifications compared to our main model. 288 These differences are generally very small across all parameterizations and prior specifications.

289

290 2.4 Small area model validation

291 Approach

The framework used to evaluate the performance of the models in this analysis is an extension of a
 previously proposed¹⁵ and extensively used^{16,17} framework designed specifically for county-level models in
 the USA. It was modified to allow for evaluation of performance with respect to generating estimates of
 life expectancy by county and race/ethnicity.

296

297 First, a "validation set" of county-race/ethnicity pairs was identified. The validation set is a collection of 298 county-race/ethnicity pairs for which directly calculated mortality rates are a good representation of the 299 underlying mortality rate, ie, where the population and corresponding number of deaths is sufficiently 300 large to generate stable direct estimates. In order to increase the number of county-racial/ethnic groups 301 that were retained in the validation set, deaths and population data were pooled across time using a 302 moving window of three years for the purposes of defining the validation set. A series of criteria were 303 used to remove county-racial/ethnic groups from the set of all county-racial/ethnic groups, with the 304 remainder forming the validation set. First, any county-racial/ethnic groups with zero pooled deaths in 305 any age, sex, or year (window) were removed. Second, among the remaining county-racial/ethnic groups, 306 those where the median (across all years, sexes, and age groups) coefficient of variation was greater than 307 20% for the age-specific mortality rates or greater than 5% for the age-standardized and crude mortality 308 rates were removed. In order to calculate the coefficient of variation, 1000 draws of death counts were 309 simulated for each age group, sex, and year, assuming a Poisson distribution with rate and size equal to 310 the observed mortality rate and population size, respectively; age-specific, crude (all-ages), and age-311 standardized mortality rates were then calculated for each draw; and finally the coefficient of variation

was calculated as the standard deviation of the draws divided by their mean. The validation set has 138 county-race/ethnicity pairs, composed of 96 counties and 4 racial/ethnic groups (section 3.6). The AIAN group was not represented in the validation set. Once the validation set was identified, life tables were generated from the pooled mortality rates using the methods described in section 2.6. These pooled mortality rates and the corresponding estimates of life expectancy at birth were used as a "gold standard" against which to compare model predictions.

318

319 Next, "validation datasets" were constructed. A total of 40 validation sets were used: 5 iterations each of 320 simulated datasets with reference population sizes of 10, 100, 1000, 3000, 5000, 10000, 25000, and 321 100000. Additionally, a sixth iteration was prepared for each of these population sizes because, rarely, 322 models for some iterations failed to converge; this sixth iteration was only used if a model failed to 323 converge. The sizes 1000–100000 were chosen because they correspond roughly to the 1st, 5th, 10th, 324 25th, 50th, and 80th percentiles for the total population (all racial/ethnic groups combined) across all 325 counties and years. Sizes 10 and 100 were added because similar population sizes are common for 326 specific racial/ethnic groups at the county level. To make these validation data sets, a population of the 327 specified size was sampled for each county-race/ethnicity in the validation set, with the probability of 328 sampling an individual of a given age and sex proportional to the observed population structure for that 329 county-race/ethnicity. Then, for each age and sex within each county-race/ethnicity, deaths were 330 simulated from a Poisson distribution with mean equal to the observed mortality rate times the sampled 331 population for that age group and sex. The data for all county-race/ethnicity pairs that were not in the 332 validation set were included without modification.

333

334 Finally, small area models were fit and predictions generated as described above to each of the 40 335 validation datasets. To evaluate the performance, the predictions based on each validation data set were 336 compiled and compared against the gold standard mortality rates and life expectancies. First, errors were calculated as $e_{j,t,a,r}^{gs} - e_{j,t,a,r}^{pred}$ where $e_{j,t,a,r}^{gs}$ is the gold standard life expectancy at birth, and $e_{j,t,a,r}^{pred}$ is the 337 338 predicted life expectancy at birth. The mean error and the mean absolute error—measures of bias and 339 precision, respectively—were calculated across all county-racial/ethnic groups in the validation set and all 340 iterations at each population level. Coverage (ie, the percentage of county-race/ethnicity-years where the 341 gold standard estimate was between the lower and upper uncertainty intervals for the modelled 342 estimate) was also recorded.

344 This validation procedure was used to assess and compare model performance of three models:

345 1. The racial/ethnic-group-specific model described in the previous section:

$$D_{j,t,a,r} \sim \text{Poisson}(m_{j,t,a,r} \cdot P_{j,t,a,r})$$

347
$$\log(m_{j,t,a,r}) = \beta_0 + \boldsymbol{\beta}_1 \cdot \boldsymbol{X}_{1,j,t} + (\boldsymbol{\beta}_2 + \boldsymbol{\gamma}_{1,r}) \cdot \boldsymbol{X}_{2,j,t,r}$$

348
$$+ \gamma_{2,j} + \gamma_{3,t,a,r} + \sum_{t'=1}^{k_t} \sum_{a'=1}^{k_a} \left(\gamma_{4,j,t',a',r} \cdot S_{t'}(t) \cdot S_{a'}(a) \right)$$

349

351

350 2. The same model as in 1, but without covariates:

$$D_{j,t,a,r} \sim \text{Poisson}(m_{j,t,a,r} \cdot P_{j,t,a,r})$$

352
$$\log(m_{j,t,a,r}) = \beta_0 + \gamma_{2,j} + \gamma_{3,t,a,r} + \sum_{t'=1}^{\kappa_t} \sum_{a'=1}^{\kappa_a} \left(\gamma_{4,j,t',a',r} \cdot S_{t'}(t) \cdot S_{a'}(a) \right)$$

353

355

3. The model for all racial/ethnic groups combined described in the previous section:

$$D_{j,t,a} \sim \text{Poisson}(m_{j,t,a} \cdot P_{j,t,a})$$

356
$$\log(m_{j,t,a}) = \beta_0 + \beta_1 \cdot X_{1,j,t} + \gamma_{2,j} + \gamma_{3,t,a} + \sum_{t'=1}^{k_t} \sum_{a'=1}^{k_a} \left(\gamma_{4,j,t',a'} \cdot S_{t'}(t) \cdot S_{a'}(a) \right)$$

357

358 The variant of the model without covariates (model 2) was included to assess whether including 359 covariates improved performance of the model. The variant of the model with all racial/ethnic groups 360 combined (model 3) was included to assess the performance of the model at the county level for all 361 racial/ethnic groups combined. A separate validation set, gold standard, and validation data sets were 362 prepared in order to assess performance of this final model variant. To make the all-racial/ethnic-group 363 validation set, the same conditions that defined the racial/ethnic-group-specific validation set were 364 applied to the same data aggregated to the all-racial/ethnic-group level. The gold standard and validation 365 data sets were prepared as described above at the all-racial/ethnic-group level.

366

367 Results

368 The mean error, mean absolute error, and coverage for each model are provided in sections 3.7 (table)

and 4.3 (figure). The mean error is a measure of bias, ie, it indicates if the estimates from the models

were systematically higher or lower than the gold standard values. As expected, mean error tended to

improve (was closer to 0) as the simulated population size increased for all models and all racial/ethnic

372 groups. In model 1, there was little evidence of bias for most racial/ethnic groups. Mean errors were 373 minimal at larger population sizes and relatively small at smaller population sizes for most racial/ethnic 374 groups. There was some evidence of bias for the API and Black groups for counties with population 375 <1000; the largest mean errors were for the API group, where the model underestimated by 0.86 years at 376 size 10, and for the Black group, where the model overestimated by 0.39 years at size 10. However, the 377 API group only had four counties in the validation set, so it is difficult to draw general conclusions about 378 bias for this racial/ethnic group. Model 1 performed better than model 2 in terms of mean error: the 379 mean errors for model 2 were larger than those for model 1 for most racial/ethnic groups at most 380 population sizes, indicating that there was more bias in model 2 than in model 1. Mean errors for model 3 381 were larger in magnitude than those calculated across every racial/ethnic group at all sizes for model 1 382 and model 2. Nonetheless, the mean errors for models 2 and 3 were still relatively small, especially at 383 larger population sizes.

384

385 The mean absolute error is a measure of overall error, ie, how much the model estimates differ from true 386 estimates irrespective of direction. As expected, mean absolute errors tended to improve as size 387 increased for all models and all racial/ethnic groups. In model 1, mean absolute error was relatively small, 388 even at the smallest population sizes, indicating model 1 performed well for all racial/ethnic groups. 389 Compared to model 1, model 2 performed worse overall in most racial/ethnic groups. While model 2 390 performed worse than model 1 in general, both models performed well at large population sizes; model 2 391 had similar mean absolute errors at largest population sizes in every racial/ethnic group. The mean 392 absolute errors for model 3 were smaller than the mean absolute errors calculated across every 393 racial/ethnic group at every size in model 2, and at sizes 5000 and larger in model 1, indicating that model 394 3 performed better at estimating all racial/ethnic groups together than models 1 and 2 did at estimating 395 individual racial/ethnic groups overall.

396

Coverage is a measure of the calibration of the uncertainty intervals. Ideally, coverage should be close to 95% because that means that the 95% uncertainty intervals were an appropriate reflection of an estimate's uncertainty. Coverage tended to be closer to 95% in model 1 than in model 2: model 1 had more coverage values within +/- 1 percentage point of 95% compared to model 2. Coverage in model 2 varied more across racial/ethnic groups than in model 1; model 1 had more consistent values in a narrower range than model 2. Coverage tended to be highest at the smallest population sizes, and then decreased as population size increased for most models and racial/ethnic group. This is likely due to the

- 404 wider uncertainty intervals at smaller population sizes, making it more likely for the gold standard to be
- 405 inside the uncertainty interval. In model 2, coverage for the Black racial/ethnic group increased as
- 406 population size increased until size 100 000.
- 407
- 408 2.5 Derivation of misclassification ratios by county, age, sex, and race/ethnicity
- 409 Extraction
- 410 Overall misclassification ratios, as well as misclassification ratios by age and sex, census region, and co-
- 411 ethnic density were extracted from Arias et al.¹⁸ for five racial/ethnic groups: White, Black, AIAN, API, and
- 412 Latino. Specifically, data were extracted from the following locations:
- Overall misclassification ratios: Table 2, "Total" column for both sexes.
- Age-sex misclassification ratios: Table 2, age-specific columns for each sex separately.
- Census region misclassification ratios: Table 3, results by "Region"
- Co-ethnic density misclassification ratios: Table 3, results by "Coethnic concentration"; AIAN
 ratios extracted from the results shown for all AIAN because these were not available specifically
 for non-Latino AIAN.
- 419

420 The co-ethnic density misclassification ratios were assigned to a county using the same method outlined in Arias et al.:¹⁸ for the AIAN population, counties in Contract Health Service Delivery Areas (CHSDAs) 421 422 were considered to have high co-ethnic density; for the Latino population, counties with high co-ethnic 423 density were those within the first 50th percentile of ranked deaths by county between 1999 and 2011. 424 This method assumes that the relative increase or decrease in misclassification for counties with low or 425 high co-ethnic density compared to the total misclassification ratio for AIAN (including both Latino and 426 non-Latino AIAN) is representative of that for non-Latino AIAN. We are not aware of any studies on this 427 topic, but we make this assumption in order to include adjustment by co-ethnic density given the evidence that this form of misclassification is especially important with respect to the AIAN population.^{19–} 428 21 429 430

431 Combination

432 1000 draws of each misclassification ratio were generated assuming these ratios are log-Normally
433 distributed. We selected a log-Normal distribution as it is restricted to positive numbers, which is
434 appropriate for this ratio; however, we acknowledge that this selection is somewhat arbitrary and is at

435 best an approximation of the true ratio distribution. The draws of misclassification were then combined436 (without ordering) using the following approach:

437

$$ratio_{final} = ratio_{overall} \cdot \frac{ratio_{age,sex}}{ratio_{overall}} \cdot \frac{ratio_{region}}{ratio_{overall}} \cdot \frac{ratio_{co-ethnic \ density}}{ratio_{overall}}$$

439

For the White, Black, and API populations, ratio_{co-ethnic density} is equal to ratio_{overall}, so the last term is equal to 1 (ie, no adjustment by co-ethnic density). For the AIAN population, the ratio_{overall} in the denominator of the final term was the overall misclassification ratio for both Latino and non-Latino AIAN populations combined, to match the numerator, which was available only for Latino and non-Latino AIAN populations combined; in all other terms, the values for the non-Latino AIAN population alone were used.

This approach assumes that the degree of misclassification is independent across each dimension. Thus,
the degree of misclassification reported for a particular facet (eg, by age/sex) is the same across all other
facets (eg, region and co-ethnic density). For example, the age/sex pattern of misclassification for a given
race/ethnicity group will be the same regardless of region.

450

451 Mortality rate adjustment

The 1000 draws of misclassification ratios were merged onto the 1000 posterior draws of the mortality rate by age, sex, county (which reflected both region and co-ethnic density), and race/ethnicity. The merge by age was conducted by aligning the age groups in the model (0, 1–4, 5–9, ..., 80–84, and 85+ years old) with the age bin to which each of the modelled ages belongs (ie, age groups 0, 1–4, 5–9, 10– 14, 15–19, and 20–24 were merged onto the age bin 0–24). These draws were not ordered, thus assuming independence between the mortality rate and the misclassification ratio. Mortality rate draws were adjusted by multiplying by the corresponding misclassification ratio draw.

460 Impact of misclassification adjustment and calibration

461 Both misclassification adjustment and model calibration play important roles in creating more accurate

- 462 life expectancy estimates. First, misclassification adjustment accounts for under- or over-reporting of
- 463 certain races/ethnicities on death certificates. However, because this adjustment is done independently
- for each racial/ethnic group, it can change the overall level of life expectancy estimated for a given
- 465 county. Our calibration procedure thus serves two purposes: to constrain the adjusted estimates such

that the overall level of mortality implied by the race/ethnicity-specific estimates is the same as when
estimating at the county level; and to ensure consistency in the estimates at the county, state, and
national level within this analysis and between this analysis and the Global Burden of Disease Study.
Because these two processes are linked, we show here the cumulative impact of both adjustment for
misclassification and calibration.

471

The figure in section 4.4 demonstrates the impact of these calculations on life expectancy at the national 472 473 level. The estimate of total life expectancy is impacted only by calibration, which results in a slight shift 474 downward. The estimates for each racial/ethnic group are impacted by both adjustment for 475 misclassification and the calibration procedure. The combined effect is small for the White and Black 476 populations, as expected given the small size of the misclassification adjustments for these two groups. 477 There are moderate decreases in life expectancy for the API and Latino populations, as well as increases 478 in the uncertainty of those estimates, reflecting the somewhat larger misclassification adjustments as well 479 as increased uncertainty from these adjustments. These processes have the largest effect on life 480 expectancy among the AIAN population: there are fairly large decreases in life expectancy once adjusted 481 and calibrated in addition to a large increase in uncertainty.

482

483 The maps in section 4.5 show the corresponding impact at the county level. Again, for the total life 484 expectancy values, these changes are caused by calibration alone, and we can observe many of these 485 same calibration effects in the maps for life expectancy among the White and Black populations 486 especially. The more substantial changes in life expectancy noted at the national level for the Latino, API, 487 and AIAN population are again noted here, with changes at the county level generally in the same 488 direction (ie, decreases in life expectancy). Perhaps counterintuitively, there are instances where for a particular county and race/ethnicity, the change in life expectancy after misclassification adjustment and 489 490 calibration is not in the same direction as at the national level. This is caused by the interaction between 491 adjustment and calibration. For example, in Bethel Census Area, Alaska, misclassification adjustment 492 alone caused a decrease in life expectancy, but calibration caused the life expectancy to increase because 493 the GBD estimates for Alaska are higher than our model's unadjusted estimates for Alaska. Another 494 example is Bennett County, South Dakota, where life expectancy for the AIAN population is higher once 495 adjusted and calibrated. In this case, this is not due to the GBD results being higher for South Dakota. 496 Instead, this is due to misclassification adjustment. This county—along with many of the other unmasked 497 counties in South Dakota—is a Contract Health Service Delivery Area (CHSDA), and therefore has a lower

498 misclassification adjustment. This adjustment is 1.17, while the denominator is 1.4 (the total AIAN 499 misclassification ratio for both Latino and non-Latino AIAN). Thus, the ratios of ratios is less than 1. This is combined with the region misclassification ratio, which is 1.12 and has a denominator of 1.33 (the total 500 501 non-Latino AIAN misclassification ratio). Thus, the contribution from the region misclassification ratio is 502 also less than 1. This means that the combined misclassification ratios are less than 1 for most ages and 503 sexes in this county, thus leading to a higher life expectancy. In contrast, Brown County, South Dakota 504 exhibits decreases in life expectancy due to raking and calibration. This is because Brown County is not a 505 CHSDA, and thus its associated adjustment is larger than 1.

506

507 2.6 Life table calculations

Standard demographic methods²² were used to construct abridged period life tables for each county, 508 509 year, sex, and race/ethnicity from the age-specific mortality rates estimated by the small area model. A 510 key component of this process involves estimating ${}_{n}a_{x}$, the average years lived within the age interval x 511 to x + n by individuals who died within that age interval. For age groups 0 and 1–4, we use the formulas described by Preston et al.²² (Table 3.3, p 48) adapted from the Coale and Demeny "West" model life 512 tables.²³ For age groups 5–9, ..., 80–84, we start with an initial value for na_x of 2.5, ie, assuming deaths 513 514 occurred, on average, midway through the interval. Then, for age groups 10–14, ..., 75–79, we improve upon these initial values using the iterative graduation procedure proposed by Keyfitz²⁴ as described by 515 Preston et al. (pp 44–45);²² this procedure requires inputs from adjacent age intervals of the same length, 516 517 so we are unable to use this same approach to adjust the na_x values for age groups 5–9 or 80–84 which instead remain set at 2.5. Another key component involves estimating e_{85} or life expectancy in the 518 terminal age group. The "classic" approach is to calculate e_{85} as $1/m_{85}$, a formula that assumes the 519 520 population is stationary—ie, is neither growing nor shrinking, and has a constant age structure. Previous 521 research has shown that this approach can result in substantially biased estimates of life expectancy at 522 age 85 and, by extension, biased estimates of life expectancy at birth; in most settings, this bias is 523 positive, reflecting growing populations at older ages which are consequently younger on average than implied by the stationary model.²⁵ We instead use the method proposed by Horiuchi and Coale, which 524 525 incorporates the population growth rate for the terminal age group to allow for non-stationarity: $e_{85} =$ $(1/m_{85}) \cdot \exp(-0.095 \cdot m_{85}^{-1.4} \cdot r)$.^{25,26} Population growth rates calculated at the county level are highly 526 unstable, so we instead use national-level, race/ethnicity-specific growth rates for each county, averaged 527 528 over the preceding ten-year period. For the purposes of calculating life expectancy for all racial/ethnic

- 529 groups combined at the county level, we calculate a population-weighted average of the national-level
- 530 growth rates, using the observed county-level populations by racial/ethnic group.
- 531
- 532 These life table calculations are carried out for each of the 1000 posterior draws of the age-specific
- 533 mortality rates for each location, year, sex, and race/ethnicity so that lower and upper uncertainty
- bounds can be estimated for life expectancy at birth using the 2.5th and 97.5th percentiles of these draws.
- For internal consistency, we calculate point estimates of the mortality rate and na_x as the mean of these
- 536 draws, and then recalculate the remainder of the life table using the same methods described above to
- 537 generate final point estimates of life expectancy.
- 538

539 540	2.	7 References
540 541 542	1	Kochanek KD, Murphy SL, Xu J, Arias E. Deaths: final data for 2017. <i>Natl Vital Stat Rep</i> 2019; 68 . https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf (accessed Dec 23, 2019).
543 544 545 546	2	US Census Bureau. Instructions for applying statistical testing to American Community Survey data. 2019. https://www2.census.gov/programs- surveys/acs/tech_docs/statistical_testing/2019_Instructions_for_Stat_Testing_ACS.pdf (accessed Dec 17, 2020).
547 548	3	US Census Bureau. Overview - History - U.S. Census Bureau. https://www.census.gov/history/www/through_the_decades/overview/ (accessed Dec 17, 2020).
549 550	4	Franco C, Little RJA, Louis TA, Slud EV. Comparative study of confidence intervals for proportions in complex sample surveys. <i>J Surv Stat Methodol</i> 2019; 7 : 334–64.
551 552	5	Warton DI, Hui FKC. The arcsine is asinine: the analysis of proportions in ecology. <i>Ecology</i> 2011; 92 : 3–10.
553 554	6	Rue H, Martino S, Chopin N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. <i>J R Stat Soc Ser B Stat Methodol</i> 2009; 71 : 319–92.
555 556	7	R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, 2019 https://www.R-project.org/.
557 558	8	Fuglstad G-A, Simpson D, Lindgren F, Rue H. Constructing priors that penalize the complexity of Gaussian random fields. <i>J Am Stat Assoc</i> 2019; 114 : 445–52.
559 560 561	9	Leroux BG, Lei X, Breslow N. Estimation of disease rates in small areas: a new mixed model for spatial dependence. In: Statistical Models in Epidemiology, the Environment, and Clinical Trials. New York: Springer-Verlag, 2000: 179–91.
562 563	10) Clayton D. Generalized linear mixed models. In: Gilks W, Richardson S, Spiegelhalter D, eds. Markov Chain Monte Carlo in Practice, 1st edn. Great Britain: Chapman & Hall, 1996: 275–302.
564 565	11	. Knorr-Held L. Bayesian modelling of inseparable space-time variation in disease risk. <i>Stat Med</i> 2000; 19 : 2555–67.
566 567	12	e Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB. Bayesian data analysis, Third edition. Boca Raton: CRC Press, 2014.
568 569	13	B Kristensen K, Nielsen A, Berg CW, Skaug H, Bell B. TMB: automatic differentiation and Laplace approximation. <i>J Stat Softw</i> 2016; 70 : 1–21.
570 571 572	14	Osgood-Zimmerman A, Wakefield J. A statistical introduction to Template Model Builder: a flexible tool for spatial modeling. <i>ArXiv210309929 Stat</i> 2021; published online March 17. http://arxiv.org/abs/2103.09929 (accessed March 30, 2022).

- 573 15 Srebotnjak T, Mokdad AH, Murray CJ. A novel framework for validating and applying standardized
 574 small area measurement strategies. *Popul Health Metr* 2010; 8: 26.
- 575 16 Dwyer-Lindgren L, Mokdad AH, Srebotnjak T, Flaxman AD, Hansen GM, Murray CJ. Cigarette smoking
 576 prevalence in US counties: 1996-2012. *Popul Health Metr* 2014; 12: 5.
- 577 17 Dwyer-Lindgren L, Bertozzi-Villa A, Stubbs RW, *et al.* US county-level trends in mortality rates for major
 578 causes of death, 1980-2014. *JAMA* 2016; **316**: 2385–401.
- 579 18 Arias E, Heron M, Hakes J. The validity of race and Hispanic-origin reporting on death certificates in the
 580 United States: an update. *Vital Health Stat* 2016; 2.
 581 https://www.cdc.gov/nchs/data/series/sr_02/sr02_172.pdf.
- 582 19 Dankovchik J, Hoopes MJ, Warren-Mears V, Knaster E. Disparities in life expectancy of Pacific
 583 Northwest American Indians and Alaska Natives: analysis of linkage-corrected life tables. *Public Health* 584 *Rep* 2015; 130: 71–80.
- 585 20 Joshi S, Weiser T, Warren-Mears V. Drug, opioid-Involved, and heroin-involved overdose deaths among
 586 American Indians and Alaska Natives Washington, 1999–2015. *Morb Mortal Wkly Rep* 2018; 67:
 587 1384–7.
- 588 21 Arias E, Schauman WS, Eschbach K, Sorlie PD, Backlund E. The validity of race and Hispanic origin
 589 reporting on death certificates in the United States. *Vital Health Stat 2* 2008; 2.
- 590 22 Preston SH, Heuveline P, Guillot M. Demography: measuring and modeling population processes.591 Malden, MA: Blackwell Publishers, 2001.
- 592 23 Coale AJ, Demeny PG. Regional model life tables and stable populations, 2nd ed. New York: Academic593 Press, 1983.
- **594** 24 Keyfitz N. A life table that agrees with the data. *J Am Stat Assoc* 1966; **61**: 305–12.
- 595 25 Ediev DM. Expectation of life at old age: revisiting Horiuchi-Coale and reconciling with Mitra. *Genus*596 2018; 74: 3.
- 597 26 Horiuchi S, Coale AJ. A simple equation for estimating the expectation of life at old ages. *Popul Stud*598 1982; 36: 317–26.

3 Supplemental Methods Tables

3.1 Counties combined to create historically stable units of analysis

State	Group	Counties (FIPS)				
Alaska	1	Chugach Census Area (2063), Copper River Census Area (2066), Valdez-Cordova				
		Census Area (2261)*				
	2	Kusilvak Census Area (2158), Wade Hampton Census Area (2270)*				
	3	Kobuk Census Area (2140)*, Northwest Arctic Borough (2188)				
	4	Aleutian Islands Census Area (2010)*, Aleutians East Borough (2013), Aleutians				
		West Census Area (2016)				
	5	Dillingham Census Area (2070), Lake and Peninsula Borough (2164)				
	6	Denali Borough (2068), Yukon-Koyukuk Census Area (2290)				
	7	Hoonah-Angoon Census Area (2105), Skagway Municipality (2230), Skagway-				
		Yakutat-Angoon Census Area (2231)*, Skagway-Hoonah-Angoon Census Area				
		(2232)*, Yakutat City and Borough (2282)				
	8	Ketchikan Gateway Borough (2130), Petersburg Borough (2195), Prince of				
		Wales-Hyder Census Area (2198), Prince of Wales-Outer Ketchikan Census Area				
		(2201)*, Wrangell City and Borough (2275), Wrangell-Petersburg Census Area				
		(2280)*				
Arizona	1	La Paz County (4012), Yuma County (4027)				
Colorado	1	Adams County (8001), Arapahoe County (8005), Boulder County (8013),				
		Broomfield County (8014), Denver County (8031), Jefferson County (8059),				
		Weld County (8123)				
Florida	1	Dade County (12025)*, Miami-Dade County (12086)				
Hawaii	1	Kalawao County (15005), Maui County (15009)				
Maryland	1	Montgomery County (24031), Prince George's County (24033)				
Montana	1	Park County (30067), Yellowstone National Park (30113)*				
New Mexico	1	Cibola County (35006), Valencia County (35061)				
South Dakota	1	Oglala Lakota County (46102), Shannon County (46113)*				
	2	Jackson County (46071), Washabaugh County (46131)*				
Virginia	1	Fairfax County (51059), Fairfax City (51600)				
	2	Rockingham County (51165), Harrisonburg City (51660)				
	3	James City County (51095), Williamsburg City (51830)				
	4	Prince William County (51153), Manassas City (51683), Manassas Park City				
		(51685)				
	5	Rockbridge County (51163), Buena Vista City (51530)				
	6	Spotsylvania County (51177), Fredericksburg City (51630)				
	7	Augusta County (51015), Staunton City (51790), Waynesboro City (51820)				
	8	Pittsylvania County (51143), Danville City (51590)				
	9	Greensville County (51081), Emporia City (51595)				
	10	Albemarle County (51003), Charlottesville City (51540)				
	11	Bedford County (51019), Bedford City (51515)*				
	12	Halifax County (51083), South Boston City (51780)*				
	13	Southampton County (51175), Franklin City (51620)				
	14	Alleghany County (51005), Clifton Forge City (51560)*				
	15	York County (51199), Newport News City (51700)				

*County no longer exists due to boundary or name change.

3.2 Deaths and population data sources 606

Data Type	Data Source / Citations
Deaths	National Center for Health Statistics. National Vital Statistics System: Mortality Multiple Cause – All Counties Files, 2000–2019. Hyattsville, MD: National Center for Health Statistics, 2021. https://www.cdc.gov/nchs/nvss/nvss-restricted- data.htm
Population	National Center for Health Statistics, Centers for Disease Control and Prevention, US Census Bureau. United States Bridged-Race Intercensal Population Estimates 2000–2009. Hyattsville, United States: National Center for Health Statistics, Centers for Disease Control and Prevention, 2012. https://www.cdc.gov/nchs/nvss/bridged_race.htm. Accessed October 30, 2012.
	US Census Bureau. United States Vintage 2019 Bridged-Race Postcensal Population Estimates 2010–2019. Hyattsville, United States: National Center for Health Statistics, Centers for Disease Control and Prevention, 2020. https://www.cdc.gov/nchs/nvss/bridged_race.htm. Accessed July 28, 2020.

3.3 Covariate data sources

Covariate	Data Sources	Data Processing	Citations
Household median income	2000–2019 Small Area Income and Poverty Estimates [1]; 2000–2019 Bureau of Labor Statistics, Consumer Price Index [2]	Data were adjusted for inflation using the consumer price index.	 [1] US Census Bureau. Small Area Income and Poverty Estimates. https://www.census.gov/programs- surveys/saipe/data/datasets.html. Accessed April 9, 2021. [2] US Bureau of Labor Statistics. Consumer Price Index: All Urban Consumers History, All Items 1913–2019. https://www.bls.gov/data/. Accessed July 28, 2020.
Population density	2000–2019 NCHS bridged race files [3– 4]; 2013 cartographic boundary file, state- county for United States [5]	The area of each county was calculated using an Albers Equal Area Conic projection. The total population of each county was divided by the total area of the county and was then log-transformed.	 [3] National Center for Health Statistics, Centers for Disease Control and Prevention, US Census Bureau. United States Bridged-Race Intercensal Population Estimates 2000–2009. Hyattsville, United States: National Center for Health Statistics, Centers for Disease Control and Prevention, 2012. https://www.cdc.gov/nchs/nvss/bridged_race.htm. Accessed October 30, 2012. [4] National Center for Health Statistics, Centers for Disease Control and Prevention, US Census Bureau. United States Vintage 2019 Bridged-Race Postcensal Population Estimates 2010–2019. Hyattsville, United States: National Center for Health Statistics, Centers for Disease Control and Prevention, 2020. https://www.cdc.gov/nchs/nvss/bridged_race.htm. Accessed July 28, 2020. [5] US Census Bureau. TIGER/Line Shapefile, 2013 Cartographic Boundary File, State-County for United States, 1:20,000,000. https://catalog.data.gov/dataset/2013-cartographic- boundary-file-state-county-for-united-states-1-20000000. Accessed February 2, 2015.

Covariate	Data Sources	Data Processing	Citations		
Percent of the	1990 census [6]; 2000	ACS estimates for Black,	[6] Minnesota Population Center. 1990 Census Summary Tape		
population age 25	census [7]; 2010–	American Indian or Alaskan	File 4, Table NPB44. IPUMS National Historical Geographic		
and older who have	2019 ACS [8]	Native (AIAN), and Asian or	Information System: Version 15.0. Minneapolis, MN: IPUMS		
completed a		Pacific Islander (API) were not	2020. https://www.nhgis.org/. Accessed August 25, 2020.		
bachelor's degree by		available stratified by Latino	[7] Minnesota Population Center. 2000 Census Summary File		
race and ethnicity		ethnicity and were used as	4, Table NPCT064C. IPUMS National Historical Geographic		
		proxies for non-Latino Black,	Information System: Version 15.0. Minneapolis, MN: IPUMS		
		non-Latino AIAN, and non-	2020. https://www.nhgis.org/. Accessed August 25, 2020.		
		Latino API estimates,	[8] US Census Bureau. American Community Survey, 2010–		
		respectively. Imputation via a	2019 American Community Survey 5-Year Estimates, Tables		
		small area estimation model	C15002A–C15002I; using Census data portal;		
		was used to generate and	https://data.census.gov/cedsci/. Accessed April 9, 2021.		
		smooth missing values.			
Percent of the	1990 census [9]; 2000	ACS estimates for Black,	[9] Minnesota Population Center. 1990 Census Summary Tape		
population below the	census [10]; 2010–	American Indian or Alaskan	File 4, Table NPB100. IPUMS National Historical Geographic		
poverty line by race	2019 ACS [11]	Native (AIAN), and Asian or	Information System: Version 15.0. Minneapolis, MN: IPUMS		
and ethnicity		Pacific Islander (API) were not	2020. https://www.nhgis.org/. Accessed August 30, 2020.		
		available stratified by Latino	[10] Minnesota Population Center. 2000 Census Summary File		
		ethnicity and were used as	4, Table NPCT142A. IPUMS National Historical Geographic		
		proxies for non-Latino Black,	Information System: Version 15.0. Minneapolis, MN: IPUMS		
		non-Latino AIAN, and non-	2020. https://www.nhgis.org/. Accessed August 30, 2020.		
		Latino API estimates,	[11] US Census Bureau. American Community Survey, 2010–		
		respectively. Imputation via a	2019 American Community Survey 5-Year Estimates, Tables		
		small area estimation model	B17001A–B17001I; using Census data portal;		
		was used to generate and	https://data.census.gov/cedsci/. Accessed April 9, 2021.		
		smooth missing values.			

Covariate	Data Sources	Data Processing	Citations
Percent of the	1990 census [12];	ACS estimates for Black,	[12] Minnesota Population Center. 1990 Census Summary
population that is	2000 census [13];	American Indian or Alaskan	Tape File 4, Table NPB28. IPUMS National Historical
foreign-born by race	2010–2019 ACS [14]	Native (AIAN), and Asian or	Geographic Information System: Version 15.0. Minneapolis,
and ethnicity		Pacific Islander (API) were not	MN: IPUMS 2020. https://www.nhgis.org/. Accessed October
		available stratified by Latino	8, 2020.
		ethnicity and were used as	[13] Minnesota Population Center. 2000 Census Summary File
		proxies for non-Latino Black,	4, Table NPCT043A. IPUMS National Historical Geographic
		non-Latino AIAN, and non-	Information System: Version 15.0. Minneapolis, MN: IPUMS
		Latino API estimates,	2020. https://www.nhgis.org/. Accessed October 8, 2020.
		respectively. Imputation via a	[14] US Census Bureau. American Community Survey, 2010–
		small area estimation model	2019 American Community Survey 5-Year Estimates, Tables
		was used to generate and	B05003A–B05003I; using Census data portal;
		smooth missing values.	https://data.census.gov/cedsci/. Accessed April 9, 2021.

3.4 Population and uncertainty mask

	Population Mask			Uncertainty Mask			Combined Mask		
Race/ Ethnicity	Counties masked	County- years masked	Person- years masked*	Counties masked	County- years masked	Person- years masked*	Counties masked	County- years masked	Person- years masked*
White	59	1180	0·8	6	47	0·1	62	1205	0·8
	(1·9%)	(1·9%)	(0·0%)	(0·2%)	(0·1%)	(0·0%)	(2·0%)	(1·9%)	(0·0%)
Black	1622	32440	7·5	503	4677	0·5	1634	32501	7·6
	(52·2%)	(52·2%)	(1·0%)	(16·2%)	(7·5%)	(0·1%)	(52·5%)	(52·3%)	(1·0%)
AIAN	2636	52720	9·1	2644	47323	8·8	2752	54175	11·9
	(84·8%)	(84·8%)	(17·8%)	(85·0%)	(76·1%)	(17·2%)	(88·5%)	(87·1%)	(23·3%)
API	2443	48860	8·5	1	4	0·0	2443	48860	8·5
	(78·6%)	(78∙6%)	(2·6%)	(0·0%)	(0·0%)	(0·0%)	(78·6%)	(78∙6%)	(2·6%)
Latino	1632	32640	11·4	70	367	0·1	1636	32655	11·4
	(52·5%)	(52·5%)	(1·2%)	(2·3%)	(0·6%)	(0·0%)	(52∙6%)	(52·5%)	(1·2%)
Total	31	620	0·4	0	0	0·0	31	620	0·4
	(1·0%)	(1·0%)	(0·0%)	(0·0%)	(0·0%)	(0·0%)	(1·0%)	(1·0%)	(0·0%)

*Person-years masked are given in millions.

Population and uncertainty mask, by census region

		Population Mask			Ur	Uncertainty Mask			ombined M	ask	Percent	
Race/ Ethnicity	Census Region	Counties masked	County- years masked	Person- years masked*	Counties masked	County- years masked	Person- years masked*	Counties masked	County- years masked	Person- years masked*	Persion- Years in Region	
Latino	South	686 (48·8%)	13720 (48·8%)	5·4 (1·5%)	9 (0·6%)	47 (0·2%)	0·0 (0·0%)	687 (48·8%)	13721 (48·8%)	5·4 (1·5%)	35.9%	
	West	152 (35·3%)	3040 (35·3%)	0·9 (0·2%)	21 (4·9%)	160 (1·9%)	0·0 (0·0%)	155 (36·0%)	3054 (35·4%)	0·9 (0·2%)	40.7%	
	Northeast	67 (30·9%)	1340 (30·9%)	0·7 (0·5%)	4 (1·8%)	15 (0·3%)	0·0 (0·0%)	67 (30·9%)	1340 (30·9%)	0·7 (0·5%)	14.1%	
	Midwest	727 (68·9%)	14540 (68·9%)	4·4 (4·9%)	36 (3·4%)	145 (0·7%)	0·0 (0·0%)	727 (68·9%)	14540 (68·9%)	4·4 (4·9%)	9.2%	
Black	South	451 (32·1%)	9020 (32·1%)	2·8 (0·6%)	27 (1·9%)	167 (0·6%)	0·0 (0·0%)	451 (32·1%)	9020 (32·1%)	2·8 (0·6%)	56·1%	
	West	319 (74·0%)	6380 (74·0%)	1·2 (1·6%)	143 (33·2%)	1308 (15·2%)	0·1 (0·2%)	320 (74·2%)	6390 (74·1%)	1·2 (1·7%)	9.2%	
	Northeast	69 (31·8%)	1380 (31·8%)	0·6 (0·4%)	21 (9·7%)	208 (4·8%)	0·0 (0·0%)	70 (32·3%)	1383 (31.9%)	0·6 (0·4%)	16·4%	
	Midwest	783 (74·2%)	15660 (74·2%)	3·0 (2·1%)	314 (29·8%)	2976 (14·1%)	0.3	792 (75·1%)	15707 (74·4%)	3·1 (2·1%)	18·4%	
White	South	19 (1·4%)	380 (1·4%)	0.2	0 (0.0%)	0 (0.0%)	0.0	19 (1·4%)	380 (1·4%)	0.2	34.8%	
	West	18 (4·2%)	360 (4·2%)	0·3 (0·0%)	5 (1·2%)	33 (0·4%)	0·1 (0·0%)	20 (4·6%)	379 (4·4%)	0·3 (0·0%)	19.5%	
	Northeast	0 (0·0%)	0 (0·0%)	0·0 (0·0%)	0 (0·0%)	0 (0·0%)	0·0 (0·0%)	0 (0·0%)	0 (0·0%)	0·0 (0·0%)	19.3%	
	Midwest	22 (2·1%)	440 (2·1%)	0·3 (0·0%)	0 (0·0%)	0 (0·0%)	0·0 (0·0%)	22 (2·1%)	440 (2·1%)	0·3 (0·0%)	26.4%	
AIAN	South	1246	24920	3.9	1281	23046	3.5	1297	25341	4.5	32.0%	

-		Population Mask			Un	certainty N	∕lask	Co	ombined M	ask	Percent	
Race/ Ethnicity	Census Region	Counties masked	County- years masked	Person- years masked*	Counties masked	County- years masked	Person- years masked*	Counties masked	County- years masked	Person- years masked*	Years in Region	
		(88.6%)	(88.6%)	(23.5%)	(91.0%)	(81·9%)	(21·2%)	(92·2%)	(90.1%)	(27·2%)		
	West	269 (62·4%)	5380 (62·4%)	1·3 (5·6%)	231 (53·6%)	3943 (45·7%)	0·5 (2·2%)	272 (63·1%)	5386 (62·5%)	1·3 (5·6%)	44·3%	
	Northeast	172 (79·3%)	3440 (79·3%)	0·9 (30·6%)	217 (100·0%)	4284 (98·7%)	2·9 (93·9%)	217 (100·0%)	4297 (99·0%)	2·9 (94·2%)	6.0%	
	Midwest	949 (90·0%)	18980 (90·0%)	3·0 (33·5%)	915 (86·7%)	16050 (76·1%)	1·9 (21·5%)	966 (91·6%)	19151 (90·8%)	3·3 (36·4%)	17.7%	
API	South	1137 (80·8%)	22740 (80·8%)	4·0 (5·7%)	0 (0·0%)	0 (0·0%)	0·0 (0·0%)	1137 (80·8%)	22740 (80·8%)	4·0 (5·7%)	21.6%	
	West	309 (71·7%)	6180 (71·7%)	1·2 (0·8%)	1 (0·2%)	5 (0·1%)	0·0 (0·0%)	309 (71·7%)	6180 (71·7%)	1·2 (0·8%)	46.5%	
	Northeast	110 (50·7%)	2200 (50·7%)	0·8 (1·3%)	0 (0·0%)	0 (0·0%)	0·0 (0·0%)	110 (50·7%)	2200 (50·7%)	0·8 (1·3%)	20.0%	
	Midwest	887 (84·1%)	17740 (84·1%)	2·5 (6·5%)	0 (0·0%)	0 (0·0%)	0·0 (0·0%)	887 (84·1%)	17740 (84·1%)	2·5 (6·5%)	11.9%	
Total	South	8 (0·6%)	160 (0·6%)	0·1 (0·0%)	0 (0·0%)	0 (0·0%)	0·0 (0·0%)	8 (0·6%)	160 (0·6%)	0·1 (0·0%)	37.0%	
	West	9 (2·1%)	180 (2·1%)	0·1 (0·0%)	0 (0·0%)	0 (0·0%)	0·0 (0·0%)	9 (2·1%)	180 (2·1%)	0·1 (0·0%)	23.2%	
	Northeast	0 (0·0%)	0 (0·0%)	0·0 (0·0%)	0 (0·0%)	0 (0·0%)	0·0 (0·0%)	0 (0·0%)	0 (0·0%)	0·0 (0·0%)	18·0%	
	Midwest	14 (1·3%)	280 (1·3%)	0·2 (0·0%)	0 (0·0%)	0 (0·0%)	0·0 (0·0%)	14 (1·3%)	280 (1·3%)	0·2 (0·0%)	21.8%	

*Person-years masked are given in millions.

Population and uncertainty mask, by 2013 NCHS urban-rural classification

		Population Mask Uncert					Mask	Co	ombined M	Percent		
Race/ Ethnicity	Urban/ Rural Code	Counties masked	County- years masked	Person- years masked*	Counties masked	County- years masked	Person- years masked*	Counties masked	County- years masked	Person- years masked*	Person- Years in Code	
Latina	Large central	0	0	0.0	0	0	0.0	0	0	0.0	19.5%	
Latino	metro	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	49.3%	
	Large fringe	103	1447	0.7	0	0	0.0	103	1447	0.7	17.2%	
	metro	(26.0%)	(22.8%)	(0.4%)	(0.0%)	(0.0%)	(0.0%)	(26.0%)	(22·8%)	(0.4%)		
	Medium	121	1549	0.7	1	3	0.0	121	1549	0.7	10.00/	
	metro	(24.8%)	(22.7%)	(0.4%)	(0.2%)	(0.0%)	(0.0%)	(24.8%)	(22.7%)	(0.4%)	19.9%	
	Small matra	149	1841	0.8	1	1	0.0	149	1841	0.8	F 09/	
	Small metro	(33.9%)	(30.6%)	(1.4%)	(0.2%)	(0.0%)	(0.0%)	(33.9%)	(30.6%)	(1.4%)	5.9%	
	Micropolitan	307	4499	2.3	8	21	0.0	309	4501	2.3	4.0%	
	wiici opolitari	(37.5%)	(36.9%)	(4.8%)	(1.0%)	(0.2%)	(0.0%)	(37.7%)	(36.9%)	(4.8%)	4.9%	
	Noncoro	1399	23304	6.8	62	342	0.0	1401	23317	6.9	2 70/	
	Noncore	(76.6%)	(78·9%)	(25.7%)	(3.4%)	(1.2%)	(0·2%)	(76.7%)	(79·0%)	(25·8%)	2.1%	
Dlack	Large central	0	0	0.0	0	0	0.0	0	0	0.0	40 10/	
BIACK	metro	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	42.1%	
	Large fringe	83	1217	0.5	1	1	0.0	83	1217	0.5	20.99/	
	metro	(21·0%)	(19·2%)	(0.3%)	(0.3%)	(0.0%)	(0.0%)	(21·0%)	(19·2%)	(0.3%)	20.8%	
	Medium	115	1458	0.5	9	33	0.0	115	1458	0.5	10.0%	
	metro	(23.6%)	(21.3%)	(0.4%)	(1.8%)	(0.5%)	(0.0%)	(23.6%)	(21.3%)	(0.4%)	19.0%	
	Small matra	125	1531	0.5	26	119	0.0	129	1551	0.5	6.0%	
	Small metro	(28.4%)	(25.4%)	(0.9%)	(5.9%)	(2.0%)	(0·1%)	(29·3%)	(25·8%)	(1.0%)	0.9%	

		Pc	pulation N	lask	Un	certainty N	/lask	Co	ombined M	ask	Percent
Race/	Urban/	Counties	County-	Person-	Counties	County-	Person-	Counties	County-	Person-	Person-
Ethnicity	Rural Code	masked	years masked	years masked*	masked	years masked	years masked*	masked	years masked	years masked*	Years in Code
	N diamana ditam	384	5723	2.4	98	571	0.2	390	5754	2.4	C 10/
	wiicropolitan	(46.9%)	(47.0%)	(4.9%)	(12.0%)	(4.7%)	(0.3%)	(47.6%)	(47·2%)	(5.1%)	6.1%
	Noncoro	1340	22511	3.6	428	3935	0.3	1342	22520	3.6	E 10/
	NOTICOLE	(73.3%)	(76·2%)	(9.1%)	(23·4%)	(13.3%)	(0.8%)	(73.5%)	(76.3%)	(9·1%)	5.1%
White	Large central	0	0	0.0	0	0	0.0	0	0	0.0	22.1%
White	metro	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	22 170
	Large fringe	0	0	0.0	0	0	0.0	0	0	0.0	24.8%
	metro	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	
	Medium	1	7	0.0	0	0	0.0	1	7	0.0	22.1%
	metro	(0.2%)	(0.1%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.2%)	(0.1%)	(0.0%)	
	Small metro	2 (0·5%)	14 (0·2%)	0.0 (0.0%)	0 (0·0%)	0 (0·0%)	0.0 (0.0%)	2 (0·5%)	14 (0·2%)	0.0 (0.0%)	10.4%
	Micropolitan	9	91	0.1	0	0	0.0	9	91	0.1	11.7%
	wheropolitan	(1.1%)	(0.7%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(1.1%)	(0.7%)	(0.0%)	11 270
	Noncore	59	1068	0.7	5	33	0.1	61	1087	0.8	9.4%
		(3·2%)	(3.6%)	(0.2%)	(0.3%)	(0.1%)	(0.0%)	(3·3%)	(3.7%)	(0·2%)	
AIAN	Large central	8	86	0.1	39	455	1.2	39	469	1.2	16.5%
	metro	(10.1%)	(6.6%)	(0.7%)	(49·4%)	(35.1%)	(14·2%)	(49.4%)	(36·2%)	(14.4%)	
	Large fringe	309	4887	1.5	320	4284	1.6	347	5338	2.2	10.4%
	metro	(78.0%)	(77.2%)	(28.7%)	(80.8%)	(67.6%)	(31.0%)	(87.6%)	(84.3%)	(41.4%)	
	Medium	359	4875	1.5	375	4464	1.7	402	5277	2.1	19.5%
	metro	(/3.6%)	(/1.3%)	(14.9%)	(76.8%)	(65.3%)	(16.7%)	(82.4%)	(//·2%)	(21.1%)	
	Small metro	356	4800	1.3	347	3966	1.0	3/0	4913	1.5	11.6%
		(80.9%)	10721	(22.0%)	(78.9%)	(0000	(10.0%)	(84.1%)	10792	(24.6%)	
	Micropolitan	(87·5%)	10721 (88·0%)	(21·4%)	(83·9%)	9090 (74·6%)	(15·8%)	(88·2%)	10783 (88·5%)	2·3 (22·7%)	19.5%
	Newser	1694	27351	2.6	1639	25064	1.7	1700	27395	2.7	22.40/
	Noncore	(92.7%)	(92.6%)	(22.5%)	(89.7%)	(84·9%)	(14.9%)	(93.0%)	(92.8%)	(23·2%)	22.4%
	Large central	0	0	0.0	0	0	0.0	0	0	0.0	E1 00/
API	metro	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	51.9%
	Large fringe	184	2673	0.9	0	0	0.0	184	2673	0.9	24.7%
	metro	(46.5%)	(42·2%)	(1.1%)	(0.0%)	(0.0%)	(0.0%)	(46.5%)	(42·2%)	(1.1%)	24.770
	Medium	239	3094	0.9	0	0	0.0	239	3094	0.9	15.9%
	metro	(49·0%)	(45.3%)	(1.7%)	(0.0%)	(0.0%)	(0.0%)	(49.0%)	(45.3%)	(1.7%)	15 570
	Small metro	241	3100	1.0	0	0	0.0	241	3100	1.0	3.8%
		(54.8%)	(51.5%)	(8.1%)	(0.0%)	(0.0%)	(0.0%)	(54.8%)	(51.5%)	(8.1%)	
	Micropolitan	693	10643	3.5	0	0	0.0	693	10643	3.5	2.9%
		(84.6%)	(87.4%)	(37.0%)	(0.0%)	(0.0%)	(0.0%)	(84.6%)	(87.4%)	(37.0%)	
	Noncore	1805 (98·8%)	29350 (99·4%)	2·2 (83·2%)	1 (0·1%)	5 (0·0%)	0·0 (0·0%)	1805 (98·8%)	29350 (99·4%)	2·2 (83·2%)	0.8%
	Large central	0	0	0.0	0	0	0.0	0	0	0.0	
Total	metro	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	30.6%
	Large fringe	0	0	0.0	0	0	0.0	0	0	0.0	22.0%
	metro	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	23.0%
	Medium	0	0	0.0	0	0	0.0	0	0	0.0	21.0%
	metro	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	21.0%
	Small matra	1	7	0.0	0	0	0.0	1	7	0.0	0.00/
		(0·2%)	(0.1%)	(0·0%)	(0.0%)	(0.0%)	<u>(0·0%</u>)	(0·2%)	(0·1%)	(0.0%)	0.3%
	Micropolitan	6	70	0.0	0	0	0.0	6	70	0.0	9.7%
		(0.7%)	(0.6%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.7%)	(0.6%)	(0.0%)	5 270
	Noncore	31	543	0.4	0	0	0.0	31	543	0.4	7.4%
		(1.7%)	(1.8%)	(0.1%)	(0.0%)	(0.0%)	(0.0%)	(1.7%)	(1.8%)	(0.1%)	, 170

*Person-years masked are given in millions.

Modelled life expectancy estimates were masked (not displayed) under two conditions: first, estimates for any county-race/ethnicity with an average annual population of less than 1000 were masked in all years; second, estimates for any location-year-sex-race/ethnicity where the width of the uncertainty interval was greater than ten years were also masked. The number of unique counties masked, the number of county-years, and the person-years in millions represented by these county-years are listed in this table for the population mask (first criteria), uncertainty mask (second criteria), and the combined mask (both criteria combined).

Model	Sex	Effect		Mean (SE) *		
Ву	Females	γ1	Standard deviation, Proportion with Bachelor's Degree	0.026 (SE = 0.012)		
race/ethnicity			Standard deviation, Proportion in poverty	0.028 (SE = 0.012)		
and county			Standard deviation, Proportion foreign born	0·133 (SE = 0·056)		
		γ2	Standard deviation	0.009 (SE = 0.007)		
			Correlation parameter, County	0·555 (SE = 0·351)		
		γ ₃	Standard deviation	0.017 (SE = 0.001)		
			Correlation parameter, Year	>0.999 (SE < 0.001)		
			Correlation parameter, Age	0·945 (SE = 0·010)		
		γ4	Standard deviation, Race/Ethnicity = White	0·147 (SE = 0·002)		
			Standard deviation, Race/Ethnicity = Black	0·156 (SE = 0·003)		
			Standard deviation, Race/Ethnicity = AIAN	0·423 (SE = 0·009)		
			Standard deviation, Race/Ethnicity = API	0·164 (SE = 0·005)		
			Standard deviation, Race/Ethnicity = Latino	0·196 (SE = 0·004)		
			0.983 (SE = 0.002)			
			Correlation parameter, Year spline	0·935 (SE = 0·002)		
			Correlation parameter, Age spline	0·481 (SE = 0·011)		
	Males	γ1	Standard deviation, Proportion with Bachelor's Degree	0.065 (SE = 0.027)		
			Standard deviation, Proportion in poverty	0.026 (SE = 0.011)		
			Standard deviation, Proportion foreign born	0·171 (SE = 0·071)		
		γ ₂	Standard deviation	0.008 (SE = 0.006)		
			Correlation parameter, County	0·562 (SE = 0·348)		
		γ ₃	Standard deviation	0.02 (SE = 0.001)		
			Correlation parameter, Year	>0.999 (SE < 0.001)		
			Correlation parameter, Age	0·943 (SE = 0·009)		
		γ4	Standard deviation, Race/Ethnicity = White	0·13 (SE = 0·002)		
			Standard deviation, Race/Ethnicity = Black	0·225 (SE = 0·003)		
			Standard deviation, Race/Ethnicity = AIAN	0·367 (SE = 0·008)		
			Standard deviation, Race/Ethnicity = API	0·163 (SE = 0·004)		
			Standard deviation, Race/Ethnicity = Latino	0·203 (SE = 0·004)		
			Correlation parameter, County	0·977 (SE = 0·002)		
			Correlation parameter, Year spline	0·959 (SE = 0·001)		
			Correlation parameter, Age spline	0·539 (SE = 0·01)		
By county	Females	γ_2	Standard deviation	0.06 (SE = 0.012)		
			Correlation parameter, County	0.092 (SE = 0.101)		
		γ ₃	Standard deviation	0.016 (SE = 0.001)		
			Correlation parameter, Year	>0.999 (SE < 0.001)		
			Correlation parameter, Age	0·930 (SE = 0·019)		
		γ4	Standard deviation	0·151 (SE = 0·002)		
	0.973 (SE = 0.004)					

3.5 Hyper-parameter posterior means and standard errors

Model	Sex	Effect		Mean (SE) *
			Correlation parameter, Year spline	0·939 (SE = 0·002)
			Correlation parameter, Age spline	0·334 (SE = 0·016)
	Males γ_2		Standard deviation	0·077 (SE = 0·008)
			Correlation parameter, County	0.060 (SE = 0.043)
		γ ₃	Standard deviation	0.017 (SE = 0.001)
			Correlation parameter, Year	>0.999 (SE < 0.001)
			Correlation parameter, Age	0·939 (SE = 0·016)
		γ4	Standard deviation	0·145 (SE = 0·002)
			Correlation parameter, County	0·964 (SE = 0·005)
			Correlation parameter, Year spline	0·954 (SE = 0·001)
			Correlation parameter, Age spline	0·273 (SE = 0·015)

*Estimates are reported by TMB on the log standard deviation and logit correlation parameter scale. For convenience, we have transformed these using a delta transformation for the standard error.

Alabama Alaska	Jefferson Madison Mobile Anchorage Municipality Maricopa	All racial/ethnic groups, Black All racial/ethnic groups All racial/ethnic groups, Black All racial/ethnic groups
Alaska	Madison Mobile Anchorage Municipality Maricopa	All racial/ethnic groups All racial/ethnic groups, Black
Alaska	Mobile Anchorage Municipality Maricopa	All racial/ethnic groups, Black
Alaska	Anchorage Municipality Maricopa	All racial/ethnic grouns
	Maricopa	An racial/ethnic groups
Arizona		All racial/ethnic groups, Latino, Black, White
	Pima	All racial/ethnic groups, Latino
	Pinal	All racial/ethnic groups
Arkansas	Pulaski	All racial/ethnic groups
California	Alameda	All racial/ethnic groups, Latino
	Contra Costa	All racial/ethnic groups, White
	Fresno	All racial/ethnic groups, Latino
	Kern	All racial/ethnic groups, Latino, White
	Los Angeles	All racial/ethnic groups, Latino, API, Black, White
	Merced	All racial/ethnic groups
	Monterey	All racial/ethnic groups, Latino
	Orange	All racial/ethnic groups, Latino, White
	Riverside	All racial/ethnic groups, Latino, White
	Sacramento	All racial/ethnic groups
	San Bernardino	All racial/ethnic groups, Latino, Black
	San Diego	All racial/ethnic groups, Latino, White
	San Francisco	All racial/ethnic groups
	San Joaquin	All racial/ethnic groups, Latino
	San Mateo	All racial/ethnic groups
	Santa Clara	All racial/ethnic groups, Latino, API
	Solano	All racial/ethnic groups
	Sonoma	All racial/ethnic groups
	Stanislaus	All racial/ethnic groups
	Tulare	All racial/ethnic groups, Latino
	Ventura	All racial/ethnic groups
Colorado	Adams/Arapahoe/Boulder/Broom field/Denver/Jefferson/Weld	All racial/ethnic groups, Latino, White
	El Paso	All racial/ethnic groups
Connecticut	Fairfield	All racial/ethnic groups, White
	Hartford	All racial/ethnic groups
	New Haven	All racial/ethnic groups, White
District of Columbia	District of Columbia	All racial/ethnic groups, Black
Florida	Brevard	All racial/ethnic groups

3.6 County-racial/ethnic groups in the validation set

State	Merged County	Racial/Ethnic Group*
	Broward	All racial/ethnic groups, Black, White
	Miami-Dade	All racial/ethnic groups, Latino, Black
	Duval	All racial/ethnic groups, Black, White
	Hillsborough	All racial/ethnic groups, Latino, Black, White
	Lee	All racial/ethnic groups
	Orange	All racial/ethnic groups
	Palm Beach	All racial/ethnic groups, Latino, White
	Pasco	All racial/ethnic groups
	Pinellas	All racial/ethnic groups
	Polk	All racial/ethnic groups
	Seminole	All racial/ethnic groups
Georgia	Bibb	All racial/ethnic groups
	Cobb	All racial/ethnic groups, White
	DeKalb	All racial/ethnic groups, Black
	Fulton	All racial/ethnic groups, Black, White
	Gwinnett	All racial/ethnic groups
Hawaii	Honolulu	All racial/ethnic groups, API
Illinois	Cook	All racial/ethnic groups, Latino, Black, White
	DuPage	All racial/ethnic groups
	Kane	All racial/ethnic groups
	Lake	All racial/ethnic groups
	Will	All racial/ethnic groups, White
Indiana	Allen	All racial/ethnic groups
	Elkhart	All racial/ethnic groups
	Lake	All racial/ethnic groups, Black
	Marion	All racial/ethnic groups, Black, White
lowa	Polk	All racial/ethnic groups
Kansas	Sedgwick	All racial/ethnic groups, White
Kentucky	Jefferson	All racial/ethnic groups, White
Louisiana	Caddo	All racial/ethnic groups
	East Baton Rouge	All racial/ethnic groups, Black
	Jefferson	All racial/ethnic groups
	Orleans	All racial/ethnic groups, Black
Maryland	Anne Arundel	All racial/ethnic groups
	Baltimore	All racial/ethnic groups
	Baltimore City	All racial/ethnic groups, Black
	Montgomery/Prince George's	All racial/ethnic groups, Black
Massachusetts	Bristol	All racial/ethnic groups
	Essex	All racial/ethnic groups

State	Merged County	Racial/Ethnic Group*					
	Hampden	All racial/ethnic groups					
	Middlesex	All racial/ethnic groups, White					
	Suffolk	All racial/ethnic groups					
	Worcester	All racial/ethnic groups					
Michigan	Genesee	All racial/ethnic groups					
	Kent	All racial/ethnic groups					
	Macomb	All racial/ethnic groups, White					
	Oakland	All racial/ethnic groups					
	Wayne	All racial/ethnic groups, Black, White					
Minnesota	Hennepin	All racial/ethnic groups, White					
	Ramsey	All racial/ethnic groups					
Mississippi	Hinds	All racial/ethnic groups, Black					
Missouri	Jackson	All racial/ethnic groups, White					
	Saint Louis	All racial/ethnic groups, Black, White					
Nebraska	Douglas	All racial/ethnic groups					
Nevada	HampdenAll raMiddlesexAll raSuffolkAll raWorcesterAll raGeneseeAll raKentAll raMacombAll raOaklandAll raOaklandAll raWayneAll raHennepinAll raRamseyAll raJacksonAll raJacksonAll raDouglasAll raBergenAll raBurlingtonAll raBurlingtonAll raMercerAll raMiddlesexAll raMonmouthAll raDouganAll raBernalilloAll raMiddlesexAll raMonmouthAll raAndereAll raMonmouthAll raMonmouthAll raCeanAll raMonmouthAll raMonmouthAll raMonmouthAll raMonmouthAll raMonnoAll raMonnoAll raMonnoAll raMonroeAll raKingsAll raMonroeAll raMonroeAll raMonroeAll raMassauAll ra	All racial/ethnic groups, Latino, White					
	Washoe	All racial/ethnic groups					
New Jersey	Bergen	All racial/ethnic groups, White					
	Burlington	All racial/ethnic groups					
	Camden	All racial/ethnic groups					
	Essex	All racial/ethnic groups, Black					
	Hudson	All racial/ethnic groups					
	Mercer	All racial/ethnic groups					
	Middlesex	All racial/ethnic groups					
	Monmouth	All racial/ethnic groups, White					
Minnesota Mississippi Missouri Nebraska Nevada New Jersey New Mexico	Ocean	All racial/ethnic groups, White					
	Passaic	All racial/ethnic groups					
	Union	All racial/ethnic groups					
New Mexico	Bernalillo	All racial/ethnic groups, Latino					
	Dona Ana	All racial/ethnic groups					
	San Juan	All racial/ethnic groups					
New York	Bronx	All racial/ethnic groups, Latino, Black					
	Erie	All racial/ethnic groups, White					
	Kings	All racial/ethnic groups, Latino, Black, White					
	Monroe	All racial/ethnic groups, White					
	Nassau	All racial/ethnic groups, White					
	New York	All racial/ethnic groups, Latino					
	Onondaga	All racial/ethnic groups					
	Queens	All racial/ethnic groups, Latino, API, Black					

State	Merged County	Racial/Ethnic Group*
	Suffolk	All racial/ethnic groups, White
	Westchester	All racial/ethnic groups, White
North Carolina	Durham	All racial/ethnic groups
	Forsyth	All racial/ethnic groups
	Mecklenburg	All racial/ethnic groups, White
	Wake	All racial/ethnic groups, White
Ohio	Cuyahoga	All racial/ethnic groups, Black, White
	Franklin	All racial/ethnic groups, Black
	Hamilton	All racial/ethnic groups, Black, White
	Lucas	All racial/ethnic groups
	Montgomery	All racial/ethnic groups, White
Oklahoma	Oklahoma	All racial/ethnic groups, White
	Tulsa	All racial/ethnic groups, White
Oregon	Multnomah	All racial/ethnic groups
Pennsylvania	Allegheny	All racial/ethnic groups, Black, White
	Chester	All racial/ethnic groups, White
	Delaware	All racial/ethnic groups, White
	Lancaster	All racial/ethnic groups, White
	Montgomery	All racial/ethnic groups, White
	Philadelphia	All racial/ethnic groups, Latino, Black, White
Rhode Island	Providence	All racial/ethnic groups, White
South Carolina	Greenville	All racial/ethnic groups, White
	Spartanburg	All racial/ethnic groups
Tennessee	Davidson	All racial/ethnic groups, Black
	Knox	All racial/ethnic groups
	Montgomery	All racial/ethnic groups
	Shelby	All racial/ethnic groups, Black
Texas	Bell	All racial/ethnic groups
	Bexar	All racial/ethnic groups, Latino, White
	Cameron	All racial/ethnic groups, Latino
	Collin	All racial/ethnic groups, White
	Dallas	All racial/ethnic groups, Latino, Black, White
	Denton	All racial/ethnic groups, White
	El Paso	All racial/ethnic groups, Latino
	Fort Bend	All racial/ethnic groups
	Galveston	All racial/ethnic groups
	Harris	All racial/ethnic groups, Latino, Black, White
	Hidalgo	All racial/ethnic groups, Latino
	Jefferson	All racial/ethnic groups

State	Merged County	Racial/Ethnic Group*					
	McLennan	All racial/ethnic groups					
	Montgomery	All racial/ethnic groups					
	Tarrant	All racial/ethnic groups, Latino, White					
	Travis	All racial/ethnic groups, White					
	Webb	All racial/ethnic groups, Latino					
Utah	Salt Lake	All racial/ethnic groups, White					
	Utah	All racial/ethnic groups, White					
Virginia	Chesapeake City	All racial/ethnic groups					
	Fairfax/Fairfax City	All racial/ethnic groups					
	Norfolk City	All racial/ethnic groups					
	York/Newport News City	All racial/ethnic groups					
Washington	Clark	All racial/ethnic groups					
	King	All racial/ethnic groups, White					
	Pierce	All racial/ethnic groups, White					
	Spokane	All racial/ethnic groups					
	Yakima	All racial/ethnic groups					
Wisconsin	Milwaukee	All racial/ethnic groups, Black, White					
	Rock	All racial/ethnic groups					

*All racial/ethnic groups was validated separately from individual racial/ethnic groups.

3.7 Validation results for life expectancy at birth for all models and racial/ethnic groups

			Model 1			Model 2			Model 3	
Racial/Ethnic Group	Size	Mean Error	Mean Absolute Error	Coverage	Mean Error	Mean Absolute Error	Coverage	Mean Error	Mean Absolute Error	Coverage
Across all Racial/Ethnic Groups	10	0.06	0.91	96.57	-0.02	1.41	92.50			
	100	0.05	0.89	96·47	-0.03	1.35	92.33			
	1000	0.08	0.78	95·20	0.02	1.02	91.42			
	3000	-0.02	0.65	94.33	-0.06	0.78	91.77			
	5000	0.02	0.59	93.35	-0.02	0.67	91.57			
	10 000	-0.01	0.48	93·22	-0.04	0.53	92.16			
	25 000	-0.01	0.38	91.83	-0.02	0.39	91.83			
	100 000	0.00	0.27	86.73	0.00	0.27	87.14			
All Racial/Ethnic Groups combined	10							0.41	1.01	94.85
	100							0.38	0.98	94.86
	1000							0.26	0.85	92·91
	3000							0.15	0.66	92.86
	5000							0.13	0.58	91·98
	10 000							0.04	0.48	91·40
	25 000							0.03	0.36	90.68
	100 000							0.01	0.24	86·43
Latino	10	-0.24	1.08	98.89	0.06	1.11	97.46			
	100	-0.26	1.06	98.75	0.01	1.12	98.46			
	1000	-0.07	0.88	97·49	0.13	1.00	96.82			
	3000	-0.17	0.75	97.84	-0.06	0.84	97.53			
	5000	-0.09	0.69	96.78	0.01	0.75	95.85			
	10 000	0.00	0.57	96.30	0.05	0.59	96.25			
	25 000	-0.02	0.45	94.72	0.01	0.46	94.58			
	100 000	0.01	0.34	89·31	0.02	0.34	88·72			

		Model 1			Model 2			Model 3		
Racial/Ethnic Group	Size	Mean Error	Mean Absolute Error	Coverage	Mean Error	Mean Absolute Error	Coverage	Mean Error	Mean Absolute Error	Coverage
NH API	10	-0.87	0.87	100.00	-0.68	0.92	100.00			
	100	-0.83	0.85	100.00	-0.58	0.95	100.00			
	1000	-0.53	0.64	98.68	-0.26	0.76	97.79			
	3000	-0.33	0.47	98.09	-0.14	0.58	97.94			
	5000	-0.28	0.53	96.76	-0.04	0.60	95.59			
	10 000	-0.16	0.44	96.32	-0.06	0.44	97.06			
	25 000	-0.06	0.35	95.88	0.00	0.35	96.18			
	100 000	-0.01	0.26	90.29	0.00	0.25	92.65			
NH Black	10	0.39	1.22	92.84	1.52	2.24	84.58			
	100	0.37	1.19	93.04	1.36	2.09	84.58			
	1000	0.35	1.00	91·98	0.88	1.42	84.82			
	3000	0.18	0.80	91·94	0.48	0.97	87.89			
	5000	0.17	0.69	91.65	0.36	0.80	88·81			
	10 000	0.05	0.58	91·73	0.15	0.62	90.83			
	25 000	0.02	0.44	90.41	0.06	0.45	91.14			
	100 000	0.00	0.30	85.83	0.01	0.30	86.68			
NH White	10	0.09	0.64	97.22	-0.89	1.13	93.86			
	100	0.09	0.64	96.97	-0.80	1.08	92.96			
	1000	0.04	0.61	95.59	-0.50	0.83	91.88			
	3000	-0.03	0.51	93.57	-0.36	0.65	90.51			
	5000	0.00	0.48	92.28	-0.24	0.55	90.60			
	10 000	-0.05	0.39	92·22	-0.20	0.45	90.42			
	25 000	-0.02	0.31	90.84	-0.09	0.33	90.48			
	100 000	-0.01	0.22	85.63	-0.02	0.22	86.20			

*"Across all racial/ethnic groups" indicates that errors and coverage were calculated across all racial/ethnic groups for models 1 and 2, while "All racial/ethnic groups combined" refers to model 3, where the data were aggregated across racial/ethnic groups before fitting models.

4 Supplemental Methods Figures

4.1 Analysis flow chart

4.2 Hyper-prior sensitivity analysis results

Latino 🖶 Black 븑 White 븑 AIAN 븑 API 븑 Total

County-race/ethnicity-level, population-weighted summary of differences in life expectancy at birth for males and females combined in 2000, 2010, and 2019 compared to that of the model used in this paper (penalized complexity models, $\sigma_0 = 5$, $\alpha = 0.05$). Boxes show the IQR, while the whiskers extend to 1st and 99th percentiles, weighted by the average population across all years in each county-race/ethnicity. The data shown are for both masked and unmasked data. The comparison shown here for the "Total"

group is from the county-level model, while the comparison for all other groups is from the county-race/ethnicity model.

4.3 Model validation results

*"Across all racial/ethnic groups" means that errors and coverage were calculated across all racial/ethnic group for models 2 and 3, while "All racial/ethnic groups combined" refers to model 3, where the data were aggregated across racial/ethnic groups before fitting models.

4.4 Impact of misclassification adjustment on national life expectancy estimates

National life expectancy estimates before adjustment for misclassification ("Modelled") and after adjustment and calibration ("Adjusted & Calibrated"), ie, the final estimates.

4.5 Impact of misclassification adjustment on county life expectancy estimates

County life expectancy estimates before adjustment for misclassification ("Modelled") and after adjustment and calibration ("Adjusted & Calibrated"), ie, the final estimates.

5 Supplemental Results Figures

5.1 County life expectancy by racial/ethnic group, 2000

County life expectancy at birth by racial/ethnic group in 2000. The colour scale is truncated at 65 and 95 years, as indicated by the ranges in the legend. Estimates of life expectancy in county-racial/ethnic group

combinations with an average annual population less than 1000 people and/or estimates with an uncertainty interval width greater than ten years are masked and depicted here in grey.

5.2 County life expectancy by racial/ethnic group, 2010

County life expectancy at birth by racial/ethnic group in 2010. The colour scale is truncated at 65 and 95 years, as indicated by the ranges in the legend. Estimates of life expectancy in county-racial/ethnic group combinations with an average annual population less than 1000 people and/or estimates with an uncertainty interval width greater than ten years are masked and depicted here in grey.

5.3 Differences in county life expectancy among racial/ethnic groups compared to the White population, 2000

Absolute difference in county life expectancy at birth by racial/ethnic group in 2000, relative to life expectancy for the White population in the same county. The colour scale is truncated at -15 and 15 years, as indicated by the ranges in the legend. Grey boundaries around a county indicate an estimated difference in life expectancy that is statistically significant. Estimates of life expectancy in county-racial/ethnic group combinations with an average annual population less than 1000 people and/or estimates with an uncertainty interval width greater than ten years are masked and depicted here in grey.

5.4 Differences in county life expectancy among racial/ethnic groups compared to the White population, 2010

Absolute difference in county life expectancy at birth by racial/ethnic group in 2010, relative to life expectancy for the White population in the same county. The colour scale is truncated at –15 and 15 years, as indicated by the ranges in the legend. Grey boundaries around a county indicate an estimated difference in life expectancy that is statistically significant. Estimates of life expectancy in county-racial/ethnic group combinations with an average annual population less than 1000 people and/or estimates with an uncertainty interval width greater than ten years are masked and depicted here in grey.

5.5 Change in county life expectancy by racial/ethnic group, 2000–2010

Absolute change in county life expectancy at birth from 2000 to 2010 by racial ethnic group. The colour scale is truncated at an absolute difference of -6 and 6 years, as indicated by the ranges in the legend.

Grey boundaries around a county indicate an estimated change in life expectancy that is statistically significant. Estimates of life expectancy in county-racial/ethnic group combinations with an average annual population less than 1000 people and/or estimates with an uncertainty interval width greater than ten years are masked and depicted here in grey.

5.6 Change in county life expectancy by racial/ethnic group, 2010–2019

Absolute change in county life expectancy at birth from 2010 to 2019 by racial ethnic group. The colour scale is truncated at an absolute difference of -6 and 6 years, as indicated by the ranges in the legend.

Grey boundaries around a county indicate an estimated change in life expectancy that is statistically significant. Estimates of life expectancy in county-racial/ethnic group combinations with an average annual population less than 1000 people and/or estimates with an uncertainty interval width greater than ten years are masked and depicted here in grey.

5.7 Change in county life expectancy by racial/ethnic group compared to the White population, 2000–2010

Absolute change in county life expectancy at birth from 2000 to 2010 for each racial ethnic group compared to this same change for the White population in the same county. Each point corresponds to a county, the colour of each point indicates the difference in life expectancy in this county in 2010 between the racial/ethnic group specified in the panel title and the White population, and the size of the point

indicates the population in this county in 2010 for the racial/ethnic group specified. The axes are truncated at -10 and ten years, as indicated by the axis labels and the colour scale is truncated at -15 and 15 years, as indicated by the ranges in the legend. Estimates of life expectancy in county-racial/ethnic group combinations with an average annual population less than 1000 people and/or estimates with an uncertainty interval width greater than ten years are not displayed.

5.8 Change in county life expectancy by racial/ethnic group compared to the White population, 2010–2019

Absolute change in county life expectancy at birth from 2010 to 2019 for each racial ethnic group compared to this same change for the White population in the same county. Each point corresponds to a county, the colour of each point indicates the difference in life expectancy in this county in 2019 between the racial/ethnic group specified in the panel title and the White population, and the size of the point

indicates the population in this county in 2019 for the racial/ethnic group specified. The axes are truncated at -10 and 10 years, as indicated by the axis labels and the colour scale is truncated at -15 and 15 years, as indicated by the ranges in the legend. Estimates of life expectancy in county-racial/ethnic group combinations with an average annual population less than 1000 people and/or estimates with an uncertainty interval width greater than ten years are not displayed.

5.9 Change in differences in county life expectancy among racial/ethnic groups compared to the White population, 2000–2010

Absolute difference in county life expectancy at birth by racial/ethnic group in 2000 and 2010, relative to life expectancy for the White population in the same county. Each arrow corresponds to a county and the arrow starts at the difference in life expectancy between the racial/ethnic group specified in the panel title and the White population in that county in 2000 and ends at the same quantity in 2010. The colour

of each arrow indicates the change in life expectancy over this period in a given county for the specified racial/ethnic group, and the size of the arrow indicates the population of this racial/ethnic group in 2010. The colour scale is truncated at an absolute difference of –6 and 6 years, as indicated by the ranges in the legend. Estimates of life expectancy in county-racial/ethnic group combinations with an average annual population less than 1000 people and/or estimates with an uncertainty interval width greater than ten years are not displayed.

5.10 Change in differences in county life expectancy among racial/ethnic groups compared to the White population, 2010–2019

Absolute difference in county life expectancy at birth by racial/ethnic group in 2010 and 2019, relative to life expectancy for the White population in the same county. Each arrow corresponds to a county and the arrow starts at the difference in life expectancy between the racial/ethnic group specified in the panel title and the White population in that county in 2010 and ends at the same quantity in 2019. The colour

of each arrow indicates the change in life expectancy over this period in a given county for the specified racial/ethnic group, and the size of the arrow indicates the population of this racial/ethnic group in 2019. The colour scale is truncated at an absolute difference of –6 and 6 years, as indicated by the ranges in the legend. Estimates of life expectancy in county-racial/ethnic group combinations with an average annual population less than 1000 people and/or estimates with an uncertainty interval width greater than ten years are not displayed.

5.11 County life expectancy and the composition of the API population

County-level life expectancy at birth in 2019 among the API population versus the proportion of the single-race Asian and NHOPI population that is NHOPI based on county-level population estimates by race and ethnicity from the census bureau. This population proportion excludes multiracial individuals, as population estimates are not available for specific combinations of racial/ethnic groups. Estimates in this paper use a combined API category due to data constraints, but these estimates likely mask differences in life expectancy between Asian and NHOPI populations.