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1 Identifiability Assumptions for Causal Mediation Analysis

We use the same counterfactual notation as in the main manuscript. To connect poten-

tial variables to observed data, we make the Stable Unit Treatment Value Assumption

(SUTVA) [1, 2]. Specifically, the SUTVA assumes there is no interference between sub-

jects and the consistency assumption, which states that the observed variables are the

same as the potential variables corresponding to the actually observed treatment level, i.e.,

Mi = ∑
aMi(a)I(Ai = a), and Yi = ∑

a

∑
m Yi(a,m)I(Ai = a,Mi = m), where I(·) is the

indicator function.

Causal effects are formally defined in terms of potential variables which are not necessarily

observed, but the identification of causal effects must be based on observed data. Therefore

further assumptions regarding the confounders are required for the identification of causal

effects in mediation analysis [3]. We will use A |= B|C to denote that A is independent of B

conditional on C. To estimate the average NDE and NIE from observed data, the following

assumptions are needed: (1) Yi(a,m) |= Ai|Ci, no unmeasured confounding for exposure-

outcome relationship; (2) Yi(a,m) |=M i|{Ci, Ai}, no unmeasured confounding for any of

mediator-outcome relationship after controlling for the exposure; (3)M i(a) |= Ai|Ci, no un-
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measured confounding for the exposure effect on all the mediators; (4) Yi(a,m) |=M i(a?)|Ci,

no downstream effect of the exposure that confounds any mediator-outcome relationship.

The four assumptions are required to hold with respect to the whole set of mediators. Finally,

as in all mediation analysis, the temporal ordering assumption also needs to be satisfied,

i.e., the exposure precedes the mediators, and the mediators precede the outcome.

2 Posterior Sampling Algorithm Details for GMM-Potts

Sampling

(βm)j

(αa)j
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logp(

(βm)j

(αa)j

 |γj = k, .) ∝ −1
2

(βm)j

(αa)j


>

(Wj + Vk−1)

(βm)j

(αa)j

 +wj
>

(βm)j

(αa)j



where Wj = diag{∑n
i=1(σ2

e)−1M2
ij,

∑n
i=1(σ2

g)−1A2
i }, and

wj = (∑n
i=1(σ2

e)−1(Yi − Aiβa −
∑
j′ 6=jMij′ (βm)j′ )Mij,

∑n
i=1 Σ−1MijAi)>

p(

(βm)j

(αa)j

 |γj = k, .) ∼ MVN2((Wj + Vk−1)−1wj , (Wj + Vk−1)−1)

logp(γj = k|.) ∝ −1
2log|WjVk + I2|+

1
2wj

>(Wj + Vk−1)−1wj + θ0k +
∑
i∼j

θ1kI[γi = γj = k]

Sampling Vk

logp(Vk|.) ∝ −1
2(

p∑
j=1

I[γj = k] + df + d+ 1)log|Vk| −
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Sampling βa

logp(βa|.) ∝ −
β2
a

2σ2
a

−
n∑
i=1
{(Aiβa)

2

2σ2
e

− σ−2
e Ai(Yi −Mi

>βm −Ci>βc)βa}

p(βa|.) ∼ N(
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i=1 Ai(Yi −Mi
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σ2
e/σ

2
a + ∑n

i=1 A
2
i

,
1

1/σ2
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i=1 A
2
i /σ

2
e

)

Sampling σ2
a

logp(σ2
a|.) ∝ −(1

2 + ha + 1)log(σ2
a)− (β

2
a

2 + la)σ−2
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p(σ2
a|.) ∼ inverse-gamma(1
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β2
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Sampling σ2
e

logp(σ2
e |.) = −(n2 + h1 + 1)log(σ2

e)− (
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i=1(Yi −Mi

>βm − Aiβa −Ci>βc)2

2 + l1)σ−2
e

p(σ2
e |.) ∼ inverse-gamma(n2 + h1,

∑n
i=1(Yi −Mi

>βm − Aiβa −Ci>βc)2

2 + l1)

Sampling σ2
g

logp(σ2
g |.) = −(pn2 + h2 + 1)log(σ2

g)

−(
∑n
i=1(Mi

> − Aiαa −Ci>αc)(Mi
> − Aiαa −Ci>αc)>

2 + l2)σ−2
g

p(σ2
g |.) ∼ inverse-gamma(pn2 +h2,

∑n
i=1(Mi

> − Aiαa −Ci>αc)(Mi
> − Aiαa −Ci>αc)>

2 +l2)

Sampling θ0,θ1

We update each of the θ0k, θ1k, k ∈ {1, 2, 3, 4} using a double Metropolis-Hastings (DMH)

algorithm [4]. For example, for updating θ0k, we first propose a new θ?0k from N(θ0k, τ
2
θ ) and

then simulate an auxiliary variable γ? starting from γ based on the new θ?0,θ1 where all

the elements are the same as θ0,θ1, excluding θ0k. The proposed value θ?0k will be accepted
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with probability min(1, rθ) and the Hastings ratio is,

rθ = φ(θ?0k;µ0k, σ
2
0k)p(γ?|θ0,θ1)p(γ|θ?0,θ1)

φ(θ0k;µ0k, σ2
0k)p(γ|θ0,θ1)p(γ?|θ?0,θ1)

where φ(θ0k;µ0k, σ
2
0k) is the pdf for the normal distribution N(µ0k, σ

2
0k). The form of p(γ|θ0,θ1)

is given by Equation (3.1) as in the main text and the normalizing constants are canceled

in the ratio.

Sampling βcw

logp(βcw|.) = −
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e
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2
iw

)

Sampling (αcw)j
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2σ2
g
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∑
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2
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,
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i=1 C
2
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)

Swendsen-Wang algorithm

We propose to use Swendsen-Wang algorithm [5] to update the Markov random field, γ.

It is a particular case of auxiliary variable methods. In applying SW, we introduce “bond

variables", u = {uij, i ∼ j}, for each neighbor pair i ∼ j. Given γ, the non-negative random

variable uij are assumed to be independent and uniformly distributed as below,

p(uij|γ) = exp{−
4∑

k=1
θ1kI[γi = γj = k]} × I[0 ≤ uij ≤ exp{

4∑
k=1

θ1kI[γi = γj = k]}]

p(u|γ) =
∏
i∼j

exp{−
4∑

k=1
θ1kI[γi = γj = k]} × I[0 ≤ uij ≤ exp{

4∑
k=1

θ1kI[γi = γj = k]}] (1)
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Furthermore,

p(γ|u, ·) ∝ p(βm,αa|γ)exp{
p∑
i=1

4∑
k=1

θ0kI[γi = k]}×
∏
i∼j

I[0 ≤ uij ≤ exp{
4∑

k=1
θ1kI[γi = γj = k]}]

(2)

To sample from the joint posterior of γ and u = {uij, i ∼ j}, we can iteratively sample from

Equation (1) and (2). To sample from (2), we note that uij > 1 implies that γi = γj, so

that the bond variable u partitions mediators into same-labeled clusters, and this happens

with a probability of 1 − exp{−∑4
k=1 θ1kI[γi = γj = k]}. For a particular cluster, C, the

probability of belonging to component k is ∝ ∏
i∈C p((βm)i, (αa)i|γi)exp{θ0kγi}, and each

cluster can be updated independently in turn according to its conditional distribution. The

SW implementation can be described as below:

1. Update each bond variable according to a uniform distribution:

uij|γ ∼ U [0, exp{
4∑

k=1
θ1kI[γi = γj = k]}]

Bonds are forbidden from forming wherever the two neighbors are in different groups.

2. Form the same-labeled clusters (connected components) induced by uij

i. The Union-Find algorithm

ii. Simplifies in the 1-D case

3. For each cluster C, update its label according to its conditional distribution,

p(γC = k|·) ∝
∏
i∈C

p((βm)i, (αa)i|γi)exp{θ0kγi}, k = 1, 2, 3, 4

We alternate between Swendsen-Wang updates of γ and single site Gibbs updates to ensure

movement in large patches.

3 Posterior Sampling Algorithm Details for GMM-CorrS

To sample from the posterior distribution using the Pólya-Gamma method, simply iterate

two steps:
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Sampling wjk for each j and k

wjk|· ∼ Pólya-Gamma(njk, bkj)

where njk = 1 −∑
k′<k I(γj = k

′), nj1 = 1. The samples from Pólya-Gamma distribution

can be generated using the algorithm and software in [6].

Sampling bk

We can rewrite 4-dimensional multinomial in terms of 3 binomial densities π̃j1, π̃j2 and π̃j3.

Specifically,

p(bk) ∝
∏
j

π̃
I(γj=1)
j1 ((1− π̃j1)π̃j2)I(γj=2)((1− π̃j1)(1− π̃j2)π̃j3)I(γj=3)

((1− π̃j1)(1− π̃j2)(1− π̃j3)π̃j4)I(γj=4)MVN(ak, σ2
dkD)

∝
∏
j

π̃
I(γj=1)
j1 (1− π̃j1)1−I(γj=1)π̃

I(γj=2)
j2 (1− π̃j2)I(γj=3)+I(γj=4)π̃

I(γj=3)
j3 (1− π̃j3)I(γj=4)

MVN(ak, σ2
dkD)

I(γj = 1) ∼ Binom(1, expit(b1j)),

I(γj = 2) ∼ Binom(nj2, expit(b2j)),

I(γj = 3) ∼ Binom(nj3, expit(b3j))

The multinomial distribution is now expressed with three binomial distributions involving

bkj, k = 1,2,3. Following the derivation in [6], we will have,

bk|· ∼ MVN(µbk,Vbk)

where

Vbk = (Ω + (σ2
dk)−1D−1)−1

µbk = Vbk(κk + (σ2
dk)−1D−1ak)
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where Ω is the diagnol matrix of wjk’s, and κk = (I(γ1 = k) − n1k/2, I(γ2 = k) −

n2k/2, ..., I(γp = k)− npk/2). Then we can update πj accordingly.

Sampling σ2
dk

σ2
dk|· ∼ IG(u+ p

2 , v + (bk − ak)TD−1(bk − ak)
2 )

The other parameters can be sampled in a similar way as in the GMM-Potts, with details

described in the previous section.

4 Empirical FDR Results and Additional Simulations

To estimate the FDR and identify a significance threshold for declaring active mediators, we

compute the local false discovery rate for each mediator following [7]. We define the local

false discovery rate for the j-th mediator being in the active group as locfdrj1, and it can

be expressed as 1− P (γj = 1| Data). We first sort locfdrj1 from the smallest to the largest,

where the jth ordered value is locfdr(j)
1 , j = 1, ..., p. Then the cutoff value c1 for locfdrj1 to

guarantee a 10% FDR can be identified from,

arg max
c1

1∑p
j=1 I(locfdr(j)

1 < c1)

p∑
j=1

I(locfdr(j)
1 < c1)locfdr(j)

1 < 0.1

where I is an indicator function. Following [8], we declare mediators with an locfdrj1 smaller

than the threshold c1 as active mediators.

As another practical procedure, we also consider a cutoff on the posterior inclusion proba-

bilities (PIP) to declare active mediators. To evaluate the performance of those significance

rules, we report the empirical FDR and TPR in Table S1 and S2 under all the simulation

scenarios.

In addition to the simulation scenarios included in the main text, we also perform additional

simulations for a more comprehensive evaluation. First, we consider scenarios where there

is a single active mediator in each high-correlated block. In these simulations, we follow the

same simulation procedure and correlation structure as in the main text but each highly-

correlated block only contains one active mediator. The simulation results are presented in

Table S3. When the correlation structure underlying mediators provides little help in infer-
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Method TPR TPR(locfdr) FDR(locfdr) TPR(PIP>0.5) FDR(PIP>0.5) TPR(PIP>0.9) FDR(PIP>0.9)
ρ1 = 0.5− 0.03|i− j|, ρ2 = 0, Signals in one block

GMM-CorrS 0.78 0.69(0.021) 0.04(0.008) 0.82(0.019) 0.12(0.012) 0.49(0.016) 0.02(0.006)
GMM-Potts 0.93 0.79(0.019) 0.05(0.007) 0.86(0.014) 0.07(0.010) 0.61(0.017) 0.01(0.002)

ρ1 = 0.5− 0.03|i− j|, ρ2 = 0, Signals in two blocks
GMM-CorrS 0.62 0.52(0.018) 0.07(0.010) 0.67(0.021) 0.14(0.012) 0.40(0.015) 0.01(0.005)
GMM-Potts 0.49 0.34(0.041) 0.06(0.025) 0.66(0.023) 0.22(0.022) 0.24(0.032) 0.02(0.017)

ρ1 = 0.9− 0.05|i− j|, ρ2 = 0.1, Signals in one block
GMM-CorrS 0.81 0.49(0.020) 0.06(0.013) 0.83(0.014) 0.17(0.007) 0.36(0.018) 0.02(0.015)
GMM-Potts 0.92 0.51(0.043) 0.05(0.015) 0.83(0.049) 0.08(0.014) 0.23(0.014) 0.01(0.012)

ρ1 = 0.9− 0.05|i− j|, ρ2 = 0.1, Signals in two blocks
GMM-CorrS 0.49 0.31(0.032) 0.09(0.023) 0.55(0.032) 0.23(0.023) 0.22(0.021) 0.05(0.020)
GMM-Potts 0.40 0.27(0.006) 0.06(0.005) 0.43(0.038) 0.17(0.022) 0.17(0.006) 0.03(0.008)

ρ1 = 0, Signals in two blocks
GMM-CorrS 0.52 0.44(0.015) 0.03(0.008) 0.50(0.015) 0.07(0.012) 0.35(0.012) 0.01(0.004)
GMM-Potts 0.46 0.42(0.022) 0.06(0.016) 0.50(0.016) 0.19(0.019) 0.33(0.016) 0.02(0.011)

Weak correlation from MESA, Signals in two blocks
GMM-CorrS 0.44 0.32(0.009) 0.03(0.009) 0.39(0.011) 0.08(0.013) 0.27(0.007) 0.01(0.006)
GMM-Potts 0.40 0.35(0.014) 0.07(0.015) 0.45(0.017) 0.23(0.022) 0.27(0.010) 0.03(0.011)

Table S1: Empirical estimates of TPR and FDR in simulations of n = 100, p = 200. The results
are based on 200 replicates for each setting, and the standard errors are shown within parentheses.
TPR is the true positive rate controlled at a fixed FDR of 10%; TPR(locfdr) and FDR(locfdr) are
the empirical estimates based on the local FDR approach; TPR(PIP>0.9) and FDR(PIP>0.9) are the
empirical estimates when the PIP threshold for identifying active mediators is 0.9; TPR(PIP>0.5) and
FDR(PIP>0.5) are the empirical estimates when the PIP threshold for identifying active mediators is
0.5.

Method TPR TPR(locfdr) FDR(locfdr) TPR(PIP>0.5) FDR(PIP>0.5) TPR(PIP>0.9) FDR(PIP>0.9)
ρ1 = 0.5− 0.02|i− j|, p11 = 100, Signals in five block

GMM-CorrS 0.92 0.90(0.001) 0.08(0.002) 0.88(0.002) 0.02(0.012) 0.80(0.003) 0.00(0.001)
GMM-Potts 0.97 0.96(0.002) 0.09(0.002) 0.96(0.002) 0.01(0.002) 0.93(0.002) 0.00(0.002)

Weak correlation from MESA, p11 = 100, Signals in five blocks
GMM-CorrS 0.83 0.83(0.002) 0.12(0.003) 0.81(0.003) 0.04(0.003) 0.77(0.003) 0.00(0.001)
GMM-Potts 0.76 0.86(0.017) 0.33(0.022) 0.88(0.010) 0.35(0.024) 0.82(0.011) 0.16(0.017)

ρ1 = 0.5− 0.02|i− j|, p11 = 10, Signals in two blocks
GMM-CorrS 0.83 0.82(0.007) 0.09(0.006) 0.81(0.007) 0.05(0.007) 0.74(0.009) 0.01(0.003)
GMM-Potts 0.85 0.88(0.007) 0.34(0.012) 0.95(0.007) 0.65(0.008) 0.83(0.008) 0.04(0.012)

ρ1 = 0.25, p11 = 10, Signals in two blocks
GMM-CorrS 0.82 0.80(0.006) 0.09(0.007) 0.80(0.006) 0.06(0.007) 0.74(0.007) 0.01(0.003)
GMM-Potts 0.61 0.79(0.018) 0.35(0.043) 0.81(0.011) 0.56(0.037) 0.75(0.010) 0.15(0.047)

Table S2: Empirical estimates of TPR and FDR in simulations of n = 1000, p = 2000, p11 is the
number of true active mediators. The results are based on 200 replicates for each setting, and the
standard errors are shown within parentheses. TPR is the true positive rate controlled at a fixed
FDR of 10%; TPR(locfdr) and FDR(locfdr) are the empirical estimates based on our PIP approach;
TPR(PIP>0.9) and FDR(PIP>0.9) are the empirical estimates when the PIP threshold for identifying
active mediators is 0.9; TPR(PIP>0.5) and FDR(PIP>0.5) are the empirical estimates when the PIP
threshold for identifying active mediators is 0.5.

ring active mediators, we find that the three GMM-based methods behave quite similarly

to each other, and outperform the frequentist methods. GMM-Potts tends to be less robust
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Table S3: Simulation results of (n, p) = (100, 200)/(1000, 2000) under different correlation struc-
tures, p11 is the number of true active mediators. TPR: true positive rate at false discovery
rate (FDR) = 0.10. MSEnon-null: mean squared error for the indirect effects of active mediators.
MSEnull: mean squared error for the indirect effects of inactive mediators. The results are based
on 200 replicates for each setting. Bolded TPRs indicate the top two performers.

Each block contains only one signal, n = 100, p = 200, p11 = 10

(A) ρ1 = 0.5− 0.03|i− j|, ρ2 = 0 (B) ρ1 = 0.9− 0.05|i− j|, ρ2 = 0.1

Method TPR MSEnon-null MSEnull ×10−4 TPR MSEnon-null MSEnull ×10−4

GMM-CorrS 0.46 0.022 1.488 0.39 0.025 2.284
GMM-Potts 0.48 0.027 2.336 0.39 0.028 3.035

GMM 0.47 0.021 1.291 0.41 0.025 2.089
Bi-Lasso 0.36 0.101 0.753 0.26 0.195 0.763
Bi-Ridge 0.27 0.251 3.298 0.22 0.277 2.363

Pathway Lasso 0.29 0.160 0.344 0.27 0.194 0.286
Each block contains only one signal, n = 1000, p = 2000, p11 = 10

(A) ρ1 = 0.5− 0.02|i− j|, ρ2 = 0 (B) ρ1 = 0.9− 0.03|i− j|, ρ2 = 0.1

Method TPR MSEnon-null ×10−3 MSEnull ×10−6 TPR MSEnon-null ×10−3 MSEnull ×10−6

GMM-CorrS 0.81 2.317 1.484 0.78 4.501 4.920
GMM-Potts 0.81 2.892 0.724 0.73 7.257 4.076

GMM 0.81 2.396 1.256 0.78 4.511 4.970
Bi-Lasso 0.72 10.425 3.761 0.64 17.676 5.053
Bi-Ridge 0.50 14.084 15.273 0.41 28.471 14.049

Pathway Lasso 0.56 13.507 14.001 0.50 25.940 14.609

due to the inclusion of irrelevant neighbors, and therefore has slightly larger MSEs than

GMM-CorrS and GMM.

Next, we consider a different ratio of n/p from the main text. Specifically, we set n =

100, p = 500 to examine the performance of the proposed methods. In these simulations,

the effects are generated from the mixture of bivariate normals, [βmj, αaj]> from

[βmj, αaj]> ∼ π1MVN(0,

1.0 0.2

0.2 1.0

) + π2MVN(0,

1.0 0

0 0

) + π3MVN(0,

0 0

0 1.0

) + π4δ0

where we set π1 = 10/500, π2 = 20/500, π3 = 40/500, and π4 = 430/500. For the correlation

structure, we assume 25 highly-correlated blocks of size 10 × 10, within which the pairwise

correlation of mediators is ρ1, e.g. ρ1 = 0.5−0.03|i−j| or 0.9−0.05|i−j|, and the correlation

between blocks (ρ2) is relatively weak (e.g. ρ2 = 0 or 0.1). The 10 active mediators are either

clustered within one block or scattered over a few blocks, while the other blocks contain no
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active mediators. We also consider settings where there is either no correlation (i.e. using

identical matrix to simulate mediators) or a lack of such structural information underlying

active mediators (i.e. the estimated covariance was based on a random subset of DNAm

from MESA to simulate mediators).

The results are summarized in Table S4. In general, we observe similar performance pat-

terns with p = 500 as in p = 200: the proposed methods are better at identifying groups of

correlated mediators than GMM and the frequentist methods in the presence of such corre-

lation, and behave similarly to GMM in the absence of correlation or when the correlation

information is not related. The TPRs get reduced with increased number of mediators,

and GMM-Potts suffers more loss of accuracy when ρ1 is small, e.g. 0.5 − 0.03|i − j|, and

signals are in two blocks. This is possibly due to the fact that the mis-classification in

0-1 neighborhood matrix increases more with the increased noise under larger number of

mediators.

5 Detailed Description of MESA Data

MESA is a population-based longitudinal study designed to identify risk factors for the

progression of subclinical cardiovascular disease (CVD) [9]. A total of 6,814 non-Hispanic

white, African-American, Hispanic, and Chinese-American women and men aged 45−84

without clinically apparent CVD were recruited between July 2000 and August 2002 from

the following 6 regions in the US: Forsyth County, NC; Northern Manhattan and the Bronx,

NY; Baltimore City and Baltimore County, MD; St. Paul, MN; Chicago, IL; and Los An-

geles County, CA. Each field center recruited from locally available sources, which included

lists of residents, lists of dwellings, and telephone exchanges. Neighborhood socioeconomic

disadvantage scores for each neighborhood were created based on a principal components

analysis of 16 census-tract level variables from the 2000 US Census. These variables reflect

dimensions of education, occupation, income and wealth, poverty, employment, and hous-

ing. For the neighborhood measures, we use the cumulative average of the measure across

all available MESA examinations. The descriptive statistics for the exposure and outcome
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Table S4: Simulation results of n = 100, p = 500 under different correlation structures. TPR:
true positive rate at false discovery rate (FDR) = 0.10. MSEnon-null: mean squared error for the
indirect effects of active mediators. MSEnull: mean squared error for the indirect effects of inactive
mediators. The results are based on 200 replicates for each setting. Bolded TPRs indicate the top
two performers.

ρ1 = 0.5− 0.03|i− j|, ρ2 = 0

(A) Signals in one block (B) Signals in two blocks

Method TPR MSEnon-null MSEnull ×10−4 TPR MSEnon-null MSEnull ×10−4

GMM-CorrS 0.54 0.056 2.530 0.46 0.076 2.869
GMM-Potts 0.63 0.074 2.801 0.34 0.138 2.761

GMM 0.42 0.070 1.804 0.42 0.081 2.170
Bi-Lasso 0.18 0.256 0.414 0.20 0.248 0.398
Bi-Ridge 0.15 0.280 2.413 0.16 0.281 2.364

Pathway Lasso 0.24 0.233 2.598 0.23 0.180 6.405
ρ1 = 0.9− 0.05|i− j|, ρ2 = 0.1

(A) Signals in one block (B) Signals in two blocks

Method TPR MSEnon-null MSEnull ×10−4 TPR MSEnon-null MSEnull ×10−4

GMM-CorrS 0.53 0.140 4.166 0.37 0.152 3.903
GMM-Potts 0.71 0.124 1.803 0.38 0.162 4.955

GMM 0.30 0.172 5.157 0.32 0.151 2.882
Bi-Lasso 0.12 0.301 0.283 0.11 0.297 0.336
Bi-Ridge 0.15 0.296 2.249 0.16 0.298 1.929

Pathway Lasso 0.21 0.237 5.495 0.19 0.264 3.457
No systematic correlation structure (signals in two blocks)

(A) ρ1 = 0 (B) Weak correlation from MESA

Method TPR MSEnon-null MSEnull ×10−4 TPR MSEnon-null MSEnull ×10−4

GMM-CorrS 0.44 0.060 2.470 0.27 0.126 1.757
GMM-Potts 0.40 0.106 1.986 0.24 0.144 2.582

GMM 0.45 0.057 1.466 0.28 0.131 1.458
Bi-Lasso 0.30 0.191 0.669 0.21 0.186 0.353
Bi-Ridge 0.25 0.260 2.726 0.17 0.201 2.141

Pathway Lasso 0.35 0.164 0.314 0.32 0.177 0.400
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can be found in Table S5.

In the MESA data, between April 2010 and February 2012 (corresponding to MESA Exam

5), DNAm were assessed on a random subsample of 1,264 non-Hispanic white, African-

American, and Hispanic MESA participants aged 55−94 from the Baltimore, Forsyth County,

New York, and St. Paul field centers. After excluding respondents with missing data on

one or more variables, we had phenotype and DNAm data from purified monocytes on a

total of 1,225 individuals and we focused on this set of individuals for analysis. The de-

tailed description of DNAm data collection, quantitation and data processing procedures

can be found in Liu et al [10]. Briefly, the Illumina HumanMethylation450 BeadChip was

used to measure DNAm, and bead-level data were summarized in GenomeStudio. Quantile

normalization was performed using the lumi package with default settings [11]. Quality

control (QC) measures included checks for sex and race/ethnicity mismatches and outlier

identification by multidimensional scaling plots. Further probe filtering criteria included:

“detected” DNAm levels in <90% of MESA samples (detection p-value cut-off = 0.05), ex-

istence of a SNP within 10 base pairs of the target CpG site, overlap with a non-unique

region, and suggestions by DMRcate [12] (mostly cross-reactive probes). Those procedures

leave us 403,713 autosomal probes for analysis.

For computational reasons, we first selected a subset of CpG sites to be used in the final

multivariate mediation analysis model. In particular, for each single CpG site in turn, we

fit the following linear mixed model to test the marginal association between the CpG site

and the exposure variable:

Mi = Aiψa +C1i
>ψc +Zi>ψu + εi, i = 1, ..., n (3)

where Ai represents neighborhood SES value for the i’th individual and ψa is its coefficient;

C1i is a vector of covariates that include age, gender, race/ethnicity, childhood socioeco-

nomic status, adult socioeconomic status and enrichment scores for each of 4 major blood cell

types (neutrophils, B cells, T cells and natural killer cells) to account for potential contami-

nation by non-monocyte cell types; Zi>ψu represent methylation chip and position random

12



effects and are used to control for possible batch effects. The error term εi ∼ MVN(0, σ2In)

and is independent of the random effects. We obtained p-values for testing the null hy-

pothesis ψa = 0 from the above model. We further applied the R/Bioconductor package

BACON [13] to these p-values to further adjust for possible inflation using an empirical null

distribution. Based on these marginal p-values, we selected top 2,000 CpG sites with the

smallest p-values for our Bayesian multivariate analysis.

Full
Sample
(n, %)

Neighborhood
Socioeconomic
Disadvantage
Mean (SD)

Glucose
Mean (SD)

Full sample 1225 (100) -0.32 (1.11) 29.5 (5.49)
Age

55−65 years 462 (38) -0.18 (0.96) 30.3 (6.02)
66−75 years 397 (32) -0.30 (1.16) 30.1 (5.21)
76−85 years 300 (24) -0.47 (1.15) 28.2 (4.65)
86−95 years 66 (5) -0.67 (1.46) 26.6 (4.66)

Race/ethnic group
Non-Hispanic white 580 (47) -0.56 (1.18) 28.7 (5.40)
African-American 263 (22) -0.16 (0.98) 30.5 (5.69)

Hispanic 382 (31) -0.05 (1.00) 30.0 (5.32)
Gender

Female 633 (52) -0.24 (1.09) 30.1 (6.20)
Male 592 (48) -0.40 (1.12) 28.9 (4.54)

Table S5: Characteristics of 1225 participants from MESA. %: proportion in the corresponding
category. SD: standard deviation.

6 Detailed Description of LIFECODES Data

The LIFECODES prospective birth cohort enrolled approximately 1,600 pregnant women

between 2006 and 2008 at the Brigham and Women’s Hospital in Boston, MA. Participants

between 20 and 46 years of age were all at less than 15 weeks gestation at the initial study

visit, and followed up to four visits (targeted at median 10, 18, 26, and 35 weeks gestation).

At the initial study visit, questionnaires were administered to collect demographic and

health-related information. Subjects’ urine and plasma samples were collected at each study

visit. Among participants recruited in the LIFECODES cohort, 1,181 participants were

followed until delivery and had live singleton infants. The birth outcome, gestational age,

was also recorded at delivery, and preterm birth was defined as delivery prior to 37 weeks

gestation. This study received institutional review board (IRB) approval from the Brigham
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and Women’s Hospital and all participants provided written informed consent. All of the

methods within this study were performed in accordance with the relevant guidelines and

regulations approved by the IRB. Additional details regarding recruitment and study design

can be found in [14, 15].

In this study, we focused on a subset of n = 161 individuals with their urine and plasma

samples collected at one study visit occurring between 23.1 and 28.9 weeks gestation (median

= 26 weeks). Characteristics of the subset sample is described in Table S6. Subjects’ urine

samples were refrigerated (4◦C) for a maximum of 2 hours before being processed and stored

at −80◦C. Approximately 10mL of blood was collected using ethylenediaminetetraacetic

acid plasma tubes and temporarily stored at 4◦C for less than 4 hours. Afterwards, blood

was centrifuged for 20 minutes and stored at −80◦C. Environmental exposure analytes were

measured from urine samples by NSF International in Ann Arbor, MI, following the methods

developed by the Centers for Disease Control (CDC) [16]. Those exposure analytes include

phthalates, phenols and parabens, trace metals and polycyclic aromatic hydrocarbons. To

adjust for urinary dilution, specific gravity (SG) levels were measured in each urine sample

using a digital handheld refractometer (ATAGO Company Ltd., Tokyo, Japan), and was

included as a covariate in regression models. Urine and plasma were subsequently analyzed

for endogenous biomarkers, including 51 eicosanoids, five oxidative stress biomarkers and five

immunological biomarkers in the present study. For a detailed description of the biomarkers

that we analyzed and the media (urine or plasma) in which they were measured, please refer

to [17].

We also utilize the biological pathway information to construct neighbors in GMM-Potts

and correlation matrix in GMM-CorrS. The results are shown in Table S7.

7 Choices of ψ′s

Following the reviewer’s comment, we performed sensitivity analysis on the ψ parameters

(ψ01 and ψ02) in the covariances of the mixture model. Specifically, we added different level

of changes to the Bi-Lasso variance estimations and re-fitted both models. The results are

shown in Table S8. We found that the posterior inference is robust to mild changes in ψ′s,
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Full
Sample

(n = 161)

Preterm
(<37 weeks gestation,

n = 52)

Control
(n = 109)

Agea 32.7 (4.4) 32.1 (5.0) 33.0 (4.2)
BMI at Initial Visita 26.7 (6.4) 28.5 (7.6) 25.8 (5.6)
Race/ethnic groupb

White 102 (63%) 29 (56%) 73 (67%)
African-American 18 (11%) 7 (13%) 11 (10%)

Other 41 (26%) 16 (31%) 25 (23%)
Gestational weeksa 37.5 (3.1) 34.1 (3.2) 39.1 (1.1)

Table S6: Characteristics of all participants in the subset sample from the LIFECODES prospec-
tive birth cohort (n = 161). aContinuous variables presented as: mean (standard deviation).
bCategorical variables presented as: count (proportion).

Method Selected Mediators PIP β̂mjα̂aj (95% CI)
Polycyclic aromatic hydrocarbons → Biomarkers → Gestational Age
GMM-Potts 8(9)-EET 0.99 0.698(0.391, 1.005)

9,10-DiHOME 0.91 -0.359(-0.671, 0.000)
GMM-CorrS 12(13)-EpoME 1.00 1.132(0.867, 1.426)

9-oxoODE 0.99 -0.834(-1.119, -0.535)
GMM 8(9)-EET 1.00 0.698(0.407, 0.990)

9,10-DiHOME 0.99 -0.394(-0.693, -0.091)

Table S7: Summary of the identified active mediators from the data application on LIFECODES
study based on 10% FDR with the local FDR approach. Both GMM-Potts and GMM-CorrS use
the neighborhood structure based on biological pathways. Besides the PIP, we also report the
effect estimation β̂mjα̂aj and its 95% credible interval.

especially as we increase the values of ψ′s. The results also indicate that values smaller than

the variances estimated by Bi-Lasso may not be good choices for ψ′s.

In addition, we explored the use of the deviance information criterion (DIC) proposed in

[18] as a measure of model fit to select ψ. The results are shown in Figure S1. We found

that, while the DICs are relatively stable across a range of ψ parameters, the smallest DICs

do correspond to the best/close-to-best models in terms of TPR in Table S8 for both GMM-

CorrS and GMM-Potts. Therefore, when presented with a set of potential ψ parameters,

users can use DIC as one criterion for model selection.

Combining the above results and given that the choice of ψ′s is not of the main focus of the

present study, we believe our current approach of using Bi-Lasso can provide good choices
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Table S8: Sensitivity analysis of GMM-CorrS and GMM-Potts regarding ψ parameters under
n = 100, p = 200/500. We add various percentages of change to the estimated ψ01 and ψ02 from
Bi-Lasso and re-evaluate the model performance.

p = 200, ρ1 = 0.5− 0.03|i− j|, ρ2 = 0, signals in two blocks

GMM-CorrS GMM-Potts

% of change TPR MSEnon-null MSEnull ×10−4 TPR MSEnon-null MSEnull ×10−4

-90 0.49 0.035 2.701 0.38 0.124 2.106
-50 0.56 0.031 2.771 0.41 0.063 2.881
0 0.62 0.039 1.919 0.49 0.040 2.112
50 0.62 0.039 1.919 0.48 0.050 3.086
102 0.62 0.028 2.771 0.50 0.036 3.239

2× 102 0.62 0.026 2.687 0.49 0.034 3.384
5× 102 0.63 0.025 2.857 0.51 0.034 3.105

103 0.64 0.024 2.948 0.51 0.029 3.163
104 0.62 0.030 2.374 0.47 0.037 1.910

p = 500, ρ1 = 0.5− 0.03|i− j|, ρ2 = 0, signals in two blocks

GMM-CorrS GMM-Potts

% of change TPR MSEnon-null MSEnull ×10−4 TPR MSEnon-null MSEnull ×10−4

-90 0.41 0.088 1.900 0.25 0.192 3.141
-50 0.42 0.076 2.732 0.27 0.162 3.037
0 0.46 0.076 2.869 0.34 0.138 2.761
50 0.44 0.076 2.316 0.32 0.144 2.789
102 0.44 0.075 2.548 0.32 0.138 3.153

2× 102 0.45 0.066 2.563 0.32 0.133 2.888
5× 102 0.45 0.067 3.578 0.32 0.128 2.748

103 0.46 0.059 3.560 0.35 0.112 1.812
104 0.47 0.059 3.897 0.32 0.104 2.511
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Figure S1: The deviance information criterion (DIC) vs the percentage of changes in ψ′s for
both models: GMM-CorrS and GMM-Potts. Top: when p = 200, n = 100; Bottome: when
p = 500, n = 100. A smaller value of DIC indicates a better model fitting.
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for ψ′s. In addition, model fitting criteria, such as DIC, can be used to select the optimal

ψ′s. For future work, we could also consider specifying priors on ψ′s, e.g. a discrete prior

over a pre-determined set of values, and conduct fully Bayesian inference.
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