Worsening Obesity Across Canada and Concerns for COVID-19 Pandemic Severity

Ellina Lytvyak, MD, PhD¹

Sebastian Straube, BM BCh, MA (Oxon), DPhil¹

Renuca Modi, MD, CCFP, FCFP ^{2,3}

Karen K Lee, MD, MHSc, FRCPC¹

¹ Division of Preventive Medicine, Department of Medicine, University of Alberta, Edmonton, Canada

² Department of Family Medicine, University of Alberta, Edmonton, Canada

³ Edmonton Adult Bariatric Specialty Clinic, Alberta Health Services, Canada

Corresponding author

Ellina Lytvyak

lytvyak@ualberta.ca

Funding statement

This project has been made possible in part through funding from Dr. Karen K Lee's University of Alberta Faculty of Medicine and Dentistry research funds.

Abstract

Background

Our study analyzed and described national and provincial/territorial obesity trends in the Canadian adult population from 2005 through 2017-18, to understand potential implications of obesity trends on the COVID-19 pandemic.

Methods

Data from 746,408 Canadian Community Health Survey (CCHS) adult survey participants (403,582 females and 342,826 males) were obtained from seven consecutive cycles (CCHS₂₀₀₅ – CCHS₂₀₁₇₋ ₁₈). Obesity prevalence (adjusted BMI≥30.00 kg/m²) was a primary outcome variable. Obesity rates across CCHS cycles and trends over time were analyzed using Pearson's chi-squared test with Bonferroni's p-value adjustment, and Cochran-Armitage test of trend. P-value≤0.05 indicated statistical significance.

Results

Canada-wide obesity prevalence increased significantly between 2005 and 2017-18, from 22.2% to 27.2% (p<0.001). Increases were observed across both sexes, all age groups, and all Canadian provinces/territories (p<0.001). In 2017-18, obesity prevalence was higher among males than females (28.9% vs. 25.4%; p<0.001); Canadian adults in their 60s, 50s and 40s had obesity prevalence exceeding 30%. In 2017-18, Newfoundland and Labrador had the highest (39.4%), and British Columbia – the lowest (22.8%) obesity rate. Over 14 years, Quebec and Alberta exhibited the largest relative increases in obesity.

Interpretation

In 2017-18, approximately 1 in 4 adult Canadians lives with obesity, the highest-ever rate. With obesity identified as a key risk factor for COVID-19 infection acquisition, morbidity and mortality, these trends may be contributing to the severity of the COVID-19 pandemic in Canada. Our findings call for urgent actions to identify, develop, implement and evaluate solutions for obesity prevention

and management in all Canadian provinces and territories.

Introduction

Currently, the world including Canada finds itself within a coronavirus disease (COVID-19) pandemic and pandemic-related impacts on health, well-being, healthcare and economy ¹. Much attention has rightly focused on attempts to mitigate negative impacts and control the infection. Underlying conditions such as obesity and chronic diseases have now been identified as key risk factors for acquisition and severity of COVID-19 infection including hospitalizations, ICU admissions and death ^{2–11}.

According to WHO, obesity continues to advance across every region and socioeconomic class and becomes a global epidemic with over 13% of adults worldwide affected ¹². Obesity is a progressive, multifactorial, chronic disease with high risks of relapse and recurrence ¹³. Up to 12.0% of Canadian health expenditures are attributed to obesity; annual costs exceed 11 billion dollars ¹⁴. It is a major cause of multiple comorbidities, including type II diabetes, cardiovascular diseases, nonalcoholic fatty liver disease, osteoarthritis, chronic kidney disease, chronic back pain, and many cancer types, many of which also increase morbidity and mortality risks from COVID-19 ^{15–22}.

Canadian population-wide adult obesity trend studies using multiple consecutive cross-sectional surveys at national/provincial/territorial levels are scarce, outdated, and do not include data from multiple consecutive years and trend analyses ^{23–28}. Exploring the prevalence and trends of obesity may assist in our understanding of the potential severity of COVID-19 morbidity and mortality within our population. In our study, the aim was to describe and analyze obesity trends at national and provincial/territorial levels in the adult Canadian population from 2005 through 2017-18 and discuss potential implications for the COVID-19 pandemic.

Methods

Study design

Data were obtained from seven consecutive cycles of the Canadian Community Health Survey (from CCHS₂₀₀₅ to CCHS₂₀₁₇₋₁₈) ^{29–35}. CCHS is a Canada-wide cross-sectional survey with a complex,

multistage, multi-frame, stratified sampling design that collects information related to health status, healthcare utilization and health determinants from a large national sample of survey respondents to provide estimates for the whole Canadian population ³⁶. The CCHS targets persons aged 12 years and older who are living in private dwellings in the ten provinces and three territories. Persons living on Indian Reserves or Crown lands, those residing in institutions, full-time members of the Canadian Forces and residents of certain remote regions are excluded from this survey. The CCHS covers approximately 98% of the Canadian population aged 12 and older ³⁶. Further details about CCHS methodology are found elsewhere ³⁶. The eligibility criteria for our study participants included: being an adult (\geq 18 y.o.) participant in at least one of the seven consecutive CCHS cycles, with BMI values available. Our study design and step-by-step methodological approach are presented in Fig. 1. The variables used in this study consisted of sex and age, province of residence and BMI. Sex-specific correction equations developed by *Gorber* and colleagues (*Reduced model 4* as recommended) were applied to self-reported BMI to produce adjusted BMI estimates which yield estimates maximally in line with measured ones ^{37–39}. Adjusted BMI (a number with two decimals) was further used to categorize individuals into corresponding weight status categories ^{40–42}.

Primary outcome

Obesity prevalence was the primary outcome variable. Individuals were defined as being obese with an adjusted BMI of 30.00 kg/m² or higher.

Statistical analysis

For statistical estimates produced from the CCHS data to be accurate and representative of the Canadian population and not just the sample, standardized survey weights were incorporated in calculations and applied before statistical analyses were performed ⁴³. Categorical data were presented as proportions and counts. Comparisons of obesity prevalence rates across CCHS cycles were performed using two-tailed Pearson's chi-squared test and post-hoc paired comparisons on each pair of CCHS cycles with p-value adjustment according to the Bonferroni method for multiple pairwise comparisons. Trends in obesity prevalence over time were analyzed using the Cochran-

Armitage test of trend. All statistical analyses and data visualization were performed using SPSS 23.0, GraphPad Prism 6.0, and Tableau Public 2020.3, with a p-value≤0.05 indicating statistical significance ^{44–46}.

Ethics approval

Our study was exempt from need for the University of Alberta Research Ethics Board review as CCHS Public use microdata files (PUMFS) produced by Statistics Canada are publicly accessible via the Data Liberation Initiative.

Results

Our study sample consisted of 746,408 CCHS survey respondents (403,582 females and 342,826 males). Main demographic characteristics of the study participants are presented in Table 1. Individuals in their 50s had the largest share in the study population compared to other age categories for the first three CCHS cycles, shifting to older groups in their 60s later, mirroring aging of the Canadian population. Geographic area distributions were consistent throughout cycles.

In 2005, Canada-wide obesity prevalence was 22.2% and over 14 years increased significantly reaching the ever-highest level of 27.2% in 2017-18; p<0.001 (Table 2; Fig. 5). Obesity prevalence rates had been rising gradually demonstrating stepwise temporal patterns.

Obesity prevalence in 2005 among males was substantially higher than in females (24.0% vs. 20.4%; p<0.001). Over the following 14 years, obesity rates increased in both sexes, with females experiencing a larger increase. By 2017-18, the obesity rate among males continued to be significantly higher in comparison to females (28.9% vs. 25.4%; p<0.001) (Table 2; Fig. 2).

Age-wise, in 2005, adults in their 60s and 50s had the highest obesity rates, followed by adults in their 40s (28.0%, 27.8%, and 23.8% respectively). Over the next 14 years, obesity rates rose significantly in all age groups with the largest increase among people in their 40s (p<0.001). By

Page 8 of 30

2017-18, obesity rates among Canadians in their 60s, 50s, and 40s were 32.3%, 31.4%, and 30.9%, respectively (Table 2; Fig. 3).

In 2005, British Columbia and Quebec had the lowest obesity prevalence (19.2% and 20.1%, respectively) while Newfoundland and Labrador New Brunswick and Prince Edward Island had the highest rates of 33.5%, 30.9% and 30.1%, respectively. All provinces and territories showed increases in obesity prevalence from 2005 to 2017-18 (p<0.001), with the highest rate remaining in Newfoundland and Labrador at 39.4% and the lowest rate in British Columbia at 22.8%. Over the 14 years, Quebec and Alberta demonstrated the largest relative increases in obesity prevalence (Table 2; Fig. 4-6). There were statistically significant differences in obesity prevalence across CCHS cycles for both sexes, all age categories, and at national and provincial/territorial levels (p<0.001). Findings of subsequent pairwise comparisons were consistent with obesity rates being markedly different between each CCHS cycle Canada-wide (p<0.001). In 2017-18, sex-specific, age-specific, and national and provincial/territorial obesity rates were significantly higher compared to those in 2005 (p<0.001). Furthermore, from 2005 through 2017-18, there was a statistically significant increasing linear trend in obesity prevalence in both sexes, all age groups, Canada-wide, and in all provinces/territories (Cochran-Armitage test of trend, p<0.001) (Table 2; Fig. 2-4).

Interpretation

Our study findings demonstrate that adult obesity prevalence in Canada increased from 22.2% in 2005 to 27.2% in 2017-18, the highest-ever rate. This trend was observed across sexes, various age categories, all provinces and territories. Those tendencies are comparable with global data and other high-income English-speaking countries, reflecting consistently increasing trends in obesity prevalence worldwide ^{47–49}.

No prior Canada-wide analyses of obesity prevalence have been performed for the period from 2005 through 2017-18, the latest nationwide data available. The previous peer-reviewed publication comparing obesity prevalence between non-consecutive CCHS cycles was based on data up to

2013 ²⁸. We analyzed data from seven consecutive CCHS cycles, representing the most comprehensive trend analyses to our knowledge. Additionally, we applied well-defined and robust methodological processes: defined explicit inclusion/exclusion criteria, included the 18-19 year-old age category, did not exclude the underweight category from analyses, re-derived weight categories based on two-decimal point BMI value to improve precision, and used correction equations. Therefore, it is challenging to directly compare our findings with the results of other studies.

Trajectory of obesity trends in Canada nationally and across provinces/territories is increasing alarmingly. In our study, obesity trends in Canada are explored to gain some understanding of potential implications for the current COVID-19 pandemic. There is overwhelming evidence that obesity is a key risk factor for the acquisition of COVID-19 infection and a strong predictor of its adverse outcomes. Obesity was deemed to be associated with an up to 2.1-fold higher risk for severe COVID-19 infection, 2.4-fold – for hospitalization, 5.3-fold – for ICU admission, 7.4-fold – for invasive mechanical ventilation support, and 2.7-fold higher risk for mortality ^{2–11}. A recent meta-analysis has also demonstrated a linear relationship between BMI and COVID infection severity and mortality ⁵. In the context of the COVID-19 pandemic, obesity trends seen in Canada are potentially presenting important risks and challenges regarding infection acquisition, severity and mortality.

Recent meta-analyses suggest that male sex is an independent risk factor for severe COVID-19 infection, ICU admission and death with odds reaching as high as 2.84 compared to females ^{50,51}. The male population in Canada is also characterized by higher rates of smoking and underlying diseases, such as diabetes, hypertension and COPD, with those factors independently at least doubling the risk for severe and morbid COVID-infection ^{4,50,52–57}. Coupled with the higher prevalence of obesity among males demonstrated in our study it poses a significant concern that cannot be disregarded.

In multiple studies across the world, age has been repeatedly identified as a major risk factor for disease progression, critical and morbid COVID-19 infection, with a case fatality ratio increasing

Page 10 of 30

progressively with age and reaching 1.3% and 3-5% among patients in their 50s and 60s, respectively, in comparison to 0.4% among those in the 40s or younger ^{58–63}. Because every third Canadian adult in their 50s and 60s lives with obesity, those age groups have the highest obesity rates, it also creates significant challenges for preventing undesirable COVID-19 outcomes.

Future studies should model variations of COVID-19 outcomes among provinces with variations in underlying chronic risk conditions, such as obesity and obesity-related chronic diseases at population levels. Further studies are also needed for their effective prevention and management, for example, by assessing temporal obesity patterns in the context of socio-demographic and behavioural factors in Canada. It would also be important to evaluate intervention efforts among physicians (in primary care, those specializing in obesity medicine, and specialists treating comorbidities); public health professionals; various stakeholders at municipal/provincial/federal levels including policymakers, urban planners and developers shaping community environments; community organizations; the pharmaceutical industry; employers; academia; and those living with obesity. In 2017, the Chief Public Health Officer of Canada released the report "Designing Healthy Living" in a call to action to improve our community environments in support of healthy living ⁶⁴. Implementing and evaluating innovative interventions already demonstrated to reverse longstanding obesity trends at a population level should be a priority for all Canadian provinces/territories ^{64,65,74-} ^{79,66–73}. For example, in Alberta, policy and environmental approaches that successfully reversed childhood obesity trends and increased life expectancies from chronic diseases in New York in 2002-2013 are being developed and evaluated through the Housing for Health initiative funded by the Public Health Agency of Canada ⁸⁰. Learning from the US experience, the University of Alberta's Public Health and Preventive Medicine Residency Program and patient-care partners are also currently developing and piloting the first Obesity Medicine Fellowship Program in Canada.

Limitations

Analyzing a series of cross-sectional studies does not assess for a definitive trend over time due to the lack of a clear longitudinal component. Recall, selection, observer and social acceptability biases along with weight stigma influence could also not be ruled out. BMI as a proxy of weight status does not take into consideration ethnicity, sex and body composition and can be an inaccurate marker of adiposity with high specificity, but low-to-moderate sensitivity ^{81,82}. Nevertheless, BMI is shown as a reliable standardized weight status measure at the population level ^{81–86}. The robustness of relationships between BMI, obesity-related comorbidities and mortality also reflects its high utility and reliability ⁸⁷. Tendency to under-report weight and over-report height, especially among obese people, youth and females can lead to underestimating obesity rates but helps avoid overestimation ^{88–92}. However, unless tendency to under-reporting and over-reporting varies over time, this should not impact temporal trends. Self-reported anthropometric measurements correlate strongly with measured ones and can be used in epidemiological studies ^{93–96}. To overcome potential divergence, we applied correction equations developed and utilized by Statistics Canada to self-reported BMI estimates to produce adjusted BMI estimates maximally in line with measured ones ^{37–39}.

Conclusion

- Approximately 1 in 4 adult Canadians lives with obesity.
- Obesity rate among adult Canadians increased by 23% since 2005 and in 2017-18 was at the ever-highest level of 27.2%.
- Obesity prevalence increased across sexes, age groups, and all Canadian provinces and territories from 2005 to 2017-18.
- Obesity prevalence among males is substantially higher than in females, this pattern remains unchanged over the last 14 years.
- Canadian adults in their 60s, 50s and 40s continue having the highest obesity prevalence, exceeding 30%, with the latter group demonstrating the most prominent increase in the obesity rate.
- Newfoundland and Labrador had the highest rates of obesity in Canada in 2017-18, with almost 4 out of 10 residents living with obesity; British Columbia had the lowest rate of obesity in Canada, but nevertheless, at least every fifth person was affected.

• Quebec and Alberta have had the largest increases in obesity prevalence, with relative increases of almost 30% between 2005 and 2017-18.

- Population obesity trends are expected to increase the severity of COVID-19 infection burden, morbidity and mortality across Canada.
- We cannot afford to ignore increasing rates of obesity and obesity-related comorbidities and their negative impact on health and well-being of the current Canadian population and our future generations. Our findings highlight the urgent need to identify, develop, implement and evaluate solutions for obesity prevention and management in Canada as well as funding for such efforts.

Page	13	of 30	
------	----	-------	--

1 2		
2 3 4	Refe	rences
5	1.	World Health Organization. Weekly epidemiological and operational updates.
6 7		https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/. Published
8		2021.
9 10	2.	Yang J, Tian C, Chen Y, Zhu C, Chi H, Li J. Obesity aggravates COVID-19: an updated systematic
11		review and meta-analysis. J Med Virol. November 2020. doi:10.1002/jmv.26677
12 13	3.	Soeroto AY, Soetedjo NN, Purwiga A, et al. Effect of increased BMI and obesity on the outcome of
14		COVID-19 adult patients: A systematic review and meta-analysis. <i>Diabetes Metab Syndr.</i>
15		2020;14(6):1897-1904. doi:10.1016/j.dsx.2020.09.029
16 17	4.	Sales-Peres SH de C, de Azevedo-Silva LJ, Bonato RCS, Sales-Peres M de C, Pinto AC da S,
18		Santiago Junior JF. Coronavirus (SARS-CoV-2) and the risk of obesity for critically illness and ICU
19 20		admitted: Meta-analysis of the epidemiological evidence. <i>Obes Res Clin Pract.</i> 2020;14(5):389-
21		397. doi:10.1016/j.orcp.2020.07.007
22	5.	Du Y, Lv Y, Zha W, Zhou N, Hong X. Association of body mass index (BMI) with critical COVID-19
23 24	0.	and in-hospital mortality: A dose-response meta-analysis. <i>Metabolism</i> . 2021;117:154373.
25		
26 27	6	doi:10.1016/j.metabol.2020.154373
28	6.	Kalligeros M, Shehadeh F, Mylona EK, et al. Association of Obesity with Disease Severity Among
29		Patients with Coronavirus Disease 2019. <i>Obesity (Silver Spring)</i> . 2020;28(7):1200-1204.
30 31	-	doi:10.1002/oby.22859
32	7.	Földi M, Farkas N, Kiss S, et al. Obesity is a risk factor for developing critical condition in COVID-
33 34		19 patients: A systematic review and meta-analysis. <i>Obes Rev an Off J Int Assoc Study Obes</i> .
35		2020;21(10):e13095. doi:10.1111/obr.13095
36 27	8.	Yang J, Tian C, Chen Y, Zhu C, Chi H, Li J. Obesity aggravates COVID-19: An updated
37 38		systematic review and meta-analysis. J Med Virol. 2021;93(5):2662-2674. doi:10.1002/jmv.26677
39	9.	Huang Y, Lu Y, Huang Y-M, et al. Obesity in patients with COVID-19: a systematic review and
40 41		meta-analysis. <i>Metabolism</i> . 2020;113:154378. doi:10.1016/j.metabol.2020.154378
42	10.	Tamara A, Tahapary DL. Obesity as a predictor for a poor prognosis of COVID-19: A systematic
43		review. <i>Diabetes Metab Syndr</i> . 2020;14(4):655-659. doi:10.1016/j.dsx.2020.05.020
44 45	11.	Zhou Y, Yang Q, Chi J, et al. Comorbidities and the risk of severe or fatal outcomes associated
46		with coronavirus disease 2019: A systematic review and meta-analysis. Int J Infect Dis IJID Off
47 48		Publ Int Soc Infect Dis. 2020;99:47-56. doi:10.1016/j.ijid.2020.07.029
49	12.	World Health Organization. Obesity and Overweight. Fact sheet. Updated 01 April 2020. WHO
50		<i>Organ.</i> 2020:2561-2565.
51 52	13.	Obesity: Preventing and Managing the Global Epidemic. Report of a WHO Consultation. Vol 894.
53		Switzerland; 2000.
54 55	14.	Tran BX, Nair A V, Kuhle S, Ohinmaa A, Veugelers PJ. Cost analyses of obesity in Canada:
56		
57 58		
58 59		Page 12 of 18
60		For Peer Review Only

2		
3 4		scope, quality, and implications. Cost Eff Resour Alloc. 2013;11(1):3. doi:10.1186/1478-7547-11-3
5	15.	Bellou V, Belbasis L, Tzoulaki I, Evangelou E. Risk factors for type 2 diabetes mellitus: An
6		exposure-wide umbrella review of meta-analyses. PLoS One. 2018;13(3):e0194127.
7 8		doi:10.1371/journal.pone.0194127
o 9	16.	
10	10.	Schmidt M, Johannesdottir SA, Lemeshow S, et al. Obesity in young men, and individual and
11		combined risks of type 2 diabetes, cardiovascular morbidity and death before 55 years of age: a
12 13		Danish 33-year follow-up study. <i>BMJ Open</i> . 2013;3(4):e002698. doi:10.1136/bmjopen-2013-
14		002698
15	17.	Li L, Liu D-W, Yan H-Y, Wang Z-Y, Zhao S-H, Wang B. Obesity is an independent risk factor for
16 17		non-alcoholic fatty liver disease: evidence from a meta-analysis of 21 cohort studies. Obes Rev
17 18		an Off J Int Assoc Study Obes. 2016;17(6):510-519. doi:10.1111/obr.12407
19	18.	Plotnikoff R, Karunamuni N, Lytvyak E, et al. Osteoarthritis prevalence and modifiable factors: a
20	10.	
21 22		population study. <i>BMC Public Health</i> . 2015;15:1195.
22		http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4666016&tool=pmcentrez&rendertype=
24		abstract.
25	19.	Pinto KRD, Feckinghaus CM, Hirakata VN. Obesity as a predictive factor for chronic kidney
26 27		disease in adults: systematic review and meta-analysis. Brazilian J Med Biol Res = Rev Bras
28		<i>Pesqui medicas e Biol.</i> 2021;54(4):e10022. doi:10.1590/1414-431X202010022
29	20.	Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH. The incidence of co-
30 31	20.	morbidities related to obesity and overweight: a systematic review and meta-analysis. <i>BMC Public</i>
32		
33		<i>Health</i> . 2009;9:88. doi:10.1186/1471-2458-9-88
34 25	21.	Shiri R, Karppinen J, Leino-Arjas P, Solovieva S, Viikari-Juntura E. The Association Between
35 36		Obesity and Low Back Pain: A Meta-Analysis. <i>Am J Epidemiol</i> . 2009;171(2):135-154.
37		doi:10.1093/aje/kwp356
38	22.	Gasmi A, Peana M, Pivina L, et al. Interrelations between COVID-19 and other disorders. Clin
39 40		<i>Immunol</i> . 2021;224:108651. doi:10.1016/j.clim.2020.108651
41	23.	Vanasse A, Demers M, Hemiari A, Courteau J. Obesity in Canada: where and how many? Int J
42		<i>Obes (Lond).</i> 2006;30(4):677-683. doi:10.1038/sj.ijo.0803168
43 44	24	
45	24.	Bélanger-Ducharme F, Tremblay A. Prevalence of obesity in Canada. <i>Obes Rev an Off J Int</i>
46		Assoc Study Obes. 2005;6(3):183-186. doi:10.1111/j.1467-789X.2005.00179.x
47	25.	Janssen I. The public health burden of obesity in Canada. <i>Can J diabetes</i> . 2013;37(2):90-96.
48 49		doi:10.1016/j.jcjd.2013.02.059
50	26.	Luo W, Morrison H, de Groh M, et al. The burden of adult obesity in Canada. Chronic Dis Can.
51		2007;27(4):135-144.
52 53	27.	Statistics Canada. Overweight and Obese Adults, 2018. Health Fact Sheets. Catalogue No. 82-
55		<i>625-X ISSN 1920-9118</i> .; 2019. https://www150.statcan.gc.ca/n1/pub/82-625-
55		
56 57		x/2019001/article/00005-eng.htm.
57 58		
59		Page 13 of 18
<u> </u>		For Peer Review Only

1 2		
3	28.	Lebenbaum M, Zaric GS, Thind A, Sarma S. Trends in obesity and multimorbidity in Canada. Prev
4 5	20.	<i>Med (Baltim)</i> . 2018;116:173-179. doi:10.1016/j.ypmed.2018.08.025
6	29.	Statistics Canada. 2006. Canadian Community Health Survey, 2005 [public-use microdata file].
7 8		Ottawa, Ontario: Statistics Canada. Health Statistics Division, Data Liberation Initiative [producer
9		and distributor].
10 11	30.	Statistics Canada. 2009. Canadian Community Health Survey, 2007-2008 [public-use microdata
12		file]. Ottawa, Ontario: Statistics Canada. Health Statistics Division, Data Liberation Initiative
13 14		[producer and distributor].
14	31.	Statistics Canada. 2011. Canadian Community Health Survey, 2009-2010 [public-use microdata
16		file]. Ottawa, Ontario: Statistics Canada. Health Statistics Division, Data Liberation Initiative
17 18		[producer and distributor].
19	32.	Statistics Canada. 2013. Canadian Community Health Survey, 2011-2012: Annual component
20 21		[public-use microdata file]. Ottawa, Ontario: Statistics Canada. Health Statistics Division, Data
22		Liberation Initiative [producer and distributor].
23 24	33.	Statistics Canada. 2016. Canadian Community Health Survey, 2013-2014: Annual component
25		[public-use microdata file]. Ottawa, Ontario: Statistics Canada. Health Statistics Division, Data
26 27		Liberation Initiative [producer and distributor].
28	34.	Statistics Canada. Canadian Community Health Survey, 2015-2016: Annual Component [Public
29 30		use microdata file] Ottawa, Ontario: Health Statistics Division, Statistics Canada [producer]
31		Ottawa, Ontario: Data Liberation Initiative, Statistics Canada [distribu.
32	35.	Statistics Canada. Canadian Community Health Survey, 2017-2018: Annual Component [Public
33 34		use microdata file] Ottawa, Ontario: Health Statistics Division, Statistics Canada [producer]
35		Ottawa, Ontario: Data Liberation Initiative, Statistics Canada [distribu.
36 37	36.	Statistics Canada. Canadian Community Health Survey.
38		https://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&SDDS=3226.
39 40	37.	Connor Gorber S, Shields M, Tremblay MS, McDowell I. The feasibility of establishing correction
41		factors to adjust self-reported estimates of obesity. <i>Heal reports</i> . 2008;19(3):71-82.
42 43	38.	Shields M, Connor Gorber S, Janssen I, Tremblay MS. Bias in self-reported estimates of obesity in
44		Canadian health surveys: an update on correction equations for adults. Heal reports.
45 46		2011;22(3):35-45.
47	39.	Navaneelan T, Janz T. Adjusting the Scales: Obesity in the Canadian Population after Correcting
48 49		for Respondent Bias. Statistics Canada; 2014.
50	40.	Garrow JS, Webster J. Quetelet's index (W/H2) as a measure of fatness. Int J Obes. 1985.
51 52	41.	Health Canada. Canadian Guidelines for Body Weight Classification in Adults.; 2003. doi:H49-
53		179/2003E
54 55	42.	World Health Organization. Obesity and overweight. Obesity and overweight. Published 2018.
55 56	43.	Statistics Canada. Canadian Community Health Survey (CCHS). Household weights
57		
58 59		Page 14 of 18
60		For Peer Review Only

documentation. https://www23.statcan.gc.ca/imdb-bmdi/pub/document/3226_D57_T9_V1-eng.htm. Published 2010. 44. IBM SPSS Inc. SPSS Statistics for Windows, Version 23.0. IBM Corp Released 2015. 2015. doi:10.1364/OFC.2014.M2H.4 45. GraphPad. GraphPad Prism for Windows. http://www.graphpad.com. Tableau Public 2020.3. 2020. https://public.tableau.com/en-us/s/download. 46. 47. Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384(9945):766-781. 48. Ford ES, Li C, Zhao G, Tsai J. Trends in obesity and abdominal obesity among adults in the United States from 1999-2008. Int J Obes (Lond). 2011;35(5):736-743. doi:10.1038/ijo.2010.186

- 49. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of obesity in the United States, 2009-2010. *NCHS Data Brief*. 2012;(82):1-8.
- 50. Zeng F, Dai C, Cai P, et al. A comparison study of SARS-CoV-2 IgG antibody between male and female COVID-19 patients: A possible reason underlying different outcome between sex. *J Med Virol.* 2020;92(10):2050-2054. doi:10.1002/jmv.25989
- 51. Peckham H, de Gruijter NM, Raine C, et al. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. *Nat Commun.* 2020;11(1):6317. doi:10.1038/s41467-020-19741-6
- 52. Bilandzic A, Rosella L. The cost of diabetes in Canada over 10 years: applying attributable health care costs to a diabetes incidence prediction model. *Heal Promot chronic Dis Prev Canada Res policy Pract.* 2017;37(2):49-53. doi:10.24095/hpcdp.37.2.03
- 53. Padwal RS, Bienek A, McAlister FA, Campbell NRC. Epidemiology of Hypertension in Canada: An Update. *Can J Cardiol.* 2016;32(5):687-694. doi:10.1016/j.cjca.2015.07.734
- 54. Ntritsos G, Franek J, Belbasis L, et al. Gender-specific estimates of COPD prevalence: a systematic review and meta-analysis. *Int J Chron Obstruct Pulmon Dis.* 2018;13:1507-1514. doi:10.2147/COPD.S146390
- 55. Canadian Tobacco, Alcohol and Drugs Survey (CTADS). 2017. https://www.canada.ca/en/healthcanada/services/canadian-tobacco-alcohol-drugs-survey/2017-summary.html.
- 56. Lippi G, Wong J, Henry BM. Hypertension in patients with coronavirus disease 2019 (COVID-19): a pooled analysis. *Polish Arch Intern Med*. 2020;130(4):304-309. doi:10.20452/pamw.15272
- 57. Mesas AE, Cavero-Redondo I, Álvarez-Bueno C, et al. Predictors of in-hospital COVID-19 mortality: A comprehensive systematic review and meta-analysis exploring differences by age, sex and health conditions. *PLoS One*. 2020;15(11):e0241742. doi:10.1371/journal.pone.0241742
- 58. Zheng Z, Peng F, Xu B, et al. Risk factors of critical & mortal COVID-19 cases: A systematic literature review and meta-analysis. *J Infect*. 2020;81(2):e16-e25. doi:10.1016/j.jinf.2020.04.021
- 59. Chen Y, Klein SL, Garibaldi BT, et al. Aging in COVID-19: Vulnerability, immunity and intervention.

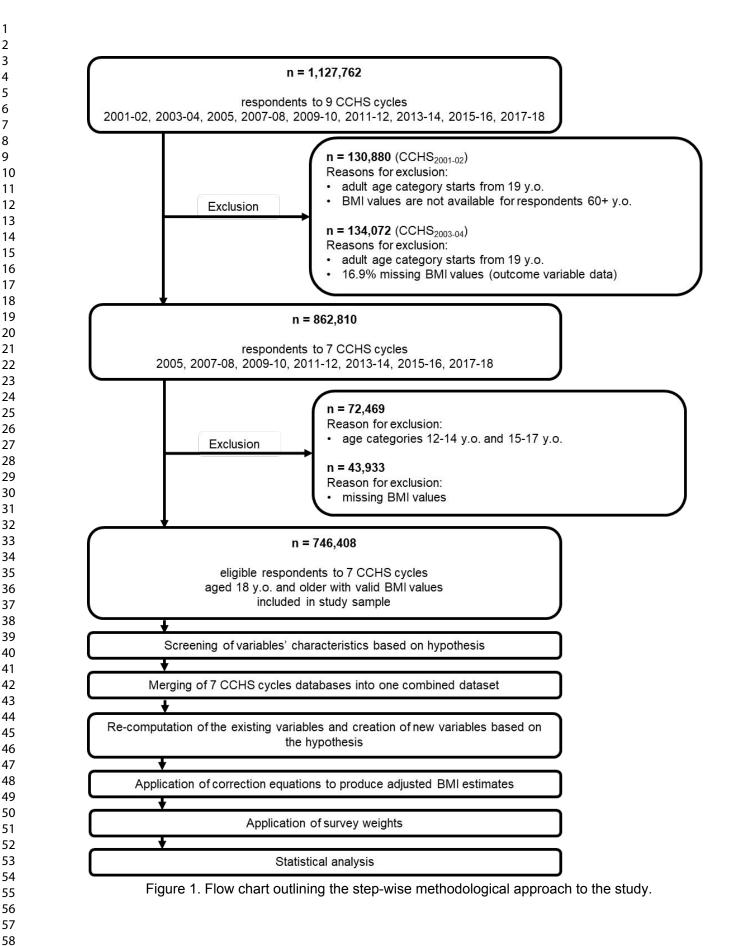
Page 17 of 30

1 2		
3		<i>Ageing Res Rev</i> . 2021;65:101205. doi:10.1016/j.arr.2020.101205
4 5	60.	Wu C, Chen X, Cai Y, et al. Risk Factors Associated With Acute Respiratory Distress Syndrome
6	00.	and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern
7		
8 9	64	<i>Med.</i> 2020;180(7):934-943. doi:10.1001/jamainternmed.2020.0994
10	61.	Onder G, Rezza G, Brusaferro S. Case-fatality rate and characteristics of patients dying in relation
11		to COVID-19 in Italy. <i>Jama</i> . 2020;323(18):1775-1776.
12 13	62.	Surveillances V. The epidemiological characteristics of an outbreak of 2019 novel coronavirus
14		diseases (COVID-19)—China, 2020. China CDC Wkly. 2020;2(8):113-122.
15 16	63.	Levin AT, Hanage WP, Owusu-Boaitey N, Cochran KB, Walsh SP, Meyerowitz-Katz G. Assessing
17		the age specificity of infection fatality rates for COVID-19: systematic review, meta-analysis, and
18		public policy implications. Eur J Epidemiol. 2020;35(12):1123-1138. doi:10.1007/s10654-020-
19 20		00698-1
20	64.	Government of Canada. The Chief Public Health Officer's Report on the State of Public Health in
22		Canada 2017 – Designing Healthy Living.; 2017. https://www.canada.ca/en/public-
23 24		health/services/publications/chief-public-health-officer-reports-state-public-health-canada/2017-
25		designing-healthy-living.html.
26 27	65.	Puska P, Vartiainen E, Nissinen A, Laatikainen T, Jousilahti P. Background, Principles,
28		Implementation, and General Experiences of the North Karelia Project. <i>Glob Heart.</i> 2016.
29		doi:10.1016/j.gheart.2016.04.010
30 31	66.	Vartiainen E, Laatikainen T, Peltonen M, et al. Thirty-five-year trends in cardiovascular risk factors
32	00.	in Finland. Int J Epidemiol. 2010;39. doi:10.1093/ije/dyp330
33 34	67.	Farquhar JW, Fortmann SP, Flora JA, et al. Effects of communitywide education on cardiovascular
35	07.	disease risk factors. The Stanford Five-City Project. <i>JAMA</i> . 1990;264.
36		doi:10.1001/jama.1990.03450030083037
37 38	69	· · · · · ·
39	68.	Luepker R V, Murray DM, Jacobs DR, et al. Community education for cardiovascular disease
40 41		prevention: risk factor changes in the Minnesota Heart Health Program. <i>Am J Public Heal</i> .
41		1994;84. doi:10.2105/AJPH.84.9.1383
43	69.	Carleton RA, Lasater TM, Assaf AR, Feldman HA, McKinlay S. The Pawtucket Heart Health
44 45		Program: community changes in cardiovascular risk factors and projected disease risk. Am J
46		<i>Public Heal</i> . 1995;85. doi:10.2105/AJPH.85.6.777
47	70.	Lytvyak E, Olstad DL, Schopflocher DP, et al. Impact of a 3-year multi-centre community-based
48 49		intervention on risk factors for chronic disease and obesity among free-living adults: the Healthy
50		Alberta Communities study. BMC Public Health. 2016;16(1):1-15. doi:10.1186/s12889-016-3021-1
51 52	71.	Raine KD, Plotnikoff R, Schopflocher D, et al. Healthy Alberta communities: Impact of a three-year
53		community-based obesity and chronic disease prevention intervention. Prev Med (Baltim).
54 55		2013;57(6):955-962.
55 56	72.	Lee K, Jones KS. The path well traveled: using mammalian retroviruses to guide research on
57		
58 59		Page 16 of 18
59 60		For Peer Review Only

2		
3		XMRV. <i>Mol Interv</i> . 10(1):20-24. doi:10/1/20 [pii]10.1124/mi.10.1.5
4 5	73.	Li W, Maduro GA, Begier EM. Increased Life Expectancy in New York City, 2001-2010: An
6		Exploration by Cause of Death and Demographic Characteristics. <i>J Public Health Manag Pract.</i>
7 8		2016;22(3):255-264. doi:10.1097/PHH.000000000000265
8 9	74.	
10	74.	Rube K, Veatch M, Huang K, et al. Developing built environment programs in local health
11		departments: lessons learned from a nationwide mentoring program. Am J Public Health.
12 13		2014;104(5):e10-e18. doi:10.2105/AJPH.2013.301863
14	75.	Sekhobo J, Edmunds L, Whaley S, Koleilat M. Obesity prevalence among low-income, preschool-
15		aged children—New York City and Los Angeles County, 2003–2011. MMWR Morb Mortal Wkly
16		<i>Rep.</i> 2013;62(2):17.
17 18	76.	The U.S. Department of Health and Human Services. The Guide to Community Preventive
19		Services. The Community Preventive Services Task Force.
20	77	
21 22	77.	Lee KK. Planning and public health: the need to work together – again! <i>PLAN Canada (Centenary</i>
22		<i>Ed)</i> . 2019;59(1):202-208.
24	78.	Kelly PM, Davies A, Greig AJM, Lee KK. Obesity Prevention in a City State: Lessons from New
25		York City during the Bloomberg Administration. Front public Heal. 2016;4:60.
26 27		doi:10.3389/fpubh.2016.00060
28	79.	Designed to Move. Active Cities: A Guide for City Leaders.
29		http://www.drkarenlee.com/resources/who-citiesforhealth. Published 2015.
30 31	80.	Housing for Health. 2019. https://www.folio.ca/new-housing-projects-aim-to-promote-healthier-
32	00.	
33	0.4	living-by-design/.
34 35	81.	Chandrasekaran A. Body Mass Index-Is it Reliable Indicator of Obesity. J Nutr Weight Loss.
36		2018;2(111):2.
37	82.	Okorodudu DO, Jumean MF, Montori VM, et al. Diagnostic performance of body mass index to
38 39		identify obesity as defined by body adiposity: a systematic review and meta-analysis. Int J Obes.
40		2010;34(5):791-799. doi:10.1038/ijo.2010.5
41	83.	Keys A, Fidanza F, Karvonen MJ, Kimura N, Taylor HL. Indices of relative weight and obesity. Int J
42 43		<i>Epidemiol.</i> 2014;43(3):655-665.
43 44	84.	Romero-Corral A, Somers VK, Sierra-Johnson J, et al. Accuracy of body mass index in diagnosing
45	01.	
46	05	obesity in the adult general population. <i>Int J Obes</i> . 2008;32(6):959-966.
47 48	85.	Nicholls SG. Standards and classification: a perspective on the "obesity epidemic". Soc Sci Med.
49		2013;87:9-15. doi:10.1016/j.socscimed.2013.03.009
50	86.	Palta M, Prineas RJ, Berman R, Hannan P. Comparison of self-reported and measured height and
51 52		weight. Am J Epidemiol. 1982;115(2):223-230. doi:10.1093/oxfordjournals.aje.a113294
53	87.	Abramowitz MK, Hall CB, Amodu A, Sharma D, Androga L, Hawkins M. Muscle mass, BMI, and
54		mortality among adults in the United States: A population-based cohort study. PLoS One.
55 56		2018;13(4):e0194697. doi:10.1371/journal.pone.0194697
50 57		
58		
59 60		For Peer Review Only Page 17 of 18
60		For eer nevew only

Page 19 of 30

2		
3	88.	Wilson OWA, Bopp CM, Papalia Z, Bopp M. Objective vs self-report assessment of height, weight
4 5		and body mass index: Relationships with adiposity, aerobic fitness and physical activity. <i>Clin</i>
6		
7		<i>Obes</i> . 2019;9(5):e12331. doi:10.1111/cob.12331
8	89.	Chau N, Chau K, Mayet A, Baumann M, Legleye S, Falissard B. Self-reporting and measurement
9		of body mass index in adolescents: refusals and validity, and the possible role of socioeconomic
10 11		and health-related factors. BMC Public Health. 2013;13:815. doi:10.1186/1471-2458-13-815
12	90.	Connor Gorber S, Tremblay MS. The bias in self-reported obesity from 1976 to 2005: a Canada-
13	50.	
14		US comparison. <i>Obesity (Silver Spring)</i> . 2010;18(2):354-361. doi:10.1038/oby.2009.206
15	91.	Connor Gorber S, Tremblay M, Moher D, Gorber B. A comparison of direct vs. self-report
16 17		measures for assessing height, weight and body mass index: a systematic review. Obes Rev an
18		<i>Off J Int Assoc Study Obes</i> . 2007;8(4):307-326. doi:10.1111/j.1467-789X.2007.00347.x
19	92.	Engstrom JL, Paterson SA, Doherty A, Trabulsi M, Speer KL. Accuracy of self-reported height and
20	92.	
21		weight in women: an integrative review of the literature. J Midwifery Womens Health.
22 23		2003;48(5):338-345.
24	93.	Olfert MD, Barr ML, Charlier CM, et al. Self-Reported vs. Measured Height, Weight, and BMI in
25		Young Adults. Int J Environ Res Public Health. 2018;15(10). doi:10.3390/ijerph15102216
26	94.	Seijo M, Minckas N, Cormick G, Comandé D, Ciapponi A, BelizÁn JM. Comparison of self-
27 28	34.	
28		reported and directly measured weight and height among women of reproductive age: a
30		systematic review and meta-analysis. Acta Obstet Gynecol Scand. 2018;97(4):429-439.
31		doi:10.1111/aogs.13326
32	95.	McAdams MA, Van Dam RM, Hu FB. Comparison of self-reported and measured BMI as
33 34		correlates of disease markers in US adults. <i>Obesity (Silver Spring)</i> . 2007;15(1):188-196.
35		
36		doi:10.1038/oby.2007.504
37	96.	Fearon ER. Colorectal cancer: molecular genetic studies and their future clinical applications. Med
38		Pediatr Oncol Suppl. 1996;1:35-40.
39 40		http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids
41		=8643046.
42		
43		
44 45		
45 46		
47		
48		
49		
50 51		
52		
53		
54		
55		
56 57		
58		


Parameter	2005		2007-08		200	9-10	201	11-12	201	13-14	201	5-16	2017-18		
	%	n	%	n	%	n	%	n	%	n	%	n	%	n	
otal study population		115787		113322		106950		107691		110349		94316		97993	
Sex .				1		1		1	I	1 1		1	I	1	
Female	49.7	61970	50.0	61492	49.7	57993	49.9	59078	49.8	60648	49.7	50158	49.8	52243	
Male	50.3	53817	50.0	51830	50.3	48957	50.1	48613	50.2	49701	50.3	44158	50.2	45750	
ige categories				11					1	11				1	
18–19 y.o.	3.3	3840	3.2	3223	3.2	3319	3.0	3084	3.0	2973	3.1	1976	3.0	1756	
20–29 y.o.	17.4	15961	17.4	13851	17.4	13934	17.5	13653	17.1	12703	16.1	10818	16.1	11174	
30–39 y.o.	17.4	19321	17.5	17856	16.6	15438	16.6	14304	16.7	13752	17.5	14235	17.9	14802	
40–49 y.o.	21.8	19756	20.8	18688	20.2	15680	18.4	14539	17.6	13116	17.4	13739	16.6	13757	
50–59 y.o.	17.4	20487	18.5	21638	18.9	20124	19.1	20309	19.5	20835	18.8	17388	18.0	17250	
60–69 y.o.	11.5	16788	12.0	18227	13.0	18927	14.3	21186	14.7	23596	15.5	18579	15.8	19877	
70–79 у.о.	7.6	12758	7.4	12879	7.2	12521	7.4	13079	8.0	15186	8.3	11829	9.0	13069	
≥ 80 y.o.	3.5	6876	3.2	6960	3.4	7007	3.6	7537	3.6	8188	3.3	5752	3.6	6308	
Provinces/Territories				11			-Nx	•	1	1			I	1	
Alberta	9.7	10151	10.3	10215	10.5	9924	10.9	9760	11.3	10434	11.6	11381	11.5	11732	
British Columbia	13.3	13570	13.3	13718	13.4	12995	13.5	13418	13.3	13387	13.2	12419	13.2	13338	
Manitoba	3.4	6353	3.3	6433	3.3	5837	3.4	5905	3.3	6337	3.3	4631	3.4	4719	
New Brunswick	2.4	4512	2.3	4746	2.2	4215	2.2	4207	2.1	4279	2.1	2841	2.1	3182	
Newfoundland and Labrador	1.7	3587	1.6	3481	1.5	3243	1.5	3074	1.5	3410	1.5	2729	1.5	2804	
Nova Scotia	2.9	4442	2.9	4486	2.8	4048	2.8	4011	2.7	4548	2.7	4105	2.6	4174	
Ontario	38.8	36578	39.0	38137	38.9	36418	38.7	36640	38.4	36566	38.3	28024	38.5	28585	
Prince Edward Island	0.4	1751	0.4	2029	0.4	1612	0.4	1513	0.4	1695	0.4	1511	0.4	1653	
Quebec	24.2	25980	23.9	20742	23.7	19862	23.6	20495	23.7	20675	23.8	20487	23.5	21447	
Saskatchewan	2.9	6706	2.8	6633	2.8	6328	2.8	6132	2.9	6338	2.9	3970	2.9	4172	
Yukon/Northwest Territories/Nunavut	0.3	2157	0.3	2702	0.3	2468	0.3	2536	0.3	2680	0.3	2218	0.3	2187	

Notes: Data are based on weighted estimates

	2005				200	7-08			200	9-10			201	1-12			2013	3-14			201	5-16		2017-18					p-value	
Parameter			95%	6 CI			95%	6 CI			95%	% CI			959	% CI			95%	6 CI			95%	% CI			95	% CI	Pearson chi-	Cochrai Armitag
	%	n	Lower bound	Upper bound	%	n	Lower bound	Upper bound	%	n	Lower bound	Upper bound	%	n	Lower bound	Upper bound	%	n	Lower bound	Upper bound	%	n	Lower bound	Upper bound	%	n	1	Upper bound	square test	test of trend
Canada-wide, all sexes and ages	22.2	28557	22.17	22.21	23.4	30267	23.36	23.39	24.0	29148	23.97	24.00	25.0	30287	25.01	25.05	26.3	32576	26.33	26.36	26.6	28335	26.54	26.57	27.2	30290	27.14	27.17	<0.001	<0.001
Sex-specific estimates																														
Females	20.4	14652	20.38	20.42	21.7	15710	21.70	21.75	22.0	15081	21.97	22.02	23.2	15842	23.17	23.21	23.9	16984	23.87	23.92	24.3	14281	24.26	24.31	25.4	15403	25.40	25.45	<0.001	<0.001
Males	24.0	13905	23.93	23.98	25.0	14557	25.01	25.06	26.0	14067	25.93	25.98	26.9	14445	26.84	26.89	28.8	15592	28.75	28.80	28.8	14054	28.78	28.83	28.9	14887	28.84	28.89	<0.001	<0.001
Age-specific estimates																														
18 – 19 y.o.	8.3	368	8.28	8.40	9.2	323	9.10	9.23	10.7	371	10.60	10.73	8.7	351	8.60	8.72	9.8	324	9.75	9.88	9.9 ª	240	9.86	9.99	9.9 ª	212	9.88	10.01	<0.001	<0.001
20 – 29 y.o.	14.7	2788	14.65	14.72	15.8	2649	15.72	15.79	16.2	2770	16.17	16.24	16.3	2673	16.26	16.33	17.8	2660	17.75	17.82	16.9	2216	16.91	16.98	17.5	2340	17.48	17.55	<0.001	<0.001
30 – 39 y.o.	22.0	4757	21.91	21.99	22.9	4754	22.85	22.93	22.5	4088	22.42	22.50	23.8	3951	23.78	23.86	26.7	4025	26.63	26.71	26.0	4078	25.96	26.04	26.8	4370	26.79	26.87	<0.001	<0.001
40 – 49 y.o	23.8	5142	23.74	23.81	24.2	5194	24.17	24.25	25.8	4461	25.75	25.82	28.2 ^b	4433	28.14	28.22	28.2 ^b	4165	28.14	28.23	30.2	4603	30.18	30.27	30.9	4683	30.82	30.91	<0.001	<0.001
50 – 59 y.o.	27.8	6239	27.72	27.81	28.6	6738	28.57	28.66	29.3	6548	29.21	29.29	30.3	6655	30.22	30.30	31.2	7102	31.19	31.27	31.5	5984	31.49	31.57	31.4	6157	31.36	31.44	<0.001	<0.001
60 – 69 y.o.	28.0	5004	27.99	28.10	30.3	5936	30.25	30.35	30.2	6224	30.14	30.24	30.9	7136	30.82	30.91	31.8	8133	31.72	31.81	31.2	6480	31.20	31.29	32.3	6996	32.25	32.34	<0.001	<0.001
70 – 79 y.o.	22.9	3134	22.80	22.92	24.8	3452	24.78	24.91	25.4	3404	25.29	25.42	26.7	3735	26.65	26.78	27.2	4562	27.15	27.27	28.1	3573	28.09	28.21	29.4	4173	29.36	29.47	<0.001	<0.001
≥ 80 y.o.	15.5	1125	15.39	15.54	16.7	1221	16.58	16.74	17.0	1282	16.91	17.07	16.2	1353	16.14	16.29	19.5 °	1605	19.43	19.59	18.4	1161	18.29	18.46	19.5 °	1359	19.43	19.58	<0.001	<0.001
Province-specific estimates															17															
Newfoundland and Labrador	33.5	1146	33.36	33.66	32.5	1168	32.32	32.62	36.6	1192	36.45	36.75	35.7	1097	35.54	35.84	38.9	1274	38.76	39.06	41.0	1140	40.86	41.17	39.4	1146	39.21	39.52	<0.001	<0.001
Prince Edward Island	30.1 d	514	29.85	30.41	29.9 d	591	29.60	30.16	27.7	461	27.38	27.93	32.7 e	492	32.40	32.97	32.9 ^e	546	32.60	33.16	30.9	490	30.64	31.19	34.2	563	33.95	34.51	<0.001	<0.001
Nova Scotia	28.0	1312	27.86	28.07	31.1	1400	30.99	31.21	31.5	1292	31.43	31.65	33.0	1323	32.89	33.11	34.6 ^f	1537	34.45	34.67	34.2	1468	34.14	34.36	34.7 ^f	1498	34.58	34.80	<0.001	<0.001
New Brunswick	30.9 g	1346	30.81	31.05	31.1 º	1476	30.96	31.21	36.2	1449	36.07	36.32	33.8	1451	33.72	33.96	34.6	1461	34.43	34.68	38.7	1095	38.60	38.86	36.7	1162	36.54	36.79	<0.001	<0.001
Quebec	20.1	5336	20.11	20.18	21.3	4668	21.31	21.38	22.1	4587	22.03	22.10	23.1	4807	23.06	23.12	24.9	5340	24.85	24.92	24.8	5350	24.73	24.80	26.0	5862	26.01	26.08	<0.001	<0.001
Ontario	21.9	9032	21.91	21.96	23.6	10265	23.52	23.58	24.1	9873	24.05	24.11	25.1	10272	25.06	25.12	26.1 ^h	10850	26.11	26.17	26.3	8492	26.26	26.31	26.2 ^h	8937	26.15	26.20	<0.001	<0.001
Manitoba	25.4	1802	25.27	25.46	26.9	2019	26.81	27.00	30.1	1854	30.04	30.24	28.0	1966	27.90	28.09	32.5	2144	32.41	32.61	30.8	1588	30.70	30.90	30.0	1614	29.89	30.08	<0.001	<0.001
Saskatchewan	29.0	2051	28.92	29.14	31.1	2113	31.03	31.25	28.7	2050	28.59	28.80	31.7	2092	31.58	31.80	32.9	2235	32.83	33.04	31.5	1400	31.37	31.57	35.4	1556	35.26	35.47	<0.001	<0.001
Alberta	22.9	2622	22.87	22.98	25.3	2901	25.20	25.31	24.7	2848	24.60	24.70	26.1	2923	26.01	26.12	27.2	3177	27.19	27.29	28.1	3494	28.03	28.13	29.2	3765	29.18	29.28	<0.001	<0.001
British Columbia	19.2	2781	19.14	19.23	18.2	2882	18.14	18.23	18.8	2856	18.74	18.83	20.6	3070	20.58	20.67	21.1	3181	21.01	21.09	21.6	3062	21.57	21.65	22.8	3409	22.78	22.87	<0.001	<0.001
Yukon/Northwest Territories/Nunavut	29.3 ⁱ	615	28.93	29.64	30.0	784	29.63	30.36	29.5 ⁱ	686	29.10	29.80	31.9	794	31.51	32.21	34.1	831	33.79	34.47	35.9	756	35.60	36.28	36.9	778	36.58	37.24	<0.001	<0.001

Notes: Data are based on adjusted and weighted estimates.

Proportions compared across CCHS cycles using a two-tailed Pearson chi-square test with subsequent cycle-to-cycle pairwise comparisons using a two-tailed Pearson chi-square test with p-value adjustment for multiple testing according to the Bonferroni method. All pairwise comparisons between CCHS cycles demonstrate a statistically significant difference in proportions with p<0.05, except for those cycles indicated by paired tags with superscript letters (a, b, c, etc.). A Cochran-Armitage test of trend shows a significantly increasing trend in obesity prevalence at Canada-wide and all provincial/territorial levels (p<0.001).

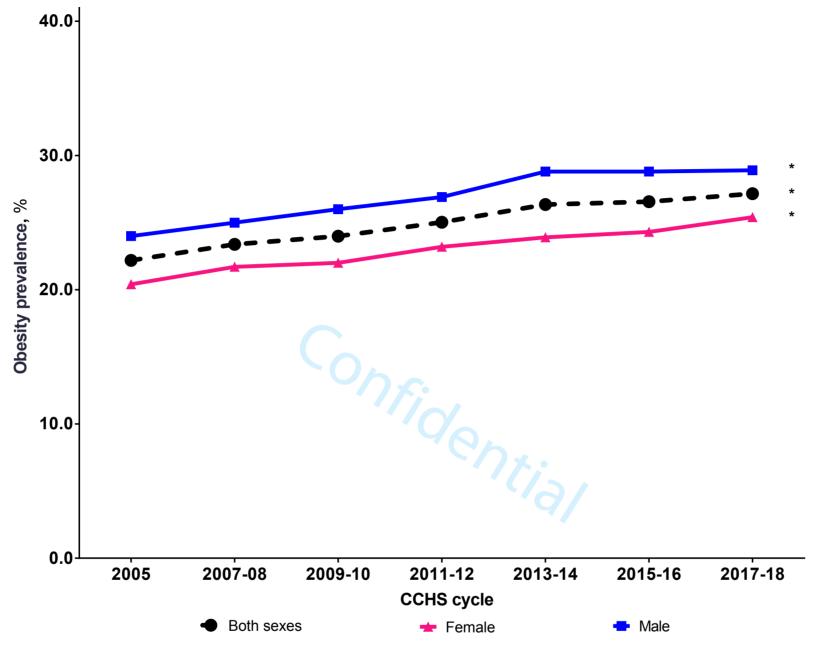


Figure 2. Trends in obesity prevalence among adults, by sex, Canada, from 2005 through 2017-18 (asterisks denote statistically significant increasing trend; p<0.001).

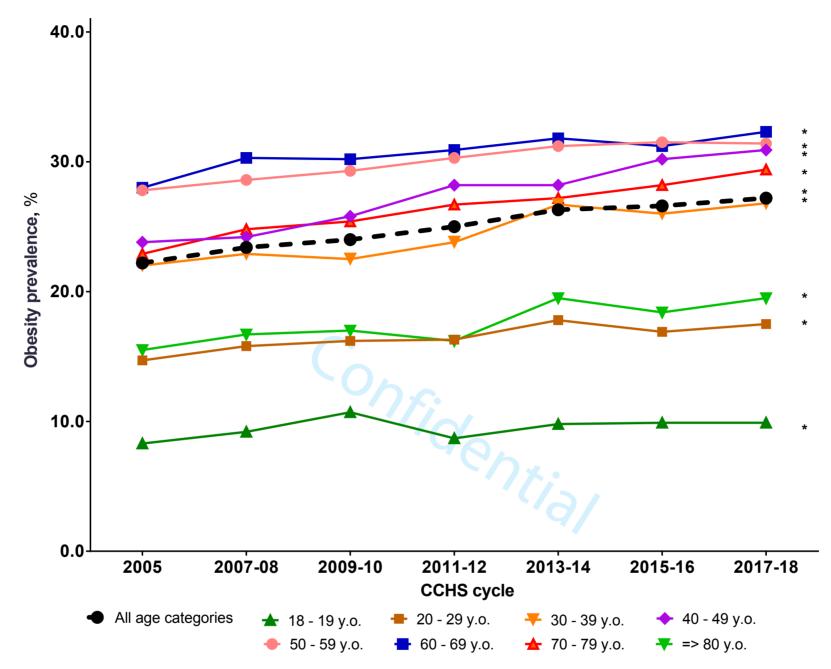
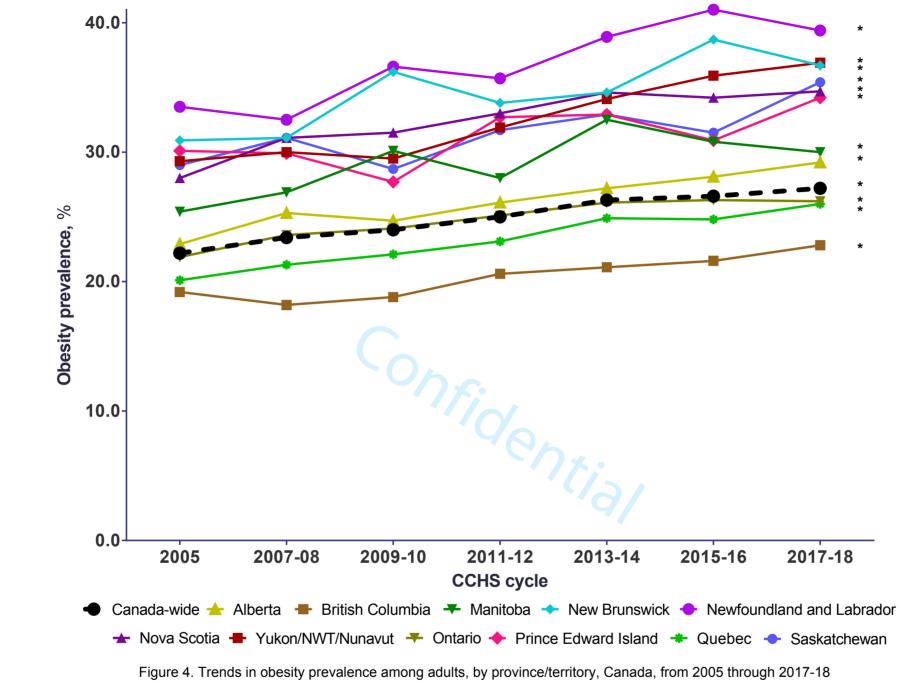
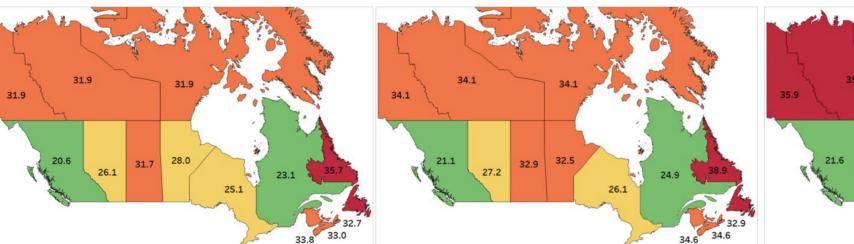
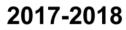



Figure 3. Trends in obesity prevalence among adults, by age categories, Canada, from 2005 through 2017-18 (asterisks denote statistically significant increasing trend; p<0.001).

Page 24 of 30

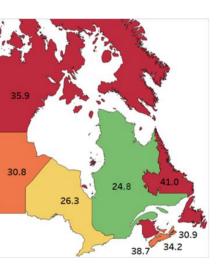
(asterisks denote statistically significant increasing trend; p<0.001).


2011-2012





31.5


28.1

< 20% 20-25% 25-30% 30-35% ≥ 35%

Figure 6. Obesity prevalence among Canadian adults, from 2005 through 2017-18.

Confidential

Page 6 of 6

1 2 3	Generalisability	<u>#21</u>	Discuss the generalisability (external validity) of the study results	N/A
4 5	Other			
6	Information			
7	mormation			
8 9 10 11 12	Funding	<u>#22</u>	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	1
13 14	The STROBE che	ecklist is	distributed under the terms of the Creative Commons Attribution Licen	ise
15 16	CC-BY. This chec	klist wa	s completed on 03 August 2021 using <u>https://www.goodreports.org/</u> , a	tool
17			Network in collaboration with Penelope.ai	
18	· · · · · · · · · · · · · · · · · · ·			
19 20				
21				
22 23				
23 24				
25				
26 27				
28				
29				
30 31				
32				
33 34				
35				
36				
37 38				
39				
40 41				
42				
43				
44 45				
46				
47 49				
48 49				
50				
51 52				
52 53				
54 55				
55 56				
57				
58 59				
59 60			For Peer Review Only	

1 2 3	Generalisability	<u>#21</u>	Discuss the generalisability (external validity) of the study results	N/A
4 5	Other			
6	Information			
7	mormation			
8 9 10 11 12	Funding	<u>#22</u>	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	1
13 14	The STROBE che	ecklist is	distributed under the terms of the Creative Commons Attribution Licen	ise
15 16	CC-BY. This chec	klist wa	s completed on 03 August 2021 using <u>https://www.goodreports.org/</u> , a	tool
17			Network in collaboration with Penelope.ai	
18	· · · · · · · · · · · · · · · · · · ·			
19 20				
21				
22 23				
23 24				
25				
26 27				
28				
29				
30 31				
32				
33 34				
35				
36				
37 38				
39				
40 41				
42				
43				
44 45				
46				
47 49				
48 49				
50				
51 52				
52 53				
54 55				
55 56				
57				
58 59				
59 60			For Peer Review Only	