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Cohort description

Pre-QC description

Alignment & variant

Included in

Cohort Instrument calling workflow N (pre-QC) aggregate

covid - severe NovaSeq Genomics England pipeline 2.0 8,794 | aggCOVID_v4.2

covid - mild NovaSeq Genomics England pipeline 2.0 1,809 | aggCOVID_v4.2
. . Illumina North Star Version 4

100K-Genomes(not realigned) | Hiseq X (NSVA4, version 2.6.53.23) 72,060 | aggV2

100K-Genomes(realigned) Hiseq X Genomics England pipeline 2.0 4,183 | aggCOVID_v4.2

Supplementary Table 1: Description of the cohorts included in this study

Post-QC description

Predicted . L 100K-Genomes | 100K-Genomes
Ancestry covid-severe | covid-mild (not realigned) | (realigned)

EUR 5,989 1,507 38,325 3,099
SAS 788 95 3379 319
AFR 440 14 1025 311
EAS 274 14 280 72

Supplementary Table 2: Description
after sample QC and removal of related individuals.

of the cohorts included in this study by predicted ancestry,



SampleQC

Sample QC Distributions of VCF-level quality metrics (aggCOVID_v4.2)

total_snps. total_transitions total_insertions total_transversions

Supplementary Figure 1: Each histogram shows the distribution of samples in the aggCOVID v4.2
data-set for a particular VCF-level quality metric, following adjustment for sequencing platform and
the first three ancestry assignment principal components (as described in Methods). All metrics are
calculated from autosomal bi-allelic SN'Vs. The dashed read lines indicate the threshold for sample
exclusion. Samples were removed that were four median absolute deviations (MADs) above or below
the median for the following metrics: ratio heterozygous-homozygous, ratio insertions-deletions, ratio
transitions-transversions, total deletions, total insertions, total heterozygous snps, total homozygous
snps, total transitions, total transversions. For the number of total singletons (snps), samples
were removed that were more than 8 MADs above the median. For the ratio of heterozygous to
homozygous alternate snps, samples were removed that were more than 4 MADs above the median.
For sample-missingness (bottom-right panel), a hard cut-off of 0.05 was applied (no adjustment for
sequencing platform or ancestry).



Sample QC Distributions of VCF-level quality metrics (aggV2)
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Supplementary Figure 2: Each histogram shows the distribution of samples in the aggV?2 data-set
for a particular VCF-level quality metric, following adjustment for sequencing platform and the
first three ancestry assignment principal components (as described in Methods). All metrics are
calculated from autosomal bi-allelic SNVs. The dashed read lines indicate the threshold for sample
exclusion. Samples were removed that were four median absolute deviations (MADs) above or below
the median for the following metrics: ratio heterozygous-homozygous, ratio insertions-deletions, ratio
transitions-transversions, total deletions, total insertions, total heterozygous snps, total homozygous
snps, total transitions, total transversions. For the number of total singletons (snps), samples
were removed that were more than 8 MADs above the median. For the ratio of heterozygous to
homozygous alternate snps, samples were removed that were more than 4 MADs above the median.
For sample-missingness (bottom-right panel), a hard cut-off of 0.05 was applied (no adjustment for
sequencing platform or ancestry).
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PCA and ancestry
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Supplementary Figure 3: Projection of severe, mild and 100K individuals onto the PCs of the 1000
genomes project phase 3 individuals (1IKGP3). (A) PCs 1 & 2 for 1IKGP3 unrelated individuals
using the high quality independent SNP set. (B-F). Projected PCs 1-10 for severe (cases) and mild
+ 100K individuals (controls). 1KGP3 reference individuals are shown in grey (as background).
Note that for panels B-F, the displayed colored populations had inferred genetic ancestry as EUR,
SAS, AFR and EAS and were analysed in this study.
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Supplementary Figure 4: EUR PCs 1-10 for severe (cases) and mild + 100K individuals (controls).



Population: SAS
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Supplementary Figure 5: SAS PCs 1-10 for severe (cases) and mild + 100K individuals (controls).
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Population: AFR
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Supplementary Figure 6: AFR PCs 1-10 for severe (cases) and mild + 100K individuals (controls).
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Population: EAS
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Supplementary Figure 7: EAS PCs 1-10 for severe (cases) and mild + 100K individuals (controls).
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Cohort characteristics

Disease characteristics

100K control cohort disease breakdown

Neurology And Neurodevelopmental Disorders 4
Cardiovascular Disorders 4

Renal And Urinary Tract Disorders 4
Ophthalmological Disorders -

Breast Cancer

Colorectal Cancer -

Ultra-Rare Disorders 4

Tumour Syndromes 4

Lung Cancerq

Other Cancer 4

Renal Cancer 4

Skeletal Disorders

Sarcoma Cancer -

Haematological And Immunological Disorders 4
Hearing And Ear Disorders 4
Endometrial_carcinoma Cancer -

Endocrine Disorders 4
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Supplementary Figure 8: Disease characteristics for the 100K controls that were used in this study
after QC filters. The 100,000 Genomes Project includes participants with rare disorders and their
family members, and participants with a range of different cancer types. For the control population
used in this study, unrelated participants were selected from the 100,000 Genomes Project cohort
(n=46,770), including a total of 34,621 rare disease participants of which 18,915 were unaffected
family members of rare disease participants, 14,701 were affected rare disease participants (not
related to the unaffected family members selected), 1,005 were rare disease participants not assessed

for affection status and 12,149 were cancer participants.
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Significant comorbidity 1605 5873 13
Invasive ventilation 4028 3461 2
Died (60 days) 2154 5203 134
Supplementary Table 3: Characteristics and comorbidity of the Covid-19 severe cohort (n=7,491).

.
Demographics
A. Sex
AFR EUR | | SAS. I
Mild COVID19 W wales
. Females
- -
80 80 80 40 0 40 80 80 40 0 40 80

l

Percentage

0.03 0.03
0.02 0.02
0.01 0.01
0.00 0.00
) 30 60 90

Supplementary Figure 9: Demographic characteristics of Covid-19 severe, Covid-19 mild and 100K
cohorts. Panel A displays the numeric breakdown into males and females across the different cohorts.
Panel B displays the age distribution across cohorts.
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Supplementary Figure 10
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: Body mass index (BMI) for a subset of severe cases and controls of this

study. Data is shown for a subset of 35,732 100K controls and 4,852 severe Covid-19 cases with
available BMI data. Numeric counts by genetic ancestry AFR, EAS, EUR and SAS was 1043, 274,
31371, 3044 for 100K and 265, 168, 3864, 555 for severe Covid-19.

Metric | 100K Mild COVID-19 | Severe COVID-19
Nage | 46,770 1,630 7,491

age 51[26] 46[22] 60[15]

nNpMmI 35,732 - 4,852

BMI 26.1(6.88] | - 29.9(8.48]

Supplementary Table 4: Age and BMI for each cohort analysed in this study. The sample sizes for
calculating each metric are given (n44. and nparr) along with the median values for age and BMI
and their interquantile range in brackets.
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GWAS
Per-population GWAS results

Population No. of ld-pruned variants Bonferroni-corrected P-value threshold

EUR 2,264,479 2.2¢-08
SAS 2,729,540 1.8¢-08
AFR 5,370,001 9.3¢-09
EAS 1,264,431 4608

Supplementary Table 5: Bonferroni-corrected P-values for the per-population GWAS analyses. The
P-value significance threshold (2.2 x 107%) was calculated by estimating the effective number of
tests. After selecting the final filtered set of tested variants for each population, we LD-pruned in
a window of 250Kb and r? = 0.8 with plink 1.9, which identified 2,264,479 independent linkage
disequilibrium-pruned genetic variants. Results are consistent with previous modelling. 2
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Supplementary Figure 11: Manhattan plots showing GWAS results for each population cohort
(A. EUR B. SAS C. AFR D. EAS). The highlighted results with blue are the variants that are
LD clumped (r?=0.1, P,=0.01 in each population) with each lead variant. Red dashed line is
the Bonferroni-corrected P-value according to the number of estimated independent tests in each
population (indicated in Supplementary Table 5).
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LD-based validation of lead GWAS signals
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Supplementary Figure 12: Original and imputed z-scores and respective P-values with leave-one

procedure for lead variants of the EUR analysis. Variants with low support from neighbouring
variants are highlighted with grey.
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Individual-level conditional analysis

CHR:POSjy38:REF ,g35:ALT | 1sid condition rsid BETA | SE Pval BETA¢ond | SEcona  Puvalecond
chr1:155066988:C: T 15114301457 | rs7528026,rs41264915 0.874 0.142 6.87E-10 0.867 0.142 9.09E-10
chrl:155175305:G:A 157528026 1s114301457,rs41264915 0.33 0.0593 | 2.6E-08 0.311 0.0593 1.62E-07
chr1:155197995:A:G rs41264915 15114301457,rs7528026 -0.245 | 0.0343 | 8.87E-13 -0.229 0.0343 | 241E-11
chr3:45796521:G:T 152271616 1573064425,rs343320 0.253 0.0305 | 1.07E-16 0.324 0.0309 | 8.93E-26
chr3:45859597:C:T rs73064425 152271616,rs343320 0.997 0.0406 | 4.75E-133 | 1.02 0.0408 | 4.17E-138
chr3:146517122:G:A 15343320 152271616,rs73064425 0.226 0.0385 | 4.44E-09 0.222 0.0385 | 8.27E-09
chr6:32623820:T:C 19271609 152496644 -0.13 0.022 3.27E-09 -0.136 0.0221 6.38E-10
chr6:41515007:A:C 1s2496644 159271609 -0.296 | 0.0854 | 0.000525 -0.292 0.0854 | 0.000634
chr17:46152620:T:C 152532300 1r$3848456 -0.149 | 0.0253 | 4.09E-09 | -0.149 0.0253 | 4.28E-09
chr17:49863260:C:A 1s3848456 12532300 0.398 | 0.0621 | 1.38E-10 | 0.405 0.0621 | 7.39E-11
chr19:4717660:A:G rs12610495 1573510898,rs34536443,rs368565 0.282 0.0224 | 2.69E-36 0.273 0.0224 | 5.53E-34
chr19:10305768:G:A 1573510898 1512610495,1534536443,1s368565 0.244 0.0361 | 1.4E-11 0.258 0.0363 1.19E-12
chr19:10352442:G:C 1534536443 1512610495,rs73510898,1s368565 0.404 0.0485 | 7.87E-17 0.404 0.0486 1.03E-16
chr19:48697960:C:T 15368565 1512610495,rs73510898,rs34536443 | 0.141 0.0213 | 3.12E-11 0.14 0.0213 | 5.17E-11
chr21:33230000:C:A rs17860115 1s8178521,rs35370143 0.217 0.0225 | 6.47E-22 0.195 0.0227 | 1.15E-17
chr21:33287378:C: T 18178521 rs17860115,rs35370143 0.163 | 0.0236 | 4.41E-12 | 0.139 0.0238 | 4.39E-09
chr21:33959662: T:TAC rs35370143 1s17860115,rs8178521 0.23 0.038 1.31E-09 0.228 0.038 1.84E-09

Supplementary Table 6: Results from individual-level conditional analysis using SAIGE for EUR
population for cases where multiple association signals reside in the same chromosome. Effect
size estimates (BETA) and it’s standard error (SE) and P-values along with the estimates when
conditioning on other genome-wide lead signals on the same chromosome (condition rsid) are shown.
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Comparison to 2020 GenOMICC microarray study

ChI‘ZpOS (hg38) rsid REF ALT MAF BETA SE P MAF2020 BETA2020 SE2020 P2020

3:45859597 rs73064425 | C T 0.0771 | 0.998 | 0.041 | 1.97E-133 | 0.083 0.763 0.067 4.77E-30
6:29831017 rs9380142 A G 0.315 | -0.080 | 0.022 | 0.000377 | 0.302 -0.263 0.047 3.23E-08
6:31153649 rs143334143 | G A 0.068 0.101 0.042 | 0.0147 0.079 0.615 0.072 8.82E-18
6:32212369 rs3131294 A G 0.136 | -0.085 | 0.030 | 0.00495 0.140 -0.118 0.062 0.058

12:112942203 | rs10735079 | G A 0.359 | 0.072 | 0.022 | 0.000981 0.361 0.258 0.046 1.65E-08
19:4719431 52109069 G A 0.331 0.257 0.022 | 1.38E-31 0.328 0.306 0.044 3.98E-12
19:10317045 rs74956615 | T A NA NA NA NA 0.059 0.462 0.083 2.31E-08
21:33252612 152236757 A G 0.288 | -0.205 | 0.023 | 7.78E-19 | 0.291 -0.251 0.046 5.00E-08

Supplementary Table 7: Effect size and P-value comparison with our initial report from microarray
and imputation data from the GenOMICC study, Pairo-Castineira et al (2020).*
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Association

signal forest plots

Weight
chr1:155066988:C:T Odds Ratio OR 95%-Cl (fixed)
EUR —==— 2.40 [1.82;3.16] 100.0%
EAS I 1.00 0.0%
SAS | 1.00 0.0%
AFR i 1.00 0.0%
|
Fixed effect model <‘> 2.40 [1.82;3.16] 100.0%
Random effects model ——= 2.40 [1.82;3.16] -
—

Weight
chr1:155197995:A:G Odds Ratio OR 95%-Cl (fixed)
EUR - 0.78 [0.73;0.84] 81.6%
EAS 0.88 [0.51;1.52] 1.2%
SAS 0.82 [0.65;1.03] 7.1%
AFR e 0.95 [0.79; 1.16] 10.0%
Fixed effect model < 0.80 [0.76; 0.85] 100.0%
Random effects model e 0.82 [0.75; 0.90] -
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Supplementary Figure 13: Forest plots by genetic ancestry for all lead signals.
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Supplementary Figure 14: Forest plots comparing the Odds ratios for all the lead signals with a
combined meta-analysis of HGI freeze 6 B2 and 23andMe. The HGI summaries were produced with
new meta-analysis that removed the GenOMICC cases to ensure statistical independence (n=22,598).
The Genomics England 100K participants (i.e, controls) summary data contributed to HGI C2

analysis and not B2 used here.
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Genetic fine-mapping
Fine-mapping analysis for lead variants

In the EUR ancestry group, we found two independent signals for the association at 1q22. The lead
variant for the first fine-mapped locus is a synonymous variant in EFNA4 (chrl:155066988:C:T),
while the lead variant of the second independent signal (chr1:155197995:A:G) is an intronic variant in
THSBS, in close proximity to the most significant single-tissue eQTLs for MUC1 (chr1:155199564:G:T,
chr1:155199139:G:A) in GTEx v8 , which are also in the same intronic region. Fine mapping the
multi-ancestry meta-analysis revealed a third independent signal at this locus, with the lead variant
(chr1:155175305:G:A, rs7528026, OR:1.39, 95% ClIs:[1.24-1.55]) being in an intron of TRIM46. This
variant is an sQTL and eQTL for MUC? in lung and and whole blood tissue, respectively, in GTEx
v83 (Supplementary File TWAS xlsx).

Meta-analysis across genetically inferred ancestries revealed a novel locus at 2p16.1, with the lead
variant (chr2:60480453:A:G, OR:0.88, 95 %CIs:[0.85,0.92]) being in an intron of BCL11A.

We fine-mapped the signal in the 3p21.31 region, first reported by Ellighaus et al,* into two
independent associations. The lead variant for the first association is in the 5° UTR region
of SLC6A20 (chr3:45796521:G:T, OR:1.29, 95%CIs:[1.21,1.37]). The second association in the
chr3p21.31 region is seen at genome-wide significance in both the EUR and SAS cohorts, with two of
the three highest ranked variants in the fine-mapped region in the two populations shared between
the two cohorts (chr3:45818159:G:A, chr3:45859597:C:T') and residing in downstream and intronic
regions of LZTFL]1.

The credible set for the 3q24 association included 9 variant and the lead variant (chr3:146517122:G:A,
rs343320,p.His262Tyr, OR:1.24, 95%CIs [1.15-1.33]) is a missense variant in PLSCR1, predicted to
be damaging by CADD (CADD:22.6).

At 5g31.1, the lead variant (chr5:131995059:C:T, rs56162149, OR:1.17, 95%CIs:[1.11,1.23]) is in an
intron of ACSL6. The credible set for this locus contains 33 variants that span 484 kb including
variants in genes CSF2 and IRF1-AS1, with chr5:132075767:T:C being a missense variant in CSF2
and chr5:131991772:C:G being missense in ACSL6 and only intronic variants for IRF1-AS1.

The previously reported signal at 6p21.1, linked to FOXP/®, is stronger in the SAS cohort but has
a consistent effect across ancestries (Ppe:=0.49).

We fine mapped the signal at 9p21.3 to three variants with lead variant (chr9:21206606:C:G,
rs28368148,p.Trpl164Cys, OR:1.74, 95% Cls [1.45-2.09]) being a missense variant in IFNA10 that is
predicted to be damaging by CADD (CADD:23.9) with potential functional impact.

The signal in the 11p13 region was fine-mapped to four variants (lead variant chr11:34482745:G:A,
rs61882275, OR:0.87, 95%CIs:[0.84-0.91]), all four of which are in an intron of ELFS.

The credible set for the signal in the 12q24.33 region includes 24 variants spanning 95 kb, of which
the lead (chr12:132489230:GC:G, rs56106917, OR:1.13, 95% CIs:[1.09-1.18]) lies upsdtream FBRSLI.

The signal at 13q34 was fine-mapped to four variants, with lead variant (13:112889041:C:T, rs9577175,
OR:1.18, 95%CIs [1.12-1.24]) lying downstream of ATP11A and upstream of MCF2L genes.

The association at 15q26.1 was fine mapped to two variants with lead variant (chr15:93046840:T:A,
rs4424872, OR: 2.37, 95% ClIs:[ 1.87-3.01] in an intron of RGMA. This a low frequency (allele
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frequency <1%) variant that was not replicated due to lack of coverage in the available replication
data and further validation in an independent dataset is recommended.

The credible set for the association with lead variant at chr17:46152620:T:C (rs2532300, OR:1.16,
95% CIs:[1.10,1.22]) includes 1430 variants and spans 658 kb, indicating an association with the
known inversion haplotype at 17q21.316.

We fine mapped the signal at 17q21.33 to five variants, with lead variant (chr17:49863260:C:A,
rs3848456, OR:1.5, 95% CIs:[1.33-1.70] residing in a regulatory element (ENSR00001010694) 15.5
kb upstream of the TAC4 gene.

In the 19p13.3 region, which we reported in 2020,7, we fine-mapped the signal to a single variant in
DPP9 (chr19:4717660:A:G). This variant is a missense variant in transcript ENST00000599248 but
intronic in other transcripts including the MANE transcript (ENST00000262960.14).

In the 19p13.2 region, where we previously reported a variant associated with TYK2,” we find two
independent signals, one of which is a damaging missense variant in TYK2, chr19:10352442:G:C
(rs34536443, OR:1.50, 95% CIs:[1.36,1.65], CADD=25.1), and the second is an intronic variant of
ZGLP1 (19:10305768:G:A, rs73510898, OR:1.28, 95% Cls:[1.19,1.37]).

The signal at 19q13.33 was fine-mapped to ten variants, with the lead variant (chr19:48697960:C:T,
rs368565, OR:1.15, 95%CIs [1.1-1.2]) in an intron of FUT2 and variant chr19:48705753:T:C (rs503279)
being in the 3’ UTR of the MANE transcript for this gene.

In the 21q22.11 region, we described previously,” fine-mapping revealed three independent signals, for
which the lead variants reside in the 5 UTR of IFNAR2 (chr21:33230000:C:G,rs17860115, OR:1.24,
95% CIs:[1.19-1.30], CADD=10.1), an intronic region of IL10RB (chr21:33287378:C:T, rs8178521,
OR:1.18, 95% CIs:[1.12,1.23]) and in a downstream long non-coding RNA (chr21:33959662:T:TAC,
rs35370143, OR:1.26, 95% CIs:[1.17,1.36)).
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Fine-mapping check for rare variants

To investigate whether the discovered signals in the primary GWAS analyses were underlain by
variants that were rarer than the applied MAF threshold of >0.5%, we expanded our fine-mapping
analysis around the lead signals to variants with allele frequency as low as 0.02%. We performed
this additional analysis for the European population only, as this was the only population with
a sufficiently large sample size to detect variants of such low frequency. For this analysis check,
we performed all standard site QC procedures to variants with MAF>0.02%, calculated GWAS
summaries with SAIGE within a window of 1.5 Mbp of either side of each EUR-discovered lead
signal of main Table 1, re-calculated the matrix of all pairwise correlation coefficients and rerun
fine-mapping with susieR, following the primary GWAS and fine-mapping procedure as described in
Materials and Methods. For all of the 23 EUR-discovered signals, the lead variant in each credible
set (i.e, variant with lowest P-value) remained the same and the size of each credible set changed
only slightly in a few cases (Supplementary Table 9).

Lead variant (MAF>0.5%) | Lead variant (MAF>0.02 %) | nCS MAF>0.5% | nCS MAF>0.02%
chr1:155066988:C:T chr1:155066988:C:T 9 9
chr1:155197995:A:G chr1:155197995:A:G 3 3
chr3:45796521:G:T chr3:45796521:G:T 1 1
chr3:45859597:C: T chr3:45859597:C: T 9 9
chr3:146517122:G:A chr3:146517122:G:A 9 9
chr5:131995059:C:T chr5:131995059:C:T 32 33
chr6:32623820:T:C chr6:32623820:T:C 33 32
chr9:21206606:C:G chr9:21206606:C:G 3 3
chr11:34482745:G:A chr11:34482745:G: A 4 4
chr12:132489230:GC:G chr12:132489230:GC:G 25 25
chr13:112889041:C:T chr13:112889041:C:T 4 4
chr15:93046840:T:A chr15:93046840:T:A 2 2
chr16:89196249:G:A chr16:89196249:G:A 4 5
chr17:46152620:T:C chr17:46152620:T:C 1430 1426
chr17:49863260:C:A chr17:49863260:C:A 5 4
chr19:4717660:A:G chr19:4717660:A:G 1 1
chr19:10305768:G:A chr19:10305768:G:A 3 3
chr19:10352442:G:C chr19:10352442:G:C 1 1
chr19:48697960:C:T chr19:48697960:C:T 10 10
chr21:33230000:C:A ¢hr21:33230000:C:A 16 17
chr21:33287378:C:T chr21:33287378:C:T 33 33
chr21:33959662: T:TAC chr21:33959662: T:TAC 23 22

Supplementary Table 9: Fine-mapping results for the EUR-discovered signals for the primary results
using variants with MAF > 0.5% and the expanded analysis using variants with MAF > 0.02%.
The lead variant (i.e, having the lowest P-value) and the number of variants (nCS) included in each
credible set are shown for each analysis. Provided variant ids correspond to chr:posygss:refygss:alt.
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Supplementary Figure 15: Locuszoom figures for the signals found in the per-population analyses.
Upper panels show lead signals and LD calculated in EUR (n=5,989) with all other loci in the window
shown. r2 values in the legend denote upper limits, i.e. 0.2=[0,0.2], 0.4=(0.2,0.4], 0.6=(0.4,0.6],
0.8=(0.6,0.8],1=(0.8,1]. Credible sets for each displayed signal that were inferred with susieR
are displayed with outline black circles. The red dashed line shows the Bonferroni-corrected P-
value=2.2 x 1078 for Europeans. On the bottom panels an hg38 gene track is displayed with colors
matching significance from the metaTWAS analysis in discrete bins shown.
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Supplementary Figure 16: Locuszoom figures for the multi-ancestry meta-analysis signals with differ-
ent panels for LD calculated in the four populations of this study (AFR, EAS, EUR, SAS). r2 values
in the legend denote upper limits, i.e. 0.2=[0,0.2], 0.4=(0.2,0.4], 0.6=(0.4,0.6], 0.8=(0.6,0.8],1=(0.8,1].
The red dashed line shows the Bonferroni-corrected P-value=2.2 x 10~8 (tested variants in meta-
analysis was equal to the EUR tested variants).
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Sex- and age- stratified analysis

We performed sex- (< 60 vs. > 60) and age-stratified analyses. We did not obtain significant
evidence for sex- specific effects (Supplementary Figure 17). The locus at chr3:45801750:G:A
(rs13071258) in the European population had a significantly stronger effect in the younger age group
(OR =3.34,95%CT = 2.98 — 3.75 vs. OR =2.1,95%C1T = 1.88 — 2.34).

A. age <60 vs. >=60
16

—log1o(P)

15 16 17 18 19202122
Chromosome

16

—logi1o(P)

9 100 11 12 13 14 15 16 17 18 19202122
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Supplementary Figure 17: Manhattan plot for ¢-test P-values obtained from comparison of stratified
GWAS analyses by age and sex. GWAS analyses were run for stratified subsets of the severe vs.
mild+100K analysis for individuals with (A) age >60 vs. >60 and (B) males vs. females. For each
analysis we then performed a two-sided t-test comparing between-group effect sizes per variant. Red
dashed line corresponds to Bonferroni-corrected P-value = 2 x 1078.
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Matched case-control analysis

In order to assess whether the observed imbalance in age, sex and BMI (Supplementary Figures 9,
10) had an effect on our results, we also performed a matched case-control analysis. We first selected
a subset of cases (ngpyr=3864, ngas=555, narr=265, npas=168) and controls (ngyr=31,371,
nsas=3,044, napp=1,043, npas=274) for which we had BMI information. We then performed
propensity score matching with Rfunction matchit to match a subset of controls to cases based on
age, sex and BMI and run GWAS analyses with SAIGE, including BMI as a covariate in addition to
the other primary covariates (i.e, sex, age, age x sex, age? and 20 PCs) and separately for each
ancestry group (Supplementary Figure 18).

As 22 out 25 association signals were discovered in the European population, we first assessed how
the effect size and P-values changed in the matched GWAS analysis versus the original unmatched
study for EUR. We observed that they were strongly correlated both genome-wide and for our lead
variants (Supplementary Figure 19, Supplementary Figure 20, left panels). For our lead variants, we
also performed a GWAS analysis for EUR that used a random sub-sample of unmatched controls of
the same size as the size of the controls of the matched study to assess the effect of the matching
procedure versus the loss of power due to reduction in sample size of the matched study. The
reduction in significance in the matched study is of similar magnitude as that of the unmatched
study with the same sample size (Supplementary Figure 20, left versus middle panels). Adding
BMI as covariate in the unmatched study produced similar estimates for effect sizes and P-values
(Supplementary Figure 20, right panels).

We also assessed how results for the three associations that were discovered with the multi-ancestry
meta-analysis were affected by case/control mismatches for age, sex and bmi by comparing the effect
sizes across ancestries and meta-analysed results for the original versus the matched study (left vs.
right panels, Supplementary Figure 20).
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Supplementary Figure 18: Sex, age and BMI distributions for cases and unmatched and matched
controls. The "unmatched" panels for each ancestry include all individuals that were used in the
main analyses of this study and for which we had BMI measurements. The matched control cohorts
(a subset of the unmatched controls) were generated with propensity score matching.
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Supplementary Figure 19: Genome-wide Results for effect size (BETA) and P-values for a EUR
SAIGE GWAS analysis using the age,sex,bmi- matched case/control data. For this analysis default
covariates of age, sex, age X sex, 20 PCs and BMI were used.
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Supplementary Figure 20: Results for lead variants of this study comparing effect size (BETA) and
P-values for EUR GWAS analyses using cases with matched and unmatched controls. Left panel
shows the results of the matched study which used default covariates of age, sex, age X sex and 20
PCs. Middle panels show results of a study using unmatched controls of the same sample size as
the matched study and using covariates as the principal study gwas using only default covariates.
Right panels show results of an unmatched study using default + BMI as covariate. Results for
EUR-discovered loci are shown in black and with grey the multi-ancestry meta-analysis results are
shown. Error bars for BETA represent standard errors of estimates.
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Weight  Weight Weight  Weight

chr1:155175305:G:A Odds Ratio OR 95%-Cl (fixed) (random) matched chr1:155175305:G:A Odds Ratio OR 95%-Cl (fixed) (random)
EUR —- 1.39 [1.24;1.56] 88.7% 88.7% EUR — 1.32 [1.14;1.53] 89.0% 89.0%
EAS ! 1.00 00%  0.0% EAS i 1.00 00%  0.0%
SAS i 1.38 [0.99;1.91] 11.3% 1.3% SAS — % 1.29 [0.85;1.95] 11.0% 11.0%
AFR i 1.00 0.0% 0.0% AFR i 1.00 0.0% 0.0%
| |
Fixed effect model P 1.39 [1.25; 1.55] 100.0% - Fixed effect model - 1.32 [1.15; 1.51] 100.0% -
Random effects model = 1.39 [1.25; 1.55] 100.0% Random effects model - 1.32 [1.15;1.51] - 100.0%
| E— | —

Weight ~ Welght Welght  Welight
chr2:60480453:A:G Odds Ratio OR 95%-Cl (fixed) (random) matched chr2:60480453:A:G Odds Ratio OR 95%-Cl (fixed) (random)
EUR 0.89 [0.86;0.93] 86.0%  66.4% EUR - 0.88 [0.83;0.93] 85.0%  85.0%
EAS —_— 081 [0.38;1.72] 0.3%  0.8% EAS ————————— 085 [0.28;254] 02%  02%
SAS — 0.87 [0.76;1.00]  8.4% 19.4% SAS — 0.84 [0.71;0.99] 9.6% 9.6%
AFR — 0.75 [0.64;0.89] 5.3% 13.4% AFR ﬁiﬁ 0.77 [0.62;0.97] 5.2% 5.2%

] i
Fixed effect model ® 0.88 [0.85;0.92] 100.0% - Fixed effect model <l> 0.87 [0.82; 0.91] 100.0% -
Random effects model < 0.87 [0.81;0.93] - 100.0% Random effects model <© 0.87 [0.82; 0.91] - 100.0%
1 [ ——

Weight  Weight Weight ~ Weight
chr6:41515007:A:C Odds Ratio OR 95%-Cl (fixed) (random) matched chr6:41515007:A:C Odds Ratio OR 95%-Cl (fixed) (random)
EUR —=— 0.75 [0.63;0.88] 31.8% 31.8% EUR — 0.68 [0.55;0.85] 30.7%  30.7%
EAS —'-f— 0.67 [0.51;0.87] 12.3% 12.3% EAS ——i— 0.57 [0.40;0.82] 11.4% 11.4%
SAS —a 0.62 [0.52;0.74] 27.3% 27.3% SAS —a— 0.61 [0.49;0.76] 31.4% 31.4%
AFR — 0.71 [0.59;0.84] 28.6% 28.6% AFR —t—‘— 0.76 [0.60;0.96] 26.5% 26.5%

| |
Fixed effect model <‘> 0.69 [0.63; 0.76] 100.0% . Fixed effect model <I> 0.66 [0.59; 0.75] 100.0% -
Random effects model = 0.69 [0.63; 0.76] - 100.0% Random effects model = 0.66 [0.59; 0.75] - 100.0%
| E— 1

Supplementary Figure 21: Comparison of effect sizes between unmatched (left panels) and matched
(right panels) control results for the three loci that were found significant in the multi-ancestry
meta-analysis. Whiskers show 95% CI. For the matched study, controls were matched to cases by
propensity score matching to cases for which we had BMI information (using age, sex and bmi as
matching covariates and performed separately for each ancestry): cases npyr=3864, ngas=555,
nArr=265, npas=168; controls npyr=31,371, ngas=3,044, narr=1,043, npas=274.
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GWAS analysis using the mild Covid-19 cohort only as controls

Lead variant AF use  AFi00k+mila  AFiooxk  AFmia  OR ORcr Pval ORpmita  ORpia C1 Pualyyg  Gene
chr1:155066988:C:T 0.0101  0.00521 0.00526  0.00464 2.4 1.82-3.16 6.8E-10 1.96 1.19-3.24 0.00813  EFNA/
chr1:155175305:G:A 0.0408  0.0309 0.0308  0.0265 1.39  1.24-1.55 7.16E-09 133 1.04-1.72 0.0255 TRIM/6
chr1:155197995:A:G 0.0874 0.112 0.112 0.12 0.783 0.732-0.838 1.02E-12  0.643 0.547-0.757 1.01E-07 THBS3
chr2:60480453:A:G 0.363 0.39 0.389 0.391 0.884 0.849-0.919 9.85E-10  0.901 0.817-0.994  0.0365 BCL11A
chr3:45796521:G:T 0.162 0.133 0.132 0.16 129  1.21-1.37 9.9E-17 1.02 0.894-1.15  0.81 SLC6A20
chr3:45859597:C:T 0.143 0.0679 0.0682  0.0687 271 2.51-2.94 1.97E-133  2.11 1.81-2.45 4.71E-22 LZTFL1
chr3:146517122:G:A 0.0938  0.0787 0.0785  0.0774 125  1.16-1.35 4.94E-09 1.28 1.09-1.5 0.00292  PLSCR1
chr5:131995059:C:T 0.193 0.167 0.167 0.158 1.2 1.13-1.26 7.65E-11 1.3 1.15-1.47 2.01E-05 ACSL6
chr6:32623820:T:C 0.323 0.353 0.353 0.347 0.878 0.841-0.917 3.26E-09  0.887 0.803-0.981  0.0193 HLA-DQA1
chr6:41515007:A:C 0.981 0.986 0.986 0.984 0.687 0.625-0.756 7.59E-15  0.915 0.642-1.3 0.624 LINC01276
chr9:21206606:C:G 0.0195 0.0124 0.0125  0.0113  1.74  1.45-2.09 1.93E-09 14 0.956-2.04  0.0838 IFNA10
chr11:34482745:G:A 0.348 0.381 0.38 0.393 0.871 0.835-0.909 1.61E-10  0.831 0.753-0.918 0.000241 ELF5
chr12:132489230:GC:G ~ 0.522 0.495 0.496 0.483 113 1.09-1.18 2.08E-09 1.16 1.05-1.27 0.00257  FBRSLI
chr13:112889041:C:T 0.249 0.221 0.22 0.223 118 1.12-1.24 3.71E-11 1.2 1.07-1.33 0.0015 ATP11A
chr15:93046840:T:A 0.986 0.993 0.993 0.988 0.422  0.333-0.534 8.61E-13  0.796 0.531-1.19  0.269 RGMA
chr16:89196249:G:A 0.167  0.145 0.145 0.155 119 1.12-1.26 4.4E-09 1.08 0.954-1.23  0.22 SLC22A31
chr17:46152620:T:C 0.202 0.232 0.232 0.231 0.862 0.82-0.906  4.19E-09  0.879 0.782-0.989  0.0314 KANSL1
chr17:49863260:C:A 0.0404  0.0279 0.0281  0.0269 1.5 1.33-1.7 4.19E-11  1.32 1.02-1.7 0.034 .
chr19:4717660:A:G 0.365 0.305 0.304 0.305 132 1.27-1.38 3.91E-36  1.37 1.24-1.51 2.17E-10 DPP9
chr19:10305768:G:A 0.11 0.0905 0.0906  0.0947 1.28  1.19-1.37 1.57E-11  1.25 1.07-1.45 0.0039 ZGLP1
chr19:10352442:G:C 0.0664  0.0479 0.0481  0.0405 1.5 1.36-1.65 6.98E-17 1.64 1.35-2 5.94E-07 TYK2
chr19:48697960:C:T 0.469 0.438 0.438 0.439 115 1.1-1.2 3.55E-11  1.08 0.977-1.19  0.134 FUT2
chr21:33230000:C:A 0.357  0.31 0.309 0.314 124 1.19-1.3 9.69E-22  1.17 1.06-1.29 0.00212  IFNAR2
chr21:33287378:C:T 0.294 0.265 0.265 0.261 118  1.12-1.23 3.53E-12  1.21 1.09-1.34 0.000334 IL10RB
chr21:33959662:T:TAC  0.0982  0.0808 0.0309  0.083 126 1.17-1.36 1.24E-09 1.21 1.03-1.42 0.0216 LINC00649

Supplementary Table 10: Allele frequency comparison and GWAS results for lead variants of the
study using unrelated individuals with EUR, predicted ancestry with COVID-19 severe individuals
as cases and COVID-19 positive individuals with only mild symptoms as controls. Allele frequencies
shown are calculated for individuals with EUR predicted ancestry that are part of severe COVID-19
cases (AF.qse, n=5,989), EUR controls used in the main study GWAS comprised of 100K and mild
(AF100K +mitd, n=42,891), EUR controls comprised of 100K (AFigox, n=41,384) and EUR controls
comprised of COVID-19 mild individuals (AF,,;14, n=1,507) and were calculated using plink2 with
the reference allele being hgss. Odds ratio with 95% confidence interval and P-value from main
study results from table 1 (OR, OR¢yr, Pval) are compared with results from a GWAS analysis that
used only COVID-19 individuals with mild symptoms as controls (OR 4, ORmita CI, Pvalmiid)-
Provided variant ids correspond to chr:posyg3g:refy43g:alt.

Heritability

We estimated the SNP-based heritability values of Covid-19 severity and four Covid-19 phenotypes
of HGI v6 by applying both the high-definition likelihood (HDL)® and LD score regression (LDSC)?
methods on the GWAS summary statistics. The HDL method is expected to produce more consistent
estimate than LDSC.3

Except for the GenOMICC severity phenotype of Covid-19, which had an estimated heritability of
5.7% (s.e. 1.7%) by HDL and 11.3% (s.e. 2.5%) by LDSC, the other Covid-19 phenotypes all had
heritability estimates close to zero (Supplementary Fig. 22, Supplementary Table 11).
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Supplementary Figure 22: Heritability estimates of Covid-19 based on GWAS summary statistics.
Whiskers represent the estimated 95% confidence intervals. See Supplementary Table 11 for details.

GWAS n Heritabilityypr, SEppr Pvaluegpr Heritabilityrpse SErpsc Interceptrpsc Interceptsg
GenOMICC EUR 5,989 0.057 0.017 0.00092 0.11 0.025 0.98 0.0095

All cases HGI C2 112,612 0.0005 2e-06 0 0.0016 0.0002 1 0.0072
Hospitalised HGI B2 24,274 0 0 0.0022 0.0003 1 0.007
Hospitalised HGI B1 14,480 0 0 0.023 0.0053 1 0.0065
Severe HGI A2 8,779 0 0 0.0033 0.0006 1 0.008

Supplementary Table 11: Heritability estimates of Covid-19 based on GWAS summary statistics. The
SNP-based narrow-sense heritabilities of Covid-19 severity and four alternatively-defined Covid-19
phenotypes were estimated using both the high-definition likelihood (HDL) and LD score regression
(LDSC) methods. Comparisons are made with HGIv6® ALL leave 23andme 20210607 analyses;
A-C2 used population controls, B1 used test-negative controls.
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Supplementary Figure 23: TWAS results from analysis of eQTL models from whole blood and lung
tissues in GTEXv8. Z-scores showing the direction of effect for the genotype-inferred expression
of transcripts that encode protein-coding genes in whole blood and lung tissue (GTEx v.8) are
shown (with tested genes n=10,473 and n=12,484, respectively). All significant genes at Bonferroni-
corrected threshold P-value 4.77 x 107 and 4 x 10~ for whole blood and Lung, respectively, are
highlighted with blue and annotated.
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Supplementary Figure 24: TWAS results from meta-analysis of eQTL models from all tissues in
GTEXv8. The number of tested genes was 21,813 and significant genes at Bonferroni-corrected
threshold P < 2.3 x 1075 (red dashed line) are highlighted with blue and annotated.
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Colocalisation sensitivity analysis
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Supplementary Figure 25: Sensitivity analysis for colocalisation of TWAS-significant loci in blood
(eQTLgen data) with GWAS signals. Evidence for the following hypotheses is plotted across a range
of prior probabilities: HO - neither trait has a genetic association in the region; H1 - only trait 1 has
a genetic association in the region; H2 - only trait 2 has a genetic association in the region; H3 -
both traits are associated, but with different causal variants; H4 - both traits are associated and

share a single caus
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Supplementary Figure 26: Sensitivity analysis for colocalisation of TWAS-significant loci in blood

(GTEXv8 data) with GWAS signals. Evidence for the following hypotheses is plotted across a range
of prior probabilities: HO - neither trait has a genetic association in the region; H1 - only trait 1 has
a genetic association in the region; H2 - only trait 2 has a genetic association in the region; H3 -
both traits are associated, but with different causal variants; H4 - both traits are associated and

share a single causal variant.
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Supplementary Figure 27: Sensitivity analysis for colocalisation of TWAS-significant loci in lung
(GTEXv8 data) with GWAS signals. Evidence for the following hypotheses is plotted across a range
of prior probabilities: HO - neither trait has a genetic association in the region; H1 - only trait 1 has
a genetic association in the region; H2 - only trait 2 has a genetic association in the region; H3 -
both traits are associated, but with different causal variants; H4 - both traits are associated and

share a single causal variant.
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Colocalisation Summary

chr:pos (hg38) | rsid REF | ALT | Expression
1:155066988 rs114301457 | C T -

1:155175305 rs7528026 G A -

1:155197995 rs41264915 A G MUC1
2:60480453 rs1123573 A G -

3:45796521 rs2271616 G T SLC6A20, CCR5
3:45859597 rs73064425 | C T LZTFL1, CCRY
3:146517122 rs343320 G A -

5:131995059 rsH6162149 | C T ACSL6, FNIP1
6:32623820 rs9271609 T C HLA-DRBI1
6:41515007 152496644 A C -

9:21206606 rs28368148 | C G -

11:34482745 rs61882275 G A -

12:132489230 rs56106917 GC G -

13:112889041 rs9577175 C T ATP11A
15:93046840 184424872 T A -

16:89196249 rs117169628 | G A SLC22A31, CDH15
17:46152620 rs2532300 T C ARHGAP27
17:49863260 rs3848456 C A -

19:4717660 rs12610495 A G -

19:10305768 rs73510898 G A -

19:10352442 rs34536443 G C TYK2, PDEJA
19:48697960 rs368565 C T FUT2, NTN5, RASIP1
21:33230000 rs17860115 | C A -

21:33287378 rs8178521 C T -

21:33959662 rs35370143 | T TAC | -

Supplementary Table 12: Lead signals with genes where is evidence of gene expression affecting

disease severity, found by TWAS and colocalisation analysis.
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Mendelian Randomisation
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Aggregate variant testing (AVT)

Aggregate variant testing on aggCOVID_ v4.2 was performed using SKAT-O as implemented in
SAIGE-GENE v0.44.5'°, Variant and sample QC for the preparation of the aggregate files has been
described elsewhere. In addition, the following filters were applied to the masked aggregate dataset:

o Bi-allelic SNPs only

e Minor allele frequency < 0.005

e Site wide missingness < 0.05

o Differential missingness between cases and controls, mid-p value < 10~°

All the variants in the dataset were annotated using VEP v99.

Masks and Model

Two functional annotation masks were applied on top of the filters detailed. The first is a strict
putative loss of function (pLoF) filter, where only variants that are annotated by Loftee as high
confidence loss of function are included. The second is a more lenient filter (missense) where all
variants from the strict filter are included, together with all variants that have a consequence of
missense or worse as annotated by VEP, with a CADD_ PHRED score of > 10 (CADD version 1.5).
The covariates used in the model were the same as for the single variant analysis: sex, age, age?,
age x sex and 20 (population-specific) principal components generated from common variants (MAF

> 5%).

The tests were run separately by genetically predicted ancestry, on all protein-coding genes as
annotated by Ensembl.

AVT results

Supplementary table 14 shows the number of tested genes per mask per predicted ancestry. These
numbers were used to apply a Bonferonni correction on the SKAT-O P-values from SAIGE-GENE
on a per population basis. The P-value thresholds for gene-wide significance were taken as 0.05/n 2,
with n being the number of tested genes in that population, divided by 2 (the number of masks
used). This makes the assumption that each gene was tested by both masks, which is conservative
for the missense threshold.

Tested genes, | P-value threshold, | Tested genes, | P-value threshold,
Cohort . .
pLof mask pLof mask missense mask missense mask
EUR 7,352 3.4e-06 18,631 1.3e-06
SAS 1,435 1.7e-05 17,291 1.4e-06
AFR 763 3.3e-05 16,125 1.6e-06
EAS 265 9.4e-05 12,519 2.0e-06

Supplementary Table 14: Number of tested genes per mask per predicted ancestry, with Bonferroni-
corrected P-values used to assess gene-wide significance.

No significant associations were found across any of the populations. Supplementary figure 28 shows
the Manhattan and Q-Q plots for each predicted ancestry using the pLoF mask, and supplementary
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figure 29 shows the Manhattan and Q-Q plots for each predicted ancestry using the missense mask.
Supplementary File AVTsuppinfo.xlsx, sheet A and sheet B, show the top ten genes by P-value for
each predicted ancestry and all combined ancestries, respectively.

Supplementary File AVTsuppinfo.xlsx, sheet C, shows the top genes that were highlighted as part of
the GWAS analysis, ranked by p value per predicted ancestry. Supplementary File AV Tsuppinfo.xlsx,
sheet D shows the SKAT-O P-values for the 13 genes involved in the regulation of type I and III
interferon immunity that were implicated in severe Covid-19 pneumonia !, ranked by p value per
predicted ancestry.

Aggregate Variant Testing - Results by Gene and Predicted Ancestry - pLoF
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Supplementary Figure 28: Gene-level manhattan and Q-Q plots per predicted ancestry for the pLof
mask. Each point in the manhattan plot represents a gene. Panels from top to bottom are for
EUR (A), SAS (B), AFR (C) and EAS (D). The red dashed lines indicate Bonferonni corrected
"gene-wide" P-values (see Supplementary Table 14).

56



Aggregate Variant Testing - Results by Gene and Predicted Ancestry - missense
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Supplementary Figure 29: Gene-level manhattan and Q-Q plots per predicted ancestry for the
missense mask. Fach point in the manhattan plot represents a gene. Panels from top to bottom are
for EUR (A), SAS (B), AFR (C) and EAS (D). The red dashed lines indicate Bonferonni corrected
"gene-wide" P-values (see Supplementary Table 14).
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HLA Inference and Association Tests

HLA imputation using HIBAG

HLA types were imputed at two field (4-digit) resolution for all samples within aggV2 and ag-
gCOVID_ v4.2 for the following seven loci: HLA-A, HLA-C, HLA-B, HLA-DRB1, HLA-DQA1,
HLA-DQB1, and HLA-DPBI1 using the HIBAG package in R'2. We used ancestry specific pre-fit
classifiers trained on the Illumina 1M Duo genotyping array on individuals of either European,
Asian, and African ancestry dependent on the assigned ancestry of the sample in hand. The list of
HLA alleles represented in the reference panel is shown in Supplementary File HLAsuppinfo.xlsx
(Sheet A). HIBAG requires genotyped data in PLINK format as input. We lifted over the GRCh38
variant calls from aggV2 and aggCOVID_ v4.2 for the extended (xMHC) region to hgl9, keeping
the variants included in the pre-trained classifiers for the seven HLA loci which were present in both
the aggV2 and aggCOVID_ v4.2 call-sets to ensure that the variants used for the imputation were
the same across the two datasets. We applied a threshold of T=0.5 on the posterior probabilities
returned by HIBAG, as in the original publication.

HLA inference using HLA*LA and concordance between HIBAG and
HLA*LA callsets

We used a second HLA inference method, HLA*LA 13, to assess concordance and ensure call rates
were comparable between the two methods. HLA*LA (version fe00{82) was used with GRCh38
IMGT population reference graphs to infer classical HLA types at G-group resolution for the three
class I genes (HLA-A, HLA-C, HLA-B) and four class II genes (HLA-DRB1, HLA-DQA1, HLA-
DQB1, HLA-DPBI1) that were also umputed with HIBAG. HLA*LA implements a graph alignment
model for HLA type inference, based on the projection of linear alignments onto a variation graph.
Whole-genome sequencing BAM/CRAM files including unmapped reads were used as input. Where
CRAM files were used (alignments from aggCOVID_ v4.2 cohort), the reference genome FASTA file
used for the original alignment was also provided.

Note that at time of writing, only 82% of aggV2 and aggCOVID_ v4.2 samples had their HLA
types inferred by HLA*LA (Supplementary File HLAsuppinfo.xlsx (Sheet B)). All samples had their
HLA types imputed using HIBAG.

For samples for which we had both HIBAG and HLA*LA calls (n=45,796), we compared the 4-digit
resolution alleles called from HIBAG with the alleles called from HLA*LA. As HLA*LA calls alleles
at G-group resolution, we took all 4-digit alleles belonging to each G-Group and compared these to
the HIBAG calls. For example, if a sample is called as A*01:01:01G, the mapped HLA alleles at
4-digit resolution within HLA*LA are 01:01, 01:04, 01:10, 01:13, 01:14, 01:15, 01:22, 01:32, 01:37,
01:45, 01:56, 01:81, 01:87. These were compared against the HIBAG 4-digit calls. If the 4-digits
matched exactly (in either diploid combination - i.e. 01:01 / 01:04 vs 01:04 / 01:01), then sample
alleles were deemed concordant. We found that >96% of calls were identical between HIBAG and
HLA*LA.

The percentage of concordant calls between HIBAG and HLA*LA by ancestry and locus is shown in
Supplementary File HLAsuppinfo.xlsx (Sheet C).
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HLA Association Tests

HLA calls from HIBAG were aggregated into a single multi-sample VCF file containing sample
genotypes for all observed HLA calls. Per sample, the genotypes of any allele call with posterior
probability < 0.5 were set to missing. If a sample then had a missing genotype for a particular
allele, all other alleles at that locus were also set to missing. For each locus, samples that did not
harbour a specific HLA allele (either in a heterozygous or homozygous alternate state), were set to
homozygous reference; unless already set to missing from the above mask.

HLA association analysis (single variant association tests) was run under an additive model using
SAIGE (logistic mixed-model regression) version 0.44.5; in an identical fashion to the SNV GWAS.
The multi-sample VCF of aggregated HLA type calls from HIBAG were used as input. The set
of 60K high-quality common SNPs aggCOVID_v4.2_agegV2_ HQSNPs were used to create the
GRM and variance ratio files. HLA association tests were run per ancestry (EUR, SAS, EAS, AFR)
on unrelated individuals for the sev_vs_mld_ aggV2 cohort. Each HLA association test was run
using: sex, age, age?, age x sex, and the first 20 ancestral principle components as covariates. No
minimum minor allele count / frequency threshold was set. Results can be seen in Supplementary
File HLAsuppinfo.xlsx (Sheet D). Note this table combines the results for all ancestries (EUR, SAS,
EAS, and AFR) - which is referenced in the first column of the table. The table is sorted by ancestry
and alphabetically by allele.

HLA-DRB1*:04:01 was the only genome-wide significant HLA allele (OR = 0.80,95%C1T = 0.75 —
0.86, P = 1.6 x 1071% in EUR), having a protective effect (casesMAF: 9.6%, controlsMAF: 11.7%).
In EUR, the DRB1*04:01 allele had a low rate of missingness (call rate >0.92 at T=0.5 posterior
probability threshold), and was in Hardy-Weinberg equilibrium for both cases (p=0.32) and controls
(p=0.17). The observed allele frequency for HLA-DRB1*04:01 was 0.1%, 0.08%, and 0.02% for
AFR, EAS, and SAS cohorts respectively. A meta-analysis was performed using METAL with
an inverse-variance weighted method across the four populations. DRB1*04:01 remained the only
significant association (OR = 0.80,95%CT = 0.75 — 0.86, P = 1.4 x 10~1°), Supplementary File
HLAsuppinfo.xlsx (Sheet E).

We also ran our association analysis on EUR samples with concordant calls between HIBAG and
HLA*LA using the same model as for the full analysis, and confirmed the observed association with
HLA-DRB1*04:01 (OR = 0.78,95%CIs : 0.75 — 0.81, P = 1.3 x 10~'1) which had a lower P — value
than for the lead variant (OR = 0.88,95%CIs : 0.86 — 0.90, P = 4.4 x 10~?), consistent with our
results on the full HIBAG callset.

We also examined the robustness of our results to the choice of call threshold for the posterior
probability for HIBAG and performed the association tests for EUR without any call threshold
(CT=0, i.e. best guess), with CT=0.5, and with CT=0.7. We found that DRB1*04:01 remained the
only significant locus across each of the three CT values tested with the Odds Ratios and P-values
being extremely consistent across all alleles (Supplementary Figure 30).

HLA conditional Analysis

We conducted a conditional analysis, controlling for the HLA-DRB1*04:01 allele, on the main
GWAS results within the extended MHC region. This analysis was performed on the European
sev_vs_mld_aggV?2 cohort. To do this, we firstly regressed out the effect of DRB1*04:01 (including
age, sex, age x sex, age?, and the first 20 population PCs), and performed linear regression on
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HIBAG + SAIGE: HLA Association Tests
Europeans (48,880)

sev_vs_mld_aggV2 sev_vs_mld_aggV2 sev_vs_mld_aggV2
0 0.5 0.7
124
104
8-
e
=}
% °7
o *
v >
* *
44 *. *
* * * *
* o
* ¢ * * &
. * ® ® .
2+ - PP $ § ° b4 4
4 s 4
; i i i i i § :
; » i i £
29,000,000 30,000,000 31,000,000 32,000,000 33,000,000 29,000,000 30,000,000 31,000,000 32,000,000 33,000,000 29,000,000 30,000,000 31,000,000 32,000,000 33,000,000

* A [ ¢ DQA1 ¢ DRB1
B ¢ DPB1 DQB1

Locus

Supplementary Figure 30: Robustness of HLA association results to different posterior probability
call thresholds for HIBAG.Manhattan plot of HLA allele associations across the extended MHC
region with Covid-19 critical illness for the EUR cohort. Each panel corresponds to association
results obtained using genotypes that were called using a different call threshold for HIBAG (0, 0.5
and 0.7, respectively). Diamonds represent the HLA each allele association, coloured by locus. The
lead variant from the lead HLA allele is labelled. The dashed red line is the Bonferroni-corrected
genome-wide significance threshold for Europeans.
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the residuals using the GWAS variant genotypes as the dependent variable. No variants within
the extended MHC remained genome-wide significant upon conditioning on DRB1*04:01. The
top GWAS signal (chr6:32623820 T/C; OR = 0.88,95%C1T = 0.84 — 0.92, P = 3.3 x 107?) was
attenuated following conditional analysis (P = 0.001). Extended data Figure 6 shows the results of
the combined HLA and GWAS association results and the conditional analysis.
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Enrichment analysis

Enrichment analysis was run with XGR algorithm'* using 19 genes identified by TWAS and
colocalisation analysis (Figure 2) and genes with missense mutations that were either lead variants
(Table 1) or were part of the credible sets identified by the fine-mapping analysis with SusieR
(Extended Data Table 1). The combined input gene list was: MUC1, SLC6A20, CCR9, LZTFL1,
CCR5, ACSL6, FNIP1, ATP11A, CDH15, SLC22A831, CDH15, IFNAR2, DPPY9, IL10RB, TYK2,
NTNS, FUT2, PDE4A, THBS3, PLSCR1, CSF2, IFNA10.

Enriched Ontology Term Name Z-score | P-value | FDR Genes

GO Biological Component | cytokine-mediated signaling pathway 12.2 2.8E-10 | 1.4E-09 | CCR5, CSF2, IFNA10, IFNAR2, ILI0RB, MUC1, TYK2
Reactome pathways Regulation of IFNA signaling 14 6.8E-08 | 3.4E-07 | IFNA10, IFNAR2, TYK?2

KEGG pathways Jak-STAT signaling pathway 7.93 4.8E-07 | 7.6E-07 | CSF2, IFNA10, IFNAR2, IL10RB, TYK2

KEGG pathways Cytokine-cytokine receptor interaction 7.1 5E-07 7.6E-07 | CCR5, CCRY, CSF2, IFNA10, IFNAR2, IL10RB
GO Biological Component | type I interferon signaling pathway 10.9 7.3E-07 | 1.8E-06 | IFNA10, IFNAR2, TYK2

GO Biological Component | defense response to virus 8.32 1.7E-06 | 2.8E-06 | IFNA10, IFNAR2, IL10RB, PLSCR1

Reactome pathways Interferon alpha/beta signaling 8.4 3.9E-06 | 9.7E-06 | IFNA10, IFNAR2, TYK2

Reactome pathways Cytokine Signaling in Immune system 5.08 6.8E-05 | 0.00011 | CSF2, IFNA10, IFNAR2, TYK?2

GO Biological Component | immune response 5.27 7.5E-05 | 9.4E-05 | CCR5, CCRY, CSF2, ILI10RB

Reactome pathways Interferon Signaling 5.06 0.00014 | 0.00017 | IFNA10, IFNAR2, TYK2

KEGG pathways Natural killer cell mediated cytotoxicity 4.87 0.00019 | 0.00019 | CSF2, IFNA10, IFNAR2

GO Cellular Component integral component of plasma membrane 4.03 0.00024 | 0.0017 | CCR5, CCRY, IFNAR2, MUC1, PLSCR1, SLC6A20
GO Cellular Component cell surface 3.12 0.0027 | 0.0093 CCR5, CCRY, CDH15

GO Cellular Component perinuclear region of cytoplasm 2.82 0.0043 0.01 PDEJA, PLSCR1, THBS3

GO Cellular Component extracellular region 2.33 0.0089 | 0.016 CSF2, IFNA10, IFNAR2, NTN5, THBS3

GO Molecular Function calcium ion binding 2.31 0.01 0.021 CDH15, PLSCR1, THBSS3

GO Cellular Component Golgi apparatus 2.09 0.015 0.02 CDH15, FUT2, PLSCR1

Reactome pathways TImmune System 1.92 0.018 0.018 CSF2, IFNA10, IFNAR2, TYK2

GO Biological Component | G protein-coupled receptor signaling pathway | 1.68 0.03 0.03 CCR5, CCRY, PDEJA

Supplementary Table 15: Enrichment analysis was applied to 19 genes identified by TWAS and
colocalisation analysis and/or harbouring missense mutations. These genes were input into the XGR
algorithm '* to look for enrichment in Gene Ontology (GO) terms (Biological component, Cellular
component and Molecular function) and curated KEGG and Reactome pathways. The table shows
all enrichment terms with a false-discovery rate (FDR)<0.05. The most significant enrichment was
in the cytokine-mediated, interferon and Jak-STAT signalling pathways.
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Meta-analysis by information content (MAIC)

In order to put the results in the context of existing knowledge of host genes implicated in SARS-
CoV-2 replication or pathophysiology of Covid-19, we use meta-analyis by information content
(MAIC) ' to incorporate lists of named genes from a large systematic review of in vitro and in vivo
studies. '® Remarkably, the top 2000 named genes in our metaTWAS contributes 19.5% of the total
information content in this composite analysis (Supplementary Figure 31). Full results are available
at baillielab.net/maic/covid.
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Supplementary Figure 31: Circular diagram of shared information content among data sources
using MAIC analysis. Each data source is represented by a coloured block on the outer ring of the
circle; the size of data source blocks is proportional to the summed information content of the input
list—that is, the total contribution that this data source makes to the aggregate, calculated as the
sum of the MAIC gene scores contributed by that list and represented numerically for datasets with
the highest information content. Lines are coloured according to the dominant data source. Data
sources within the same category share the same colour (legend). The largest categories and data
sources are labelled. An interactive version of this figure is available at baillielab.net/maic/covid.
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