SUPPLEMENTARY INFORMATION to

Estuarine plastisphere as an overlooked source of N₂O production

Xiaoxuan Su^{1,2,*}, Leyang Yang^{1,3,*}, Kai Yang¹, Yijia Tang⁴, Teng Wen⁵, Yingmu Wang⁶, Matthias C. Rillig^{7,8}, Lena Rohe⁹, Junliang Pan¹⁰, Hu Li¹, Yong-guan Zhu^{1,3,11}*

¹ Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
² Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, 400715, China
³ University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
⁴ School of Life and Environmental Sciences, The University of Sydney, NSW 2015, Australia
⁵ School of Geography, Nanjing Normal University, Nanjing 210023, China
⁶ College of Civil Engineering, Fuzhou University, Fuzhou 350116, China
⁷ Freie Universität Berlin, Institute of Biology, Berlin, Germany
⁸ Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
⁹ Thünen Institute of Climate-Smart Agriculture, Bundesallee 65, Germany
¹⁰ School of Electrical Engineering, Chongqing University, Chongqing 400044, China.
¹¹ State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

* These authors contributed equally: Xiaoxuan Su, and Leyang Yang.

* Corresponding author: Yong-guan Zhu (ygzhu@rcees.ac.cn); Phone: 86-592-6190997; fax:

+86 592-6190977; Address: 1799 Jimei Road, Xiamen 361021, China.

Supplementary Methods

1 Water characteristics

Ammonium, nitrate and nitrite concentrations in the bulk water were detected by an Ion Chromatograph (ICS-3000, Dionex, USA) after being filtered with a 0.22µm membrane. Iron concentrations were measured by an ICP-MS (7500cx, Agilent, USA) . Total organic carbon (TOC) concentrations were detected by a TOC Analyzer (Elementar, Germany).

2 Scanning electron microscope (SEM)

The obtained plastic fragments (3mm×3mm) were washed twice with 4°C 0.05 M phosphate buffer for 10min, and then fixed in 1 mL phosphate buffer containing 2.5% glutaraldehyde at 4°C for 12 h. The mixture was washed twice with the phosphate buffer to remove glutaraldehyde, and then was dehydrated through cold ethanol serials (30%, 50%, 70%, 90%, and 100%, 10 min/step). The plastic fragments were subsequently transferred to a tin foil and critical-point dried (Autosamdri 815 automatic critical-point dryer; Tousimis, USA) for 12 h. The dried plastics were adhered to the conductive adhesives (SPI, USA), sputter coated with gold, and then imaged by SEM (Hitachi S4800, Japan) at 20 kV.

Supplementary Table 1. Information of co-occurrence network analysis for three types of denitrifiers in the Plastisphere and bulk water.

Characteristics	Plastisphere	Bulk water
Numbers of nodes	65	58
Numbers of edges	596	310
Positive (%)	52.78	66.23
Negative (%)	47.22	33.77
Cluster coefficient	0.543	0.612
Graph density	0.219	0.148
Mean degree	14.478	10.010
Mean path length	1.972	2.209
Modularity	0.87	0.69

Supplementary Table 2. Mean values and errors of estimated by Monte Carlo sampling method N₂O-SP (site preference) and N₂O- δ^{18} O, which were used for the N₂O isotope mass balance.

Endmembers	CD (9/)	δ ¹⁸ Ο (N ₂ O/H ₂ O)	Supplementary
	SP (700)	(‰)	References
BD	-1.5 ± 3.9	19 ± 3.6	[1-3]
FD	37 ± 3.2	47 ± 6.2	[2, 4]
CD	16 ± 4.1	30 ± 6.3	[5-7]
N ₂ O reduction	ε _{sp} : -6	ε ₁₈₀ : -25	[2, 8]

Note: BD is **b**acterial **d**enitrification; FD is **f**ungal **d**enitrification; CD is **c**hemo**d**enitrification.

Codes for Gaussian estimation and Monte Carlo sampling

%-----Calculations of Mean values and errors of N₂O-SP and N₂O- δ^{18} O for three endmembers-----

Amean=mean(abcefg(:,1)); %A: SP_{BD}

Astd=std(abcefg(:,1));

Bmean=mean(abcefg(:,2)); %B: SP_{FD}

Bstd=std(abcefg(:,2));

Cmean=mean(abcefg(:,3)); %C: SP_{cD}

Cstd=std(abcefg(:,3));

Emean=mean(abcefg(:,4)); %E: δ¹⁸O_{BD}

Estd=std(abcefg(:,4));

```
Fmean=mean(abcefg(:,5)); %F: \delta^{18}O_{FD}
Fstd=std(abcefg(:,5));
Gmean=mean(abcefg(:,6)); %G: \delta^{18}O_{CD}
Gstd=std(abcefg(:,6));
```

```
%-----Main Program------
```

num_sample=40000; %Total stimulations

num_sample1=10000;%effective stimulations

result=zeros(15,4);

for nnn=1:15

```
num_data=nnn;
```

j=1;

f123=ones(num_sample1,3);

%-----Random sampling of SP and $\delta^{18}O$ ------

```
A=normrnd(Amean,Astd,[1 num_sample]);
```

```
B=normrnd(Bmean,Bstd,[1 num_sample]);
```

C=normrnd(Cmean,Cstd,[1 num_sample]);

E=normrnd(Emean,Estd,[1 num_sample]);

F=normrnd(Fmean,Fstd,[1 num_sample]);

G=normrnd(Gmean,Gstd,[1 num_sample]);

%-----Calculations of f_{BD}, f_{FD}, and f_{CD}-----

for i=1:num_sample

H=[1 A(i) E(i); 1 B(i) F(i);1 C(i) G(i)];

if max(data(num_data,:)*inv(H))<1 && min(data(num_data,:)*inv(H))>-1

f123(j,:)=data(num_data,:)*inv(H);

j=j+1; end if j>num_sample1 break end end %------Results output------f123mean=mean(f123); result(nnn,1:3)=mean(f123); result(nnn,4)=sum(sum((f123-f123mean).^2))/(num_sample1-1); end

%-----Figuring------

% hold on

% for i=1:10000

- % if max(f123(i,:))<1 && min(f123(i,:))>-1
- % % if min(f123(i,:))<0
- % % plot(f123(i,1),f123(i,2),'m*')

%% else

- % % plot(f123(i,1),f123(i,2),'r*')
- % % end
- % plot(f123(i,1),f123(i,2),'r.')
- % end

% end

```
% plot(f123mean(1),f123mean(2),'b*')
```

Supplementary Table 3. Primers for targeting the bacterial and fungal communities in the plastisphere and bulk water.

Genes	Primers	Supplementary	
		References	
b <i>nirK</i>	F1aCu ATCATGGTSCTGCCGCG	[9]	
Shirk	R3Cu GCCTCGATCAGRTTGTGGTT	[0]	
b <i>nirS</i>	Cd3aF GTSAACGTSAAGGARACSGG	[9]	
	R3cd GASTTCGGRTGSGTCTTGA		
ITS	CTTGGTCATTTAGAGGAAGTAA	[10]	
	GCTGCGTTCTTCATCGATGC	[10]	

Supplementary Table 4. Primers of qPCR-based Smartchip analysis for bacterial denitrifying functional genes in the plastisphere and bulk water.

Genes	Primers	Supplementary
		References
narG	TAYGTSGGGCAGGARAAACTG	[11]
	CGTAGAAGAAGCTGGTGCTGT	
nirS	GTSAACGTSAAGGARACSGG	[9]
-	GASTTCGGRTGSGTCTTGA	
nirK	ATCATGGTSCTGCCGCG	[9]
	GCCTCGATCAGRTTGTGGTT	
nosZ	CGCRACGGCAASAAGGTSMSSGT	[12]
	CAKRTGCAKSGCRTGGCAGAA	

* Each lab-scale experiment was conducted in parallel

Supplementary Fig. 1. Experimental design. We selected four types of plastics. This study included (1) *in situ* incubation for 30d, and (2) denitrification experiment for 24h. During the 30d *in situ* incubation, the 10×10cm plastics debris was connected by cotton cords and suspended at 4m below the estuarine water. After 30d, a portion of plastics and bulk water was used for water quality analysis, SEM, and heavy water (D₂O)-labeled single-cell Raman spectroscopy. The prepared plastisphere suspensions were used for the synchronous detections of denitrification rate, N₂O reduction ratio, extracellular polymeric substances (EPS) and bis(3'-5')-cyclic dimeric guanosine monophosphate) (c-di-GMP) levels. During the 24h denitrification experiment, we established plastisphere groups and bulk water group. After 24h, N₂O concentration and isotopocules, denitrifier community, and denitrifying gene abundance in the plastisphere and bulk water were measured.

Supplementary Fig. 2. SEM images of biofilm structures on the four types of plastic debris. A-D. Biofilms on the plastics. E-H. Diverse microbes observed in the biofilms.

Supplementary Fig. 3. Concentrations of intracellular c-di-GMP in the plastisphere and bulk water. N.D. is non-detectable. Error bars are the standard error. Different letters (a and b) indicate the significant differences (P<0.05) among each plastisphere group and bulk water group.

Supplementary Fig. 4. Isotopic compositions and abundances of N₂O produced in the plastisphere and bulk water. (a). N₂O- $\delta^{15}N^{\text{bulk}}$. (b). N₂O- $\delta^{15}N^{\alpha}$. (c). N₂O- $\delta^{15}N^{\beta}$ β (d). N₂O-SP. (e). N₂O- δ^{18} O. Error bars are the standard error. Different letters (a, b, c, and d) indicate the significant differences (P<0.05) between Plastisphere and bulk water.

Supplementary Fig. 5. The absolute abundances of 16S rRNA (a) and ITS (b) genes in the plastisphere and bulk water. Error bars are the standard error. Different letters (a, b, c, and d) indicate the significant differences (P<0.05) among each plastisphere group and bulk water group.

Supplementary Fig. 6. Alpha diversity of the three denitrifier communities in the plastisphere and bulk water. (**a-e**). b*nirS*-type denitrifiers. (**f-j**). b*nirK*-type denitrifiers. (**k-o**). f*nirK*-type denitrifiers. Error bars are the standard error. Different letters (a, b, c, and d) indicate the significant differences (P<0.05) between plastisphere and bulk water.

Supplementary Fig. 7. Denitrifier communities in the plastisphere and bulk water. (**a-b**). Phylum and Genus levels of <u>bnirS-type</u> denitrifiers. (**c-d**). Phylum and Genus levels of <u>bnirK-type</u> denitrifiers. (**e-f**). Phylum and Genus levels of <u>fnirK-type</u> denitrifiers.

Supplementary Fig. 8. Relative abundances of bacterial denitrifying genes in the plastisphere and bulk water. (a). *narG.* (b). *nirS.* (c). *nirK.* (d). *nosZ.* Error bars are the standard error. Different letters (a, b, c, and d) indicate the significant differences (P<0.05) between plastisphere and bulk water.

Supplementary Fig. 9. N₂O production in the plastisphere and bulk water groups under anoxic (a) and hypoxic (b) conditions with and without adding allylthiourea. Allylthiourea is a nitrifier inhibitor and can inhibit the activity of ammonia mono-oxygenase (catalyzing ammonia to hydroxylamine) of ammonia-oxidizing archaea (AOA) and bacteria (AOB)[13]. Anoxic conditions were achieved by purging He gas (>99.99%); Hypoxic conditions were achieved by purging He (95%) and O₂ (5%) gases. PE plastisphere was selected as a representation of plastisphere group. Error bars are the standard error. Different letters (a and b) indicate the significant differences (P<0.05) between the plastisphere and bulk water groups, and the groups with and without adding allylthiourea.

Supplementary Fig. 10. A supplemented 30h experiment showing the changes in the concentrations of dissolved organic matters (DOM) in the plastisphere and bulk water groups under both anoxic (a) and hypoxic (b) conditions. Anoxic conditions were achieved by purging with He gas (>99.99%); Hypoxic conditions were achieved by purging with He (95%) and O₂ (5%) gases. PE plastisphere was selected as a representation of plastisphere group. Concentrations of DOM were measured with a TOC analyzer (TOC-L, SHIMADZU, Japan) after filtering 0.22µm membrane. Error bars are the standard error.

Supplementary Fig. 11. N₂O production, anoxic microbial activities and denitrifier community compositions in attached and detached biofilms after the 24h lab-scale experiment. (a). N₂O productions. (b). Ratios of (C-D)/(C-D+C-H) calculated by D₂O-single cell Raman technique. (c-d). Phylum levels of b*nirS*-type and b*nirK*-type denitrifiers. (e-f). Genus levels of b*nirS*-type and b*nirK*-type denitrifiers. This experiment was conducted in 250mL conical flasks, because the plastic debris cannot be placed in the 120mL serum bottles. Error bars are the standard error.

Supplementary Fig. 12. N₂O productions in the plastisphere and bulk water with different water volumes. (a). 80 mL. (b). 120 mL. Both are normalized with microbial biomasses in the plastisphere and bulk water. Error bars are the standard error. Different letters (a, b, and c) indicate the significant differences (P<0.05) among each plastisphere group and bulk water group.

Supplementary Fig. 13. Random sampling (10000 times) during Monte Carlo stimulation. A red dot denotes one sampling, and black dot denotes the mean values of the proportions for BD, FD, and CD processes. X axis is the proportion of f_{BD} , and Y axis is for f_{FD} . f_{CD} equals to $1-f_{BD}$ and f_{FD} .

Supplementary References

- Sutka, R. L.; Ostrom, N. E.; Ostrom, P. H.; Breznak, J. A.; Gandhi, H.; Pitt, A. J.; Li, F. Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances. Appl. Environ. Microb. 2006; 72 (1):638-644.
- Yu, L.; Harris, E.; Lewicka-Szczebak, D.; Barthel, M.; Blomberg, M. R. A.; Harris, S. J.; Johnson, M. S.; Lehmann, M. F.; Liisberg, J.; Müller, C.; Ostrom, N. E.; Six, J.; Toyoda, S.; Yoshida, N.; Mohn, J. What can we learn from N₂O isotope data? – Analytics, processes and modelling. Rap. Commun. Mass Spectrom. 2020; 34 (20):e8858.
- Toyoda, S.; Mutobe, H.; Yamagishi, H.; Yoshida, N.; Tanji, Y. Fractionation of N₂O isotopomers during production by denitrifier. Soil Biol. Biochem. 2005; 37 (8):1535-1545.
- Sutka, R. L.; Adams, G. C.; Ostrom, N. E.; Ostrom, P. H. Isotopologue fractionation during N₂O production by fungal denitrification. Rap. Commun. Mass Spectrom. 2008; 22 (24):3989-3996.
- Jones, L. C.; Peters, B.; Pacheco, J. S. L.; Casciotti, K. L.; Fendorf, S. Stable isotopes and iron oxide mineral products as markers of chemodenitrification. Environ. Sci. Technol. 2015; 49 (6):3444-3452.
- Wei, J.; Ibraim, E.; Bruggemann, N.; Vereecken, H.; Mohn, J. First real-time isotopic characterisation of N₂O from chemodenitrification. Geochim. Cosmochim. Ac. 2019; 267:17-32.
- Wankel, S. D.; Ziebis, W.; Buchwald, C.; Charoenpong, C.; de Beer, D.; Dentinger, J.; Xu,
 Z.; Zengler, K. Evidence for fungal and chemodenitrification based N₂O flux from nitrogen impacted coastal sediments. Nat. Commun. 2017; 8.
- Ostrom, N. E.; Pitt, A.; Sutka, R.; Ostrom, P. H.; Grandy, A. S.; Huizinga, K. M.; Robertson,
 G. P. Isotopologue effects during N₂O reduction in soils and in pure cultures of denitrifiers. J. Geophys. Res. Biogeosci. 2007; 112 (G2):1-12.
- 9. Ye, C.; Cheng, X. L.; Zhang, K. R.; Du, M.; Zhang, Q. F. Hydrologic pulsing affects

denitrification rates and denitrifier communities in a revegetated riparian ecotone. Soil Biol. Biochem. 2017; 115:137-147.

- 10. Li, W.; Wang, M. M.; Wang, X. G.; Cheng, X. L.; Guo, J. J.; Bian, X. M.; Cai, L. Fungal communities in sediments of subtropical Chinese seas as estimated by DNA metabarcoding. Sci. Rep. 2016; 6.
- Lopez-Gutierrez, J. C.; Henry, S.; Hallet, S.; Martin-Laurent, F.; Catroux, G.; Philippot, L. Quantification of a novel group of nitrate-reducing bacteria in the environment by real-time PCR. J. Microbiol. Meth. 2004; 57 (3):399-407.
- 12. Henry, S.; Bru, D.; Stres, B.; Hallet, S.; Philippot, L. Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl. Environ. Microb. 2006; 72 (8):5181-5189.
- 13. Ouyang, L.; Thamdrup, B.; Trimmer, M. Coupled nitrification and N₂ gas production as a cryptic process in oxic riverbeds. Nat. Commun. 2021; 12 (1).