

DEEP LEARNING FROM PHYLOGENIES TO UNCOVER
 THE EPIDEMIOLOGICAL DYNAMICS OF OUTBREAKS

Voznica J*, Zhukova A*, Boskova V, Saulnier E, Lemoine F, Moslonka-Lefebvre M, Gascuel O*

*Correspondence: voznica.jakub@gmail.com, anna.zhukova@pasteur.fr, olivier.gascuel@mnhn.fr

 SUPPLEMENTARY TABLES

 Page

Supplementary Table 1: Method comparison in terms of accuracy 1

Supplementary Table 2: Method comparison in terms of bias 2

Supplementary Table 3: Method comparison in terms of likelihood with BD model 3

Supplementary Table 4: Parameter ranges used for simulations 4

Supplementary Table 5: Method comparison in terms of model selection 5

Supplementary Table 6: BEAST2 parameters and priors 6

Supplementary Table 7: Confidence interval assessment 7

 SUPPLEMENTARY FIGURES

Supplementary Figure 1: Bijectivity of the CBLV representation 8

Supplementary Figure 2: Assessment of deep learning accuracy on small trees 9

Supplementary Figure 3 Accuracy of deep learning methods increases with tree size 10

Supplementary Figure 4: Assessment of deep learning generalization capabilities 11

Supplementary Figure 5: CNN performs well with CBLV tree representation 12

Supplementary Figure 6: How much and how fast FFNN-SS and CNN-CBLV learn? 13

Supplementary Figure 7: Adding new SS to increase accuracy of FFNN-SS 15

Supplementary Figure 8: A priori and a posteriori checks of model adequacy for HIV data 16

METHODS – EXTENDED VERSION 17-37

mailto:voznica.jakub@gmail.com
mailto:anna.zhukova@pasteur.fr
mailto:olivier.gascuel@mnhn.fr

1

Supplementary Table 1: Method comparison in terms of accuracy

For each model and inferred parameter, we compared the different inference methods in terms of Mean Relative Error
(MRE). We compared these measures for 1. FFNN trained on SS, 2. CNN trained on CBLV, 3. BEAST2, 4. FFNN
trained on CBLV, 5. Linear regression trained on SS, 6. “Null model 1”, i.e. FFNN trained on SS with permuted target
values and 7. “Null model 2” measured on 100 targets, where for each target we sampled randomly values from the
prior parameter subspace. For 1.-6. MRE values were measured on the same 100 simulations. For BEAST2, we
considered median values of covered parameter subspace, when BEAST2 did not converge (2% and 15% of
simulations for BDEI and BDSS, respectively). For 1.-6. we displayed in parentheses the MRE when not considering
the simulations for which BEAST2 did not converge. We compared the individual methods (1.-6.) in a pairwise
fashion to find out if one was more accurate in terms of MRE than the other, using two-sided paired z-test, at
significance level of 0.05 and we show the most accurate methods for each parameter in bold.

In all settings, FFNN-SS and CNN-CBLV are amongst the most accurate methods, being exclusively the most accurate
ones for BDEI 1/γ and 1/ε and for BDSS fSS. Furthermore, the comparison of MRE values shows that the prediction
of fSS has low accuracy for all methods (0.25 and 0.26 for FFNN-SS and CNN-CBLV, respectively, vs 0.34 obtained
with “Null model 1”). This might be due to low information on superspreading individuals in the trees of this size, as
supported by Supplementary Fig. 3.

2

Supplementary Table 2: Method comparison in terms of bias

For each model and inferred parameter, we compared the different inference methods in terms of Mean Relative Bias
(MRB). We compared the MRB for 1. FFNN trained on SS, 2. CNN trained on CBLV, 3. BEAST2, 4. FFNN trained
on CBLV and 5. Linear regression trained on SS. These MRB values were measured on the same 100 simulations. If
BEAST2 did not converge, we set the inferred value to the median of covered parameter subspace. We further display
MRB when not considering simulations for which BEAST2 did not converge, shown in parentheses. The relative
biases bigger than 0.05 (5%) are displayed in red bold.

This shows that FFNN-SS and CNN-CBLV have low bias, while BEAST2 suffers from an intermediate to high bias
with BDEI and BDSS for most parameters. These biases may account for a large fraction of MRE for BEAST2.

3

Supplementary Table 3: Method comparison in terms of likelihood with BD model

Y > X

Y:
True values

Y:
BEAST2

Y:
CNN-CBLV

Y:
FFNN-SS

X: True values - 70 66 69
X: BEAST2 30 - 43 53
X: CNN-CBLV 34 57 - 55

X: FFNN-CBLV 31 47 45 -

Median Y-X

Y:
True values

Y:
BEAST2

Y:
CNN-CBLV

Y:
FFNN-SS

X: True values 0.0 4.9 4.4 4.5
X: BEAST2 - 0.0 -0.2 0.2
X: CNN-CBLV - - 0.0 0.2

X: FFNN-CBLV - - - 0.0

For BD model and 100 large test trees (200-500 tips), we compared parameter estimates obtained with different
inference methods in terms of likelihood. We compared loglikelihood values evaluated by TreePar package for: True
values with which test trees were simulated; estimates obtained with BEAST2; estimates obtained with CNN-CBLV;
estimates obtained with FFNN-SS. The first table shows a simple pairwise comparison (e.g., 30 means that the True
value was better than BEAST2 in 30% of cases), while the second table shows the median of differences between
loglikelihood values.

The two results go in the same direction. The likelihood of both FFNN-SS and CNN-CBLV estimates is similar to
BEAST2’s, which explains the similar accuracy of the three methods (Fig. 3). Regarding the comparison with ‘True
values’, if a given method tends to produce higher likelihood than that of the true parameter values, then it performs
well in terms of likelihood optimization, as optimizing further should not result in higher accuracy. The results are
again quite positive, as BEAST2 as well as our NNs achieved a higher likelihood than the true parameter values for
~70% of the trees, with a significant mean difference.

4

Supplementary Table 4: Parameter ranges used for simulations

For each parameter, we display its full name and the parameter range covered by simulations of training and testing
sets. Note that all parameters were sampled from a uniform distribution, which we denote by U(x,y), with x being the
lower and y the upper bound of that uniform distribution. The table further shows whether these parameters were
inferred or used as input and, where appropriate, their relation to other model parameters (displayed in Figure 1).
Parameters common to all three models are coloured in yellow, BDEI-specific in purple and BDSS-specific in green.
The models are parameterized by the parameters of epidemiological interest except for the incubation factor, which
enables to set the incubation period to values that are reasonable with respect to the infectious period. More
specifically, through our parameterization choices, the incubation factor spans from 20% to 500% of the value of the
infectious period, making it both not negligible but also not too high when compared to infectious period.

5

Supplementary Table 5: Method comparison in terms of model selection

Confusion matrices obtained with a (i-ii), FFNN-SS, b (i-ii), CNN-CBLV and c (i-ii), BEAST2 using AICM, either
with a-c (i), small trees (between 50 and 199 tips) or a-c (ii), large trees (between 200 and 500 tips). BDSS and BDEI
are nested within BD, namely, BDEI becomes BD when incubation period is 0 and BDSS becomes BD when
superspreading individuals transmit at the same rate as normal individuals. We display the results as confusion
matrices, actual classes being columns and predicted ones being rows. These were obtained with a test set of 100
simulations obtained with each model (or 10,000 for FFNN-SS and CNN-CBLV, results in parentheses). For
BEAST2, 76% simulations converged for large trees and 96% for small trees. We show in red the number of
simulations that did not reach an ESS of 200 for at least one parameter.

6

Supplementary Table 6: BEAST2 parameters and priors

This table shows parameters and their prior distributions used during inference with BEAST2. We display the
parameters, their definitions and priors in BEAST2, that are common to all models (in yellow), common to BD
and BDEI (in red), BDEI-specific (in purple) and BDSS-specific (in green). From these parameters, we deduce
the values and distributions of parameters of interest as shown in the table. Note that the parameters of
epidemiological interest are basic reproduction number and infectious period for BD, BDEI and BDSS, incubation
period for BDEI, and superspreading infectious ratio and fraction of superspreading individuals for BDSS. We
check convergence (ESS) on all parameters and extract median a posteriori and CI values exclusively for the
parameters of epidemiological interest.

7

Supplementary Table 7: Confidence interval assessment

For each model and inferred parameter, we compared the different inference methods in terms of 95% confidence
interval (95% CI) width and coverage, the latter being defined as the fraction of samples where the true value was
within the 95% CI. We compared FFNN-SS and CNN-CBLV methods to BEAST2 on a set of 100 simulations. We
did not consider the simulations for which BEAST2 did not converged (2% for BDEI large trees, 5% for BDEI small
trees and 15% for BDSS large trees). We evaluated the same metrics on 10,000 simulations for FFNN-SS and CNN-
CBLV (in parentheses). For FFNN-SS and CNN-CBLV we performed an approximated parametric bootstrap, while
for BEAST2, we considered the entire chain with exception of the initial 10% burn-in. We highlight poor performance
(coverage ≤ 0.85, width ≥ 1/3rd of prior) in one of these metrics in red and good performance (coverage ≥ 0.95) in
green. Globally, the 95% CI width and coverage of FFNN-SS and CNN-CBLV are comparable with BEAST2 (while
not penalizing BEAST2 for non-converged estimations) and reflect the accuracy of parameter predictions (Fig. 3 and
Supplementary Fig. 2). They are slightly better for BDEI with large trees and slightly worse for BDEI with small trees.
For details on how the 95% CIs were obtained, see Methods.

Model Parameter Range

95% CI width and coverage
FFNN-SS

computed on
 converged
simulations

CNN-CBLV
computed on
 converged
simulations

BEAST2
computed on
 converged
simulations

Coverage Width Coverage Width Coverage Width

BD
200-500 tips

R0 U(1, 5)
0.99

(0.93)
0.99
(1.0)

0.98
(0.93)

1.0
(1.1)

0.99
 0.99

1/γ U(1, 10)
0.97

(0.92)
1.6

(1.5)
0.97

(0.92)
1.6

(1.6)
1.00

 1.6

BDEI
200-500 tips

R0 U(1, 5)
0.89

(0.93)
1.0

(1.1)
0.92

(0.93)
1.1

(1.1)
0.88

 1.0

1/ε [0.2, 50]
0.89

(0.91)
6.6

(6.6)
0.88

(0.92)
7.1

(7.2)
0.84

 6.0

1/γ U(1, 10)
0.84

(0.93)
2.1

(2.0)
0.93

(0.93)
2.1

(2.1)
0.90

 2.1

BDSS
200-500 tips

R0 U(1, 5)
0.94

(0.93)
1.1

(1.2)
0.93

(0.93)
1.2

(1.2)
0.94

 1.1

1/γ U(1, 10)
0.87

(0.92)
1.6

(1.7)
0.88

(0.91)
1.6

(1.7)
0.94

 1.9

XSS U(3, 10)
0.91

(0.90)
3.5

(3.5)
0.91

(0.90)
3.6

(3.6)
0.97

 3.5

fSS U(0.05, 0.20)
0.82

(0.78)
0.087

(0.086)
0.80

(0.78)
0.089

(0.089)
0.94

 0.110

BD
50-199 tips

R0 U(1, 5)
0.90

(0.91)
1.4

(1.5)
0.90

(0.90)
1.4

(1.5)
0.91

 1.4

1/γ U(1, 10)
0.86

(0.87)
2.3

(2.2)
0.85

(0.87)
2.3

(2.2)
0.94

 2.4

BDEI
50-199 tips

R0 U(1, 5)
0.93

(0.89)
1.6

(1.5)
0.93

(0.89)
1.6

(1.6)
0.96

 1.7

1/ε [0.2, 50]
0.91

(0.89)
9.7

(9.3)
0.88

(0.88)
10

(9.8)
0.96

 12

1/γ U(1, 10)
0.95

(0.90)
2.8

(2.8)
0.93

(0.90)
2.9

(2.8)
0.99

 3.1

8

Supplementary Figure 1: Bijectivity of the CBLV representation

Trees are assumed to be ordered, e.g., using ladderization or any other criterion. The inorder tree traversal procedure
transforms an ordered tree into a unique vector. We show in this figure using a simple example, how an ordered tree
is reconstructed without ambiguity from its vectorial representation, thus demonstrating the bijectivity (1-to-1
correspondence between trees and tree-compatible vectors) of the representation. a, shows the Compact Bijective
Ladderized Vector (CBLV) representation from Figure 2 a (iii); the nodes are named alphabetically in order of
appearance. Lower case letters are highlighted in yellow and represent the external nodes (or tips), upper-case letters
are highlighted in blue and represent the internal nodes. b, depicts the creation of individual ‘paths’ comprising each
pair of nodes: one external and one internal node, taken directly from the vector representation in the order of
appearance. Note that the first external node is not paired with an internal node as it is connected to the root. c, shows
how the tree reconstruction is achieved, by simply joining the paths from b, one by one from left to right. Note that
not all vectors correspond to trees, as all entries must be positive or null, plus additional constraints and inequalities
(e.g., the second entry (A=2) must be less than (or equal to) the first entry (a=6)).

9

Supplementary Figure 2: Assessment of deep learning accuracy on small trees

Comparison of inference accuracy by BEAST2 (in blue), FFNN-SS (in orange) and CNN-CBLV (in green) on 100
small test trees (50-199 tips). We compare the relative error for each tree, between the median a posteriori estimate
by BEAST2 or point estimates by neural networks and the target value for each parameter. We highlight simulations
for which BEAST2 did not converge and whose values were thus set to the median of the covered parameter space by
depicting them as red squares. We further highlight the analyses with a high relative error (>1.00) for one of the
estimates as black diamonds. We compare the relative errors for a, BD-simulated, and b, BDEI-simulated small trees.
Average relative absolute error (MRE) is displayed under each distribution in the corresponding colour. The average
error of an FFNN trained on summary statistics but with randomly permuted target is displayed as black dashed line
and its value is shown in bold black below the x-axis. The accuracy of the output of each method is compared by two-
sided paired z-test; p-value < 0.05 is shown as thick full line along with the corresponding p-value; non-significant
when not shown. The accuracy is similar for the BD model, while the NNs reach better accuracy for BDEI model,
while avoiding problems with convergence (5% BEAST2 inferences did not converge).

10

Supplementary Figure 3 Accuracy of deep learning methods increases with tree size

For each model a, BD, b, BDEI and c, BDSS, we display the regression on relative error for each parameter as a
function of tree size. We show the error for both CNN-CBLV (blue) and FFNN-SS (orange) estimated for 1,000 trees
(instead of 10,000 trees for display purposes). As expected, and consistent with statistical learning theory, for each
parameter the accuracy increases with tree size. For example, for BDEI, the relative error of R0 is on average 11% for
trees of 200 tips and decreases to 6% for trees of 500 tips. Importantly, the relative error of superspreading fraction
fSS, a parameter that is difficult to estimate, decreases from 28% for trees of 200 tips to 23% for trees of 500 tips.

11

Supplementary Figure 4: Assessment of deep learning generalization capabilities

Comparison of inference accuracy by neural networks trained on trees of sizes different from those of the test
trees:(top) trained on large trees and evaluated on prediction with small trees (FFNN-SS in beige, CNN-CBLV in
pink); and (bottom) trained on small trees and evaluated on prediction with large trees (FFNN-SS in beige, FFNN-SS
using subtree picking-and-averaging in red, CBLV-NN using subtree picking-and-averaging in magenta). For
comparison, we also show FFNN-SS (orange) and CNN-CBLV (green) trained and evaluated on prediction with trees
of compatible sizes (small on top, large on the bottom). The training and testing trees are the same as in Fig. 3 (large)
and Supplementary Fig. 2 (small). We show the relative error for each test tree. The error is measured as the
normalized distance between the point estimates by neural networks and the target value for each parameter. We
compare the relative errors for a, c, BD-simulated, b, d, BDEI-simulated trees. Average relative error is displayed for
each parameter and method in corresponding color below each figure.

The results are surprisingly good, especially with summary statistics (FFNN-SS) which are little impacted by these
changes of scale as they largely rely on means. Moreover, the subtree picking-and-averaging approach performs well
for both FFNN-SS and CNN-CBLV, which confirms the finding in Fig. 4.

12

Supplementary Figure 5: CNN performs well with CBLV tree representation

We display percentage absolute error of point estimates from deep learning methods on 10,000 test trees generated
with BDSS. We compare CNN-CBLV (in blue) with FFNN-CBLV (in green) and CNN-CRV (in orange), which is a
CNN trained on a Compact Random Vector (CRV) representation, where all internal nodes are randomly rotated
instead of being ladderized, (in orange). In addition, we show the accuracy of these models when trained on varying
training set sizes (10K: 10,000; 100K: 1,000,000; 1M: 1,000,000; and 4M: 4,000,000 trees). Boxplots are 95% CIs,
the middle bar shows the mean, and the middle box corresponds to the 25% and 75% percentiles of the relative errors
with 10,000 test trees.

For most parameters and training set sizes, the accuracy of CNN-CRV is lower than the one of CNN-CBLV, especially
with low number of training examples, while with 4M the accuracy of both methods becomes relatively close. Thanks
to ladderization, CBLV is thus enabling the CNN to learn faster and more accurately than if trained on CRV. The
difference in performance is even more striking for FFNN-CBLV when compared to CNN-CBLV.CNN-CBLV is
more accurate across all parameters and training set sizes, especially for XSS and fSS parameters even after being trained
on 4M examples.

13

Supplementary Figure 6: How much and how fast FFNN-SS and CNN-CBLV learn?

We display the distribution of relative error of individual point estimates from statistical learning methods for 10,000
trees, and median a posteriori values from BEAST2 for 100 large trees simulated under each of the three birth-death
models a, BD, b, BDEI, c, BDSS. As there are many more points considered for statistical learning methods, the
BEAST2 measures are shown for indicative purposes only (in purple). Boxplots are 95% CIs, the middle bar shows

14

the mean, and the middle box corresponds to the 25% and 75% percentiles. We compare CNN-CBLV (in blue), FFNN-
SS (in orange), LR-SS as a baseline model (in green) and ”Null model 1“, for which the FFNN was trained on summary
statistics to predict permuted target values (in red). The Null model maintains the same cost function as other neural
networks and thus minimizes the mean percentage relative error in the absence of any signal.

In addition, we show the accuracy of estimated statistical models trained on varying training set sizes (10K: 10,000;
100K: 100,000; 1M: 1,000,000; and 4M: 4,000,000 trees), to study the efficiency of the different learning approaches.

The FFNN-SS accuracy culminates at a training size of 100,000, while CNN-CBLV keeps improving at a training
size of 4,000,000. This is consistent with the fact that summary statistics represent high-level information, while the
CNN has to learn how to infer parameter values from raw information and thus require many more examples.

The baseline model LR-SS does not reach the same level of accuracy as FFNN-SS and CNN-CBLV for most
parameters, but XSS and fSS parameters in BDSS. The relationship between the summary statistics and the studied
model parameter values is too complex to be handled by linear regression. Finally, by comparing the accuracies to
those of “Null model 1”, we show how much information is extracted by the properly set-up deep-learning methods
as opposed to a model trained in the absence of signal. In most cases, the accuracy gain is high. The only exception is
fSS parameter, where the “Null model 1” has an accuracy of 0.33, while with CNN-CBLV and FFNN-SS we reach an
accuracy of around 0.25. These two approaches thus do not estimate this parameter very accurately, most likely
because (1) fSS is a fraction of rates and thus cumulates several errors, and (2) the information in the tree on
superspreading is low, as the fraction and thus the number of superspreading individuals is low as well. One solution
to this problem is to gather more data. Indeed, as shown in Supplementary Fig.7 accuracy increases substantially when
learning and inferring on larger trees.

15

Supplementary Figure 7: Adding new SS to increase accuracy of FFNN-SS

Adding SS on transmission chains improves the accuracy of prediction of superspreading individual frequency fss in
the BDSS model. We display relative absolute error (RE) of point estimates from deep learning methods for 10,000
trees simulated under the BDSS model. Boxplots are 95% CIs, the middle bar shows the mean, and the middle box
corresponds to the 25% and 75% percentiles. We compare CNN trained on CBLV representation with FFNN trained
on SS and on Original Saulnier’s SS (i.e., without SS on transmission chains), for each parameter of interest. In
addition, we show the accuracy of NN models trained on varying training set sizes (10K: 10,000; 100K: 100,000; 1M:
1,000,000; and 4M: 4,000,000 trees). This shows that additional SS enable to decrease the MRE by over 2% for fss
making it comparable to CNN-CBLV accuracy with large training sample (4M).

16

Supplementary Figure 8: A priori and a posteriori checks of model adequacy for HIV data

For each model a, BD, b, BDEI and c, BDSS, we encoded 10,000 simulations from the test set into SS and standardized
them. We then performed principal component analysis (PCA) and projected the SS from HIV phylogeny (red star)
on these PCA plots. Here we show the projections along a-c (i), the 1st and the 2nd components (PC1 and PC2) and
a-c (ii), the 3rd and the 4th components (PC3 and PC4) of the PCA, together with the associated percentage variance
explained in parentheses. For each model and projection, the HIV data point is surrounded by the simulations, meaning
it resembles globally the simulations and thus we can apply our deep learning (and BEAST2) inference methods under
each birth-death model.

Furthermore, we performed more detailed d, a priori and e, a posteriori checks using directly the values of summary
statistics without a PCA. For each statistics of HIV phylogeny, we checked whether it lays between the minimum and
the maximum value of this statistics covered in d, test set of 10,000 trees for given model (BD, BDEI or BDSS), e,
the a posteriori set under BDSS (10.000 simulations, see text). The statistics that were outside the minimum and
maximum values are numbered and named in d and e. All rejected SS in a posteriori check (e) correspond to the LTT
plot (e.g., x and y coordinates), consistent with the fact that the probabilistic, sampling component of the BDSS model
is an oversimplification of actual sampling schemes, which depend on contact tracing, sampling campaigns and
policies, etc. For details on each statistics, refer to https://doi.org/10.1371/journal.pcbi.1005416.

https://doi.org/10.1371/journal.pcbi.1005416

17

METHODS – EXTENDED VERSION

 Page

TREE REPRESENTATION USING SUMMARY STATISTICS (SS) 19

Saulnier et al. summary statistics 19

Additional summary statistics 19

COMPLETE AND COMPACT TREE REPRESENTATION (CBLV) 20

Tree ladderization 20

Tree traversal and encoding 21

Properties of CBLV 21

Alternative tree representations 22

TREE RESCALING 22

REDUCTION AND CENTERING OF SUMMARY STATISTICS REPRESENTATION 22

PARAMETER INFERENCE USING NEURAL NETWORKS 23

Deep feedforward neural network architecture for SS 23

Deep convolutional neural network for CBLV 24

Neural network setting and training 24

Preventing overfitting: Early stopping and Dropout 24

Neural networks for model selection 24

Parameter estimation from very large trees using subtree picking and averaging 25

CONFIDENCE INTERVALS (95% CI) 26

Computation of 95% CI 26

Assessment of CI accuracy and width 27

MODEL ADEQUACY 28

A priori checks 28

A posteriori checks 29

18

MODELS 29

Constant rate birth-death model with incomplete sampling 29

Birth-death model with exposed-infectious classes 29

Birth-death model with superspreading 30

SIMULATIONS 30

METHOD COMPARISON 31

Parameter inference with BEAST2 31

Model selection with BEAST2 32

Linear regression 33

FFNN-CBLV 33

TreePar 33

Null models 34

PERFORMANCE ASSESSMENT 34

Mean relative error MRE 34

Mean relative bias MRB 35

Likelihood-based assessment 35

Model selection accuracy 36

Comparison of time efficiency 36

HIV DATASET 37

PHYLODEEP SOFTWARE 37

ADDITIONAL REFERENCES 37

19

TREE REPRESENTATION USING SUMMARY STATISTICS (SS)

We use a set of 98 summary statistics (SS), to which we add the sampling probability, summing to a vector of 99

values.

Saulnier et al summary statistics

We use the 83 SS proposed by Saulnier et al.[19]:

• 8 SS on tree topology

• 26 SS on branch lengths

• 9 SS on Lineage-Through-Time (LTT) plot

• 40 SS providing the coordinates of the LTT plot

The computing time of these statistics grows linearly with tree size. For details, see the original paper.

Additional summary statistics

In addition to Saulnier et al.[19] statistics, we designed 14 SS on transmission chains. Moreover, we provide the number

of tips in the tree as input resulting in 83+14+1 = 98 SS in total.

The statistics on transmission chains are designed to capture information on the superspreading population. A

superspreading individual transmits to more individuals within a given time period than a normal spreader. We thus

expect that with superspreading individuals we would have shorter transmission chains. To have a proxy for the

transmission chain length, we look at the sum of 4 subsequent shortest times of transmission for each internal node.

This gives us a distribution of time-durations of 4-transmission chains. We assume that information on the

transmission dynamics of superspreading individuals is retained in the lower (i.e., left) tail of 4-transmission-chain

lengths distribution, which contains relatively many transmissions with short time to next transmission, while the

information on normal spreaders should be present in the rest of the distribution.

The implementation of these 4-transmission-chain SS is the following. For each internal node, we sum the distances

from the internal node to its closest descendant nodes, descending exactly four times, that is, we take first the distance

from the given internal node to its closest child node (of level 1), then from the (level 1) child node, we take its distance

to its own closest child node (of level 2), etc. If one of the closest descendant nodes is a tip (except for the last one in

20

the chain), we do not retain any value for the given internal node. Other options, like the shortest 4-edge pathway,

could have been used as well and would likely give comparable results.

On the obtained distribution of 4-transmission-chain lengths, we compute 14 statistics:

• number of 4-transmission chains in the tree

• 9 deciles of 4-transmission-chain lengths distribution

• minimum and maximum values of 4-transmission-chain lengths distribution

• mean value of 4-transmission-chain lengths

• variance of 4-transmission-chain lengths

Adding the same summary statistics but on chains comprising 2, 3 and 5 consecutive transmissions had a negligible

impact on parameter inference accuracy (data not shown).

COMPLETE AND COMPACT TREE REPRESENTATION (CBLV)

Simulated dated trees are encoded in the form of real-valued vectors, which are then used as input for the neural

networks. The representation of a tree with n tips is a vector of length 2n-1, where one single real-valued scalar

corresponds to one internal node or tip. This representation thus scales linearly with the tree size. The encoding is

achieved in two steps: tree ladderization and tree traversal.

Tree ladderization

The tree ladderization consists in ordering the children of each node. Child nodes are sorted based on the sampling

time of the most recently sampled tip in their subtrees: for each node, the branch supporting the most recently sampled

subtree is rotated to the left, as in Fig. 2 a (i-ii).

We considered several alternatives with different criteria for child (subtree) sorting instead of ladderization: sampling

time of the most anciently sampled tip, subtree length (i.e., sum of all branch lengths including the rooting branch),

diversification (i.e., number of tips), normalized branch lengths (i.e., subtree length divided by the number of tips),

etc. These did not yield better results than CBLV. We show in Supplementary Fig. 5 the comparison of CBLV with

Compact Random Vector (CRV), for which internal nodes were sorted randomly before the tree traversal, showing

that CRV yields poorer results than CBLV, as expected.

21

Tree traversal and encoding

Once the tree is sorted, we perform an inorder tree traversal, using a standard recursive algorithm from the depth first

family[30]. When visiting a tip, we add its distance to the previously visited internal node or its distance to the root, for

the tip that is visited first (i.e., the tree height due to ladderization). When visiting an internal node, we add its distance

to the root. Examples of encoding are shown in Fig. 2 a (ii-iii). This gives us the Compact Bijective Ladderized Vector

(CBLV). We then separate information relative to tips and to internal nodes into two rows (Fig. 2 a (iv)) and complete

the representation with zeros until reaching the size of the largest simulated tree for the given simulation set (Fig. 2 a

(v)).

Properties of CBLV

CBLV has favourable features for deep learning. Ladderization does not actually change the input tree (phylogenies

are unordered trees), but by ordering the subtrees it standardizes the input data and facilitates the learning phase, as

observed with CRV (Supplementary Fig. 5). Then, the inorder tree traversal procedure is a bijective transformation,

as it transforms a tree into a tree-compatible vector, from which the (ordered) tree can be reconstructed unambiguously,

using a simple path-agglomeration algorithm shown in Supplementary Fig. 1. Note, however, that not all vectors are

tree-compatible (e.g., all entries must be non-negative; the second entry must be less than the first one, etc.). CBLV

is “as concise as possible” being composed of 2n-1 real values (Fig. 2 a (iii)), where n is the number of tips. A rooted

tree has 2n-2 branches, and thus 2n-2 entries are needed to represent the branch lengths. In our 2n-1 vectorial encoding

of trees, we not only represent the branch lengths, but also the tree topology using only 1 additional entry.

The compactness and bijectivity of tree representation reduce the number of simulations required for training the

neural network (Supplementary Fig. 5). This is because the number of parameters to be trained remains reasonable

with compact representation. Moreover, the networks do not need to learn that several different inputs correspond to

the same tree.

Our neural networks are intended to apply to trees of variable sizes (e.g., trees of 200 to 500 tips in our experiments

with ‘large’ trees). Thus, they are trained on representations of different lengths (e.g., a vector of length 399 for a tree

of 200 tips), that we complete with zeroes to reach the length of the largest trees (i.e., 999 for 500 tips). We add an

additional zero to obtain a two-row matrix (500*2 for 500 tips).

22

Alternative tree representations

Our CBLV tree representation could likely be improved to ease the learning phase and obtain even better parameter

estimates. We tested several alternative representations, some inspired by the polynomial representation of small

subtrees[26,27], the Laplacian spectrum[28] and additive distance matrices that are equivalent to trees[58]. None was by

far as convincing as CBLV, which is likely due to their large size (e.g., n2 for distance matrices) or numerical

instabilities and potential loss of information (e.g., for Laplacian spectrum). Moreover, the margin for improvement

of the accuracy of CNN-CBLV for the BD model, and likely for other models, is low. This is due to the observation

that the accuracy of CNN-CBLV is similar to that of likelihood-based approaches for the BD model, and the fact that

we have an analytical likelihood formula for the BD model, making the likelihood-based approach itself optimal[8,9].

TREE RESCALING

Before encoding, the trees are rescaled so that the average branch length is 1, that is, each branch length is divided by

the average branch length of the given tree, called rescale factor. The values of the corresponding time-dependent

parameters (i.e., infectious period and incubation period) are divided by the rescale factor too. The NN is then trained

to predict these rescaled values. After parameter prediction, the predicted parameter values are multiplied by the

rescale factor and thus rescaled back to the original time scale.

This step enables us to overcome problems of arbitrary time scales of input trees and makes a pre-trained NN more

generally applicable. More specifically, an input tree with a time scale in days will be associated naturally with the

same output as the same tree with a time scale in years, since both these trees will be rescaled to the same intermediate

tree with average branch length of 1. Rescaling thus makes it possible to apply the same pre-trained NN to phylogenies

reconstructed from sequences of a pathogen associated with an infectious period on the scale of days (e.g., Ebola

virus) or years (e.g., HIV).

REDUCTION AND CENTERING OF SUMMARY STATISTICS REPRESENTATION

Before training our NN and after having rescaled the trees to unit average branch length (see the sub-section above),

we reduce and center every summary statistic by subtracting the mean and scaling to unit variance. To achieve this,

we use the standard scaler from the scikit-learn package[50], which is fitted to the training set. This does not apply to

CBLV representation, to avoid losing the ability to reconstruct the tree.

23

PARAMETER AND MODEL INFERENCE USING NEURAL NETWORKS

We implemented deep learning methods in Python 3.6 using Tensorflow 1.5.0[51], Keras 2.2.4[52] and scikit-learn

0.19.1[50] libraries. For each network, several variants in terms of number of layers and neurons, activation functions,

regularization, loss functions and optimizer, were tested. In the end, we decided for two specific architectures that best

fit our purpose: one deep FFNN trained on SS and one CNN trained on CBLV tree representation.

Deep feedforward neural network architecture for SS

The network consists of one input layer (of 99 input nodes both for trees with 50-199 and 200-500 tips), 4 sequential

hidden layers organized in a funnel shape with 64-32-16-8 neurons and 1 output layer of size 2-4 depending on the

number of parameters to be estimated. The neurons of the last hidden layer have linear activation, while others have

exponential linear activation[53].

Architecture: Feedforward neural network architecture. Example of FFNN trained on large trees to estimate the parameters

of the BD model (R0 and infectious period 1/γ). ‘Dense’ layer means that for each neuron, all the inputs are multiplied by

learned weights, summed together with the bias term. The activation function is then applied to the weighted sum before being

output to the next layer. Dense_1 to dense_4 are layers with neurons of exponential linear activation, while dense_5 is composed

either of softmax (in case of model selection) or of linear neurons (in case of parameter estimation). The number of trainable

parameters in each layer is displayed (Param #): for example in the first layer, we have 99 input values and 1 bias for each of

the 64 neurons, giving us in total (99+1)*64=6,400 trainable parameters. Output by Keras[52], the ‘None’ in the ‘Output Shape’

means the network can input more than one training example at the time and that there is no constraint on the batch size (hence

‘None’).

24

Deep convolutional neural network for CBLV

The CNN consists of one input layer (of 400 and 1002 input nodes for trees with 50-199 and 200-500 tips,

respectively). This input is then reshaped into a matrix of size of 201*2 and 501*2, for small and large trees,

respectively, with entries corresponding to tips and internal nodes separated into two different rows (and one extra

column with one entry in each row corresponding to the sampling probability). Then, there are two 1D convolutional

layers of 50 kernels each, of size 3 and 10, respectively, followed by max pooling of size 10 and another 1D

convolutional layer of 80 kernels of size 10. After the last convolutional layer, there is a GlobalPoolingAverage1D

layer and a FFNN of funnel shape (64-32-16-8 neurons) with the same architecture and setting as the NN used with

SS.

Neural network setting and training

For both NNs, we use the Adam optimisation algorithm[54] as optimizer and the Mean Absolute Percentage Error

(MAPE) as loss function. The batch size is set to 8,000. To train the network, we split the simulated dataset into 2

groups: (1) proper training set (3,990,000 examples); (2) validation set (10,000).

Preventing overfitting: Early stopping and Dropout

To prevent overfitting during training, we use: (1) the early stopping algorithm evaluating MAPE on a validation set;

and (2) dropout that we set to 0.5 in the feed-forward part of both NNs[55] (0.4, 0.45, 0.55 and 0.6 values were tried

for basic BD model without improving the accuracy).

Neural networks for model selection

For model selection, we use the same architecture for FFNN-SS and CNN-CBLV as those for parameter inference

described above. The only differences are: (1) the cost function: categorical cross entropy and (2) the activation

function used for the output layer, that is, softmax function (of size 2 for small trees, selecting between BD and BDEI

model, and of size 3 for large trees, selecting between BD, BDEI and BDSS). As we use the softmax function, the

outputs of prediction are the estimated probabilities of each model, summing to 1.

The FFNN-SS and CNN-CBLV are trained on 8*106 trees in the small tree setting (4*106 trees per model, BD and

BDEI). In the large tree setting, the FFNN-SS is trained on 12*106 trees (4*106 trees per model, BD, BDEI and BDSS)

25

and the CNN-CBLV is trained on 9*106 trees (3*106 trees per model, BD, BDEI and BDSS), instead of 12*106 for

GPU limitation purposes.

Parameter estimation from very large trees using subtree picking and averaging

To predict from very large trees (e.g., our ‘huge’ trees having 5,000 to 10,000 tips, Fig. 4) we designed the ‘Subtree

Picker’ algorithm. The goal of Subtree Picker is to extract subtrees of bounded size representing independent sub-

epidemics within the epidemic represented by the initial huge tree T, while covering most of the initial tree branches

and tips in T. The sub-epidemics should follow the same sampling scheme as the global epidemic. This means that

we can stop the sampling earlier than the most recent tip in T, but we cannot omit tips sampled before the end the

sampling period (this would correspond to lower sampling probability). Each picked subtree corresponds to a sub-

epidemic that starts with its root individual and lasts between its root date Droot and some later date (Dlast > Droot). The

picked subtree corresponds to the top part of the initial tree’s clade with the same root, while the tips sampled after

Dlast are pruned.

The picked subtrees do not intersect with each other and contain between m and M tips each. Together they cover

most of the initial tree’s branches. The initial tree T contains more than M tips. In the current PhyloDeep setting,

M=500 (the largest tree size in the training set) and m=200 for BDSS and =50 for BD and BDEI (the smallest tree size

in the training set).

Subtree Picker performs a postorder tree traversal (tips-to-root), where for each tree node N it calculates the maximum

number of tips tN that can be extracted from its subtrees. The algorithm is recursive and combines two basic strategies:

(1) the subtree rooted with N is decomposed into two independent sub-epidemics corresponding to N’s direct

descendants; or (2) we decide to keep the upper part (with x oldest tips, m ≤ x ≤ M) of the subtree rooted with N, and

the rest of N’s descendants is decomposed into independent sub-epidemics. The recursion is as follows (size(N) is the

number of tips in the subtree rooted with N):

If size(N) < m, then tN=0

Else if m ≤ size(N) < M + m, then tN=max(size(N), M) #pick the root subtree containing tN oldest tips

Else pick the best between the two strategies:

(1) Left L and right R children of N lead to independent sub-epidemics (subtrees): tN=tL+tR

26

(2) Pick the root subtree of x oldest tips (m ≤ x ≤ M, all possible x compared) plus the set ∆ of the oldest

descendant nodes of N, which represents the roots of independent sub-epidemics sampled after xth tip

date: tN=x+∑D in ∆ tD

For each processed node N, its optimal subtree picking strategy is memorized. Once tN is calculated for the root of the

global tree T, the algorithm picks the root’s subtrees according to the chosen strategy and, if needed, descends to the

non-affected descendant nodes to pick more subtrees.

Let n be the size of T (number of tips). This tree decomposition requires one preorder tree traversal, with computing

time in O(n). However, the picking strategy (2) requires another O(s) time to extract ∆ (with appropriate data structure

and pre-treatments). Thus, the whole computing time (computing (2) for each node in the tree traversal) is in O(n2),

in the worst case. In practice, the subtrees extracted by Subtree Picker cover on average 98.5% (BD), 97.3% (BDEI)

and 82.4% (BDSS) of the initial tree branches on the ‘huge’ tree datasets (5,000 to 10,000 tips). For the BDSS model

this percentage is lower than for BD and BDEI, because of the narrower subtree size interval (m=200, M=500 versus

m=50, M=500) corresponding to current PhyloDeep training set settings. In terms of computing time, Subtree Picker

takes on average 0.6 (BD), 0.8 (BDEI) and 0.8 (BDSS) seconds per ‘huge’ tree, meaning that it could easily be applied

to much larger trees.

Once subtrees (sub-epidemics) have been extracted, they are analysed using CNN-CBLV or FFNN-SS, and the

parameter estimates are averaged with weights proportional to subtree sizes (number of tips).

CONFIDENCE INTERVALS (95% CI)

Computation of 95% CI

We compute 95% CI using parametric bootstrap. To facilitate the deployment and speed-up the computation, we

perform an approximation using a separate set of 1,000,000 simulations for calculation of CI. For each simulation in

the CI set, we store the true parameter values (i.e., values with which we simulated the tree) and the parameter values

predicted with both of our methods. This large dataset of true/predicted values is used to avoid new simulations, as

required with the standard parametric bootstrap.

27

For a given simulated or empirical tree T, we obtain a set of predicted parameter values, {p}. The CI computation

procedure searches among stored data those that are closest to T in terms of tree size, sampling probability and

predicted values. We first subset:

• 10% of simulations within the CI set, which are closest to T in terms of size (number of tips), thus obtaining

100,000 CI sets of true/predicted parameter values.

• Amongst these, 10% of simulations that are closest to T in terms of sampling probability.

We thus obtain 10,000 CI sets of real/predicted parameter values, similar in size and sampling probability to T. For

each parameter value p predicted from T, we identify the 1,000 nearest neighbouring values amongst the 10,000 true

values of the same parameter available in the CI sets, { }1,1000==CI iR r , and keep the corresponding predicted values,

{ }1,1000==CI iP p . We then measure the errors for these neighbours as { }= = −CI i i iE e p r . We center these errors

around p using the median of errors, ()CIm E , which yields the distribution of errors for given prediction p:

(){ }= + −i CID p e m E , from which we extract the 95% CI around p. Individual points in the obtained distribution

that are outside of the parameter ranges covered through simulations are set to the closest boundary value of the

parameter range. For example, for fSS, if for a point in the distribution we obtain a value lower than 0.05, we set the

value of that point to 0.05; and if we obtain a value larger than 0.20, we set it to 0.20. We undertake this procedure

for all parameters except for the time related ones, that is, infectious and incubation period as these depend on the time

rescaling. The width of our 95% CIs is defined as the distance between the 2.5% and 97.5% percentile. With very

large trees and the subtree picking and averaging procedure, we consistently use a quadratic weighted average of the

individual CIs found for every subtree.

Assessment of 95% CI coverage and width

To assess this fast implementation of the parametric bootstrap, we used the test set of 10,000 simulations (and 100

simulations for comparison with BEAST2 95% CI). We measured the coverage being defined as the fraction of

simulations where the true/target parameter values are inside the obtained 95% CI:

true values inside 95%CI

95%CIaccuracy
simulations

=

28

We applied the same criteria for BEAST2. For comparison of all methods, we excluded BDEI and BDSS simulations

for which BEAST2 did not converge after 10 million steps. To draw BEAST2 CIs, we discarded the burn-in, that is,

the first 10% of the MCMC, and calculated the CI on the remaining part of the chain. The CI width and coverage

within the CIs obtained by NNs and BEAST2 are reported in Supplementary Tab. 7.

There exists a plethora of approaches for assessment of uncertainty and CI estimation. For example, (1) in a similar

ABC context, the use of neighbouring trees (based on the Euclidean distance, not applicable to CBLV and questionable

with SS) combined with a regression-based correction similar to that explained above[19,20]; (2) the (non-approximated)

parametric bootstrap[59]; (3) the prediction of values from a distribution of trees reconstructed with Bayesian

methods[10]; etc. We chose an approximation of the parametric bootstrap for its easy deployability, speed, coverage

and width of produced CIs. The easy deployability comes from the fact that CIs are based on pre-calculated data stored

in our CI set. The speed of the method comes from it not requiring simulations of new trees, and thus producing CIs

within 2-4 seconds. The coverage and width are comparable to those of BEAST2 (Supplementary Tab. 7), a Bayesian

method, intended to estimate the distribution of parameters and the uncertainty of inferences, with high computational

cost.

MODEL ADEQUACY

A priori checks

We performed a sanity check using the SS of the test set simulations and the SS measured on the empirical HIV

phylogeny. We reduced and centered the SS and performed a Principal Component Analysis (PCA) using the PCA

function from the scikit-learn[50] package.

We highlighted the data point corresponding to the Zürich HIV MSM phylogeny in Supplementary Fig. 8, for each

model (BD, BDEI and BDSS). Dissemblance between the simulations and the HIV phylogeny would be manifested

by the fact that this data point lies outside the distribution corresponding to the simulations.

Furthermore, we performed an additional a priori check consisting in the study of all individual SS rather than

dimensional reduction with PCA. For each SS, we checked whether the value for Zürich HIV MSM phylogeny lays

between the minimum and maximum value of that SS in the test set of 10.000 trees. We reported the results in

Supplementary Fig. 8.

29

A posteriori checks

We performed tests analogous to the a priori model adequacy checks. For both PCA and individual SS tests, instead

of using the test set as representative of simulations, we simulated 10,000 additional simulations under the selected

BDSS model. Parameter values were resampled from uniform distribution with boundaries given by the 95% CIs, and

sampling probability fixed to presumed value of 0.25 (Fig. 5, Supplementary Fig. 8).

MODELS

The models we used for tree simulations are represented in the form of flow diagrams in Fig. 1. We simulated dated

binary trees for (1) the training of NNs and (2) accuracy assessment of parameter estimation and model selection. We

used the following three individual-based phylodynamic models:

Constant rate birth-death model with incomplete sampling

This model (BD[8,9], Fig. 1 a) contains three parameters and three compartments: infectious (I), removed with sampling

(R) and removed unsampled (U) individuals. Infection takes place at rate β. Infectious individuals are removed with

rate γ. Upon removal, an individual is sampled with probability s.

For simulations, we re-parameterized the model in terms of: basic reproduction number, R0; infectious period, 1/γ;

sampling probability, s; and tree size, t. We then sampled the values for each simulation uniformly at random in the

ranges given in Supplementary Tab. 4.

Birth-death model with exposed-infectious classes

This model (BDEI[10-12], Fig. 1 b) is a BD model extended through the presence of an exposed class. More specifically,

this means that each infected individual starts as non-infectious (E) and becomes infectious (I) at incubation rate ε.

BDEI model thus has four parameters (β, γ, ε and s) and four compartments (E, I, R and U).

For simulations, we re-parameterized the model similarly as described for BD, set the ε value via 1/γ and incubation

ratio (=ε/γ). We sampled all parameters, including ε/γ, from a uniform distribution, just as with BD (Supplementary

Tab. 4).

30

Birth-death model with superspreading

This model (BDSS[5,10,11], Fig. 1 c) accounts for heterogeneous infectious classes. Infected individuals belong to one

of two infectious classes (IS for superspreading and IN for normal spreading) and can transmit the disease by giving

birth to individuals of either class, with rates βS,S and βS,N for IS transmitting to IS and to IN, respectively, and βN,S and

βN,N for IN transmitting to IS and IN, respectively. However, there is a restriction on parameter values: S,S N,Nβ ×β =

S,N N,Sβ ×β . There are thus superspreading transmission rates βS,. and normal transmission rates βN,. that are

XSS S,S N,S S,N N,N= β β = β β times higher for superspreading. At transmission, the probability of the recipient to be

superspreading is fss ()S,S S,S S,N= β β +β , the fraction of superspreading individuals at equilibrium. We consider that

both IS and IN populations are otherwise indistinguishable, that is, both populations share the same infectious period

(1/γ)[5,10,11]. The model thus has six parameters, but only five need to be estimated to fully define the model[5,10]. For

simulations, we chose parameters of epidemiological interest for re-parameterization: basic reproduction number 𝑅𝑅0),

infectious period 1/γ, fSS, Xss and sampling probability s. In our simulations, we used uniform distributions for these

5 parameters, just as with BD and BDEI (Supplementary Tab. 4).

SIMULATIONS

For the parameters R0, 1/γ, and s, that are common to all three birth-death models, the same value boundaries were

used across all models (Supplementary Tab. 4). We considered two spans of tree size: ‘small trees’ with 50 to 199

tips and ‘large trees’ with 200 to 500 tips. We then sampled parameter values uniformly at random within these

parameter boundaries with standard Latin-hypercube sampling[60] using PyDOE package. We created 3,990,000

parameter sets for training, 10,000 for validation and early stopping, another 10,000 for testing parameter inference

and model selection (comparison with BEAST2 used a subset of 100, for computing time reasons), and 1,000,000

parameter sets for fast computation of CIs.

With these parameter sets, we simulated trees under each birth-death model using our implementation in Python of

Gillespie algorithm[61], based on a standard forward simulator. Comparable accuracies (as in Fig. 3 and

Supplementary Fig. 1, both for BEAST2 and our methods) were reached on test simulations obtained with a well-

established (but slower) simulator: TreeSim[4,5,7] (data not shown).

31

Each simulation started with one infectious individual (the class was chosen randomly under the BDSS model) and

stopped when we obtained a tree with the given number of sampled individuals (tips). If the epidemic died away

stochastically, that is, there was no more infectious tips left due to stochastic death before reaching the given tree size,

we re-initialized the simulation up to 100 times. Only around 11% of simulations reached more than 2 iterations (20%

for BDSS), and less than 0.5% reached more than 50 iterations for all models. If still no tree of given size was obtained

after 100 iterations, we discarded the parameter set (less than 0.3% of all sets) and generated a new one to keep the

desired number of simulations. This enabled us to maintain a nearly uniform coverage of parameter space, within

selected parameter boundaries.

We simulated 100 ‘huge’ trees for each model, with the same parameter values as for the 100 large trees used for

testing (Fig. 3). These trees were simulated with treesimulator (https://pypi.org/project/treesimulator). The

Snakemake[62] pipeline for huge trees simulation along with the simulated trees are available on GitHub.

METHOD COMPARISON

Parameter inference with BEAST2

To assess the accuracy of our methods, we compared it with a well-established Bayesian method, as implemented in

BEAST2 (version 2.6.2). We used the BDSKY package[4] (version 1.4.5) to estimate the parameter values of BD

simulations and the package bdmm[12,13] (version 1.0) to infer the parameter values of BDEI and BDSS. Furthermore,

for the inference on BDSS simulations, instead of BEAST 2.6.2 we used the BEAST2 code up to the commit

nr2311ba7, which includes important fixes to operators critical for our analyses. We set the Markov Chain Monte

Carlo (MCMC) length to 5 million steps for the BD model, and to 10 million steps for the BDEI and BDSS models.

The sampling probability was fixed during the estimation. Since the BD, BDEI and BDSS models implemented in

BEAST2 do not use the same parametrizations as our methods, we needed to apply parameter conversions for setting

the priors for BEAST2 inference (Supplementary Tab. 6), and for translating the BEAST2 results back to

parameterizations used in our methods, in order to enable proper comparison of the results. More specifically, the

BEAST2 parameters can be converted to those used in our methods, that is, instead of infectious period and incubation

period, BEAST2 uses the inverse of these, namely the infectious rate and incubation rate, respectively; instead of

https://pypi.org/project/treesimulator

32

superspreading transmission ratio and superspreading fraction at equilibrium, it uses individual sub-component

parameters R0,SS, R0,SN, R0,NS and R0,NN, which we will collectively refer to as “partial R0”. For BDSS, the BEAST2

prior was thus not the same as that of our simulations for BDSS (Supplementary Tab. 4, 6), since BEAST2 does not

infer the same parameters. We used the range of all parameter values used in our simulations to set the boundaries of

uniform prior distributions of parameters inferred by BEAST2. The initial values in the MCMC were set to the medians

observed in the training set. During the inference, the parameter values were constrained in the same way as in the

simulations, namely, we used the constraint 0,SS 0,NN 0,SN 0,NSR ×R = R ×R (equivalent to S,S N,N S,N N,Sβ ×β = β ×β) in the

BDSS model inference. Furthermore, the effective frequency of superspreading individuals (parameter called “geo-

frequencies” in bdmm) was constrained to be between 5% and 20%. Due to the parameter conversions, and despite

these constraints the inferred fss and Xss can reach values outside the boundaries used for simulations, in which case

we set them to the closest boundary for fair comparison with deep learning methods in Fig. 3 (e.g., if the median a

posteriori fss was estimated to be larger than 0.20, it was set to 0.20 and if inferred fss was less than 0.05, it was set to

0.05). The goal of this correction was to avoid penalizing BEAST2 when it converged to local minima outside of the

parameter boundaries used for simulations, which are implicitly known to NNs since they were trained on simulations

with parameters within these boundaries.

After we obtained the parameters of interest from the original parameters estimated by BEAST2, we evaluated the

Effective Sample Size (ESS) on all parameters. We reported the absolute percentage error of the median of a posteriori

values, corresponding to all reported steps (reported steps being spaced by 1,000 actual MCMC steps) past the 10%

burn-in. For simulations for which BEAST2 did not converge, we considered the median of the parameter distribution

used for simulations (Fig. 3, Supplementary Tab. 1-2, Supplementary Fig. 2) or excluded them from the comparison

(Supplementary Tab. 1-2, values reported in brackets, Supplementary Tab. 5).

For the HIV application, the prior of infectious period was set to [0.1, 30] years (uniform). All the other parameters

had the same prior distributions as used in simulations and shown in Supplementary Tab. 4, 6.

Model selection with BEAST2

We performed model selection under BEAST2 using Akaike’s information criterion through MCMC (AICM)[32,33].

The AICM is based on the following formula:

33

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 2𝑠𝑠𝑙𝑙2 − 2𝑙𝑙

where l and 𝑠𝑠𝑙𝑙2 are the sample mean and variance of the posterior log-likelihoods. The AICM is an equivalent of AIC

and the model with lowest AICM value is selected.

For 100 simulations obtained with each model (BD, BDEI and BDSS for large trees, BD and BDEI for small trees),

we performed parameter estimation with BEAST2 under each model, computed AICM considering the whole MCMC,

but excluding 10% burn-in (i.e., 9,000 log-likelihood values for BDEI and BDSS considered in total, 4,500 for BD).

The results of model selection are shown in Supplementary Tab. 5. The BDEI and BDSS simulations for which

BEAST2 did not reach an ESS of 200 for all parameters were excluded from the computation of model selection

accuracy for all methods.

Linear regression

For each model, linear regression was trained using reduced and centered summary statistics (using scikit-learn

package, as with FFNN). Its bias and accuracy were assessed using the same criteria as for the NN approaches

(Supplementary Tab. 1-2, Supplementary Fig. 6).

FFNN-CBLV

We trained an FFNN on CBLV representation. The FFNN architecture was close to the one described in Architecture

with one extra hidden layer, so 5 layers in total, organized in a funnel shape with 128-64-32-16-8 neurons and 1 output

layer of size 2-4 depending on the number of parameters to be estimated. The setting during the training and the sizes

of training, validation and testing sets were the same as for the CNN-CBLV. Its bias and accuracy were assessed using

the same criteria as for other NN approaches (Supplementary Tab. 1-2, Supplementary Fig. 5).

TreePar

We used TreePar[5] for MLE. With BD, we obtained results close to estimates under BEAST2, which is consistent

with former studies. TreePar[5] uses an exact analytical formula of likelihood for BD and thus these (and BEAST2)

results are theoretically optimal.

34

We also performed several trials to do parameter inference for the more complex models (i.e., BDEI and BDSS), but

in a large number of cases, we encountered numerical problems (e.g., underflow or overflow issues), which resulted

in infinite negative log-likelihood values, and eventually failed runs. When the calculations did not fail, we found that

many estimations under BDSS and BDEI had lower likelihood than estimations performed with (nested) BD on the

same input data. These numerical issues were confirmed by the authors of the TreePar package, with no solution

available at the moment.

Null models

To assess how much information was learned on given problem, we compared FFNN-SS and CNN-CBLV to two null

models.

The first null model was the FFNN trained for each model on 4,000,000 simulations using SS, but with randomly

permuted target values (i.e., the initial correspondence between the SS and underlying parameter values was lost,

while the range of values was conserved). We then predicted parameters for 10,000 test simulations (100 for

comparison with BEAST2) and measured the mean absolute relative error (MRE; Supplementary Tab. 1). In such a

case, the FFNN always predicted values close to the value with the lowest value of the cost function (e.g., 2.2 for

parameter values uniformly sampled between 1 and 5). The MRE of this approach represents the lowest MRE that

machine learning approaches can have in the absence of information, but the knowledge of the parameter distribution.

This can be used to get an idea of how well the trained approaches perform and how much information regarding each

parameter they can extract from the data.

The second null model was a set of random values sampled from the parameter ranges that were used for simulations

(Supplementary Tab. 4). In this model, as opposed to the previous null model, there is no training phase and we do

not learn the best compromise in the absence of information.

PERFORMANCE ASSESSMENT

Mean relative error MRE

To compare the accuracy of parameter estimation, we used 100 simulated trees per model. We computed the mean

absolute relative error (MRE, Fig. 3-4, Supplementary Tab. 1, Supplementary Fig. 2-4) between (1) the true (or

35

target) parameter values and the predicted values for machine learning approaches; and (2) the true (or target)

parameter values and the median a posteriori values obtained with BEAST2, which are more stable and accurate than

maximum a posteriori values:

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
100

∑ |𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖|
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖

100
𝑖𝑖=1 .

We plotted individual absolute relative errors (RE) of predictions (Fig. 3-4, Supplementary Tab. 1, Supplementary

Fig. 2, 4) for each simulation i, calculated as:

𝑅𝑅𝑅𝑅𝑖𝑖 =
|(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 − 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖)|

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖

Not being limited by the computational cost for machine learning approaches, we computed the same metric but on

10,000 simulations (Supplementary Fig. 3, 5-6; results from 1,000 simulations plotted in Supplementary Fig. 7).

We assessed the statistical significance of MRE differences using two-sided paired z-test. The two NN approaches

were also compared using the same test, but no significant differences were found.

Mean relative bias MRB

To compare the bias in parameter estimation, we used 100 simulated trees per model. We computed the mean relative

bias (MRB) between (1) the true (or target) parameter values and the predicted values for machine learning

approaches; and (2) the true (or target) parameter values and the median a posteriori values obtained with BEAST2

(Supplementary Tab. 2):

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
100

∑ (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖)
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖

100
𝑖𝑖=1 .

Comparison of likelihood values for sets of parameter estimates obtained with different methods

To assess the performance of different methods, we also studied the likelihood values of parameter estimates obtained

with BEAST2, CNN-CBLV and FFNN-SS. For BD, we computed the likelihood using TreePar and compared it to

the likelihood value of target parameter values (Supplementary Tab. 3).

As TreePar was problematic with BDEI and BDSS (see above), we tried to take on the same approach for BDEI and

BDSS with BEAST2, but imposing a single MCMC step. Nevertheless, this did not yield sufficient results to perform

36

sound comparison, since for example with FFNN-SS predictions, the likelihood was obtained only for 57/100

parameter estimates for BDEI and 49/100 for BDSS. In the remaining cases, BEAST2 either failed to return consistent

likelihood values, or was unable to calculate likelihood for the initial parameter values.

Model selection accuracy

We performed model selection with CNN-CBLV, FFNN-SS and BEAST2 on 100 simulations obtained with each

model (10,000 for a sub-comparison of CNN-CBLV and FFNN-SS). Results are shown in Supplementary Tab. 5 in

the form of confusion matrices, where the columns represent the true/target classes, and the rows are the predicted

classes. We then computed the accuracy of each method:

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = # 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

.

For BEAST2 model selection and large trees, the chain did not converge (displayed as “ESS<200” in Supplementary

Tab. 5) for 24.3% simulations of large trees and 4.5% simulations of small trees. We did not consider these in accuracy

measurements, for all the methods.

Comparison of time efficiency

For FFNN-SS and CNN-CBLV, we reported the average CPU time of encoding a tree (average over 10,000 trees), as

reported by NextFlow workflow manager[56], a pipeline software that we used. The inference time itself was negligible.

For BEAST2, we reported the CPU time averaged over 100 analyses with BEAST2 as reported by NextFlow. For the

analyses with BDEI and BDSS models, we reported the CPU time to process 10 million MCMC steps, and for the

analyses with BD, we reported the CPU time to process 5 million MCMC steps. To account for convergence, we re-

calculated the average CPU time considering only those analyses for which the chain converged and an ESS of 200

was reached across all inferred parameters.

The calculations were performed on a computational cluster with CentOS machines and Slurm workload manager.

The machines had the following characteristics: 28 cores, 2.4Ghz, 128 GB of RAM. Each of our jobs (simulation of

one tree, tree encoding, BEAST2 run, etc.) was performed requesting one CPU core. The neural network training was

performed on a GPU cluster with Nvidia Titan X GPUs.

37

HIV DATASET

We used the original phylogenetic tree reconstructed by Rasmussen et al.[25] from 200 sequences corresponding to the

largest cluster of HIV-infected men-having-sex-with-men (MSM) subpopulation in Zurich, collected as a part of the

Swiss Cohort Study[24]. For details on tree reconstruction, please refer to their article.

PHYLODEEP SOFTWARE

FFNN-SS and CNN-CBLV parameter inference, model selection, 95% CI computation and a priori checks are

implemented in the PhyloDeep software, which is available on GitHub (github.com/evolbioinfo/phylodeep), PyPi

(pypi.org/project/phylodeep) and Docker Hub (hub.docker.com/r/evolbioinfo/phylodeep). It can be run as a

command-line program, Python3 package and a Docker container. PhyloDeep covers the parameter subspace as

described in Supplementary Tab. 4. The input is a dated phylogenetic tree with at least 50 tips and presumed sampling

probability. The output is a PCA plot for a priori check, a csv file with all SS, and a csv file with probabilities of each

model (for model selection) and point estimates and 95% CI values (for parameter inference with selected model).

The installation details and usage examples are available as well on GitHub.

ADDITIONAL REFERENCES

58. Zarestkii, K. Reconstructing a tree from the distances between its leaves. (in Russian) Uspehi

Mathematicheskikh Nauk 20, 90-92 (1965).

59. Efron, B. Breakthroughs In Statistics, Ch. Bootstrap Methods: Another Look at the Jackknife. (Springer, New

York, 1999).

60. McKay, M., Beckman, R., Conover, W. A Comparison of Three Methods for Selecting Values of Input

Variables in the Analysis of Output from a Computer Code. Technometrics 21, 239-245 (1979).

61. Gillespie, D.T. Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry 81,

2340-2361 (1977).

62. Köster, J., Rahmann, S. Snakemake - a scalable bioinformatics workflow engine. Bioinformatics. 28(19), 2520-2

(2012).

http://github.com/evolbioinfo/phylodeep
https://pypi.org/
https://pypi.org/
https://hub.docker.com/r/evolbioinfo/phylodeep
https://hub.docker.com/r/evolbioinfo/phylodeep

