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Reviewers' Comments: 

Reviewer #1: 

Remarks to the Author: 

This paper introduces PhyloDeep, a deep learning tool for predicting phylodynamic parameters 

under three birth-death models. The paper introduces machine learning models based on two 

different representations of timed phylogenies: (1) a summary statistic based representation, 

which represents timed phylogenies based on extended feature set first described by Saulnier et 

al., and (2) a vector based representation that uniquely describes timed phylogenies, which are 

rooted, binary, edge-labeled trees. On simulated data of modest size (of 50-200 and 200-500 

leaves), the paper demonstrates that (1) the two representations have equivalent performance for 

all birth-death models, (2) have similar performance as BEAST2 for the simplest model, (3) but 

better performance than BEAST2 for the more complicated birth-death models. Finally, the paper 

illustrates a use case of PhyloDeep on a HIV datasets with 200 leaves, showing that the predicted 

birth-death model parameters are more in line with another previous study than BEAST's. Overall, 

the paper is well written and thorough, and will be of interest to the readership of this journal. I 

have a couple of comments that could strengthen the manuscript. 

1. How do learned models generalize? 

I would like to know how well learned models generalize to other smaller datasets. For instance, 

does the learned model for the larger instances (200-500 tips) perform well on the smaller 

instances (50-200 tips)? 

2. Guidance on which representation to use? 

Related to above, I'd like to see a more thorough investigation of the differences between the two 

representations? Can you find scenarios where one representation would be preferable over the 

other? Does one take longer to train? Is there a difference in generalizability? 

3. What is the impact of the additional features added to the SS representation. 

The authors introduced new summary statistics. I'd like to know more about the performance with 

and without these additional features. Also, how well does a joint representation perform, where 

you combine the two current representations (based on summary statistics, and based on tree 

topology/branch lengths). 

4. Compute likelihood of solutions identified by PhyloDeep 

To better understand where the improvement of performance relative to BEAST2 comes from, it 

would be good to evaluate the likelihood of the solutions identified by PhyloDeep. Do they have 

larger likelihood than BEAST2 solutions? 

5. Additional real dataset. Preferably a large-scale one. 

Finally, I think the impact of the method/paper can be largely increased if you would consider an 

additional large-scale dataset. 

Minor comments: 

* More emphasis on PhyloDeep 

The first mention of PhyloDeep occurs very late in the paper, almost like an afterthought. I think it 

should be featured more prominently, e.g. in the Abstract and Introduction, especially if you want 

this to be a tool to be used by the community. 

* Line 452: maximal => maximum or largest 



Reviewer #2: 

Remarks to the Author: 

Review 

Deep learning from phylogenies to uncover the transmission dynamics of epidemics 

By Voznica et al. 

The authors propose an original likelihood-free, simulation-based approach grounded on deep 

learning to infer the dynamics of epidemics from genetic data. They compare different versions of 

their approach to existing approaches currently used in the domain. They apply the method to an 

existing real data set dealing with the HIV epidemic in Zurich, which was already analyzed and 

leads the authors to refine the knowledge about the determinants of HIV transmission in Zurich. 

The short discussion gives several perspectives for extending the application domain of their 

approach. Codes implementing the approach are provided within the Python package PhyloDeep 

(note that I have not tested the codes). 

This study is particularly well designed and many aspects are explored (most of the interrogations 

that I had during the reading of the main text are actually treated in the supplementary material). 

The main text is clear and, as I write above, generally adequately complemented by supporting 

information. The methods are well described and relevant. 

The following concerns more specific points. 

The title, DEEP LEARNING FROM PHYLOGENIES TO UNCOVER THE TRANSMISSION DYNAMICS OF 

EPIDEMICS, induces a confusion since the inference of the transmission dynamics may refer to the 

estimation of `who infected whom’, whereas the authors’ objective is upstream: selecting a 

transmission model and estimating its parameters. Hence, I wonder if a title like DEEP LEARNING 

FROM PHYLOGENIES TO INFER THE DETERMINANTS OF DISEASE TRANSMISSION DYNAMICS (or 

something approaching) would be more adequate. 

To facilitate the reading across this rich piece of work, supplementary figures and tables should be 

ordered as they appear in the main text. 

After reading the introduction, I was unsure whether you were embedding your method in the 

framework of ABC or not. If I understood correctly, you do not, and you simply mention ABC, and 

more specifically the paper by Saulnier et al., because you recycle summary statistics that were 

proposed by Saulnier and her colleagues. At l.68, the term `rejection-free’ puts the reader on the 

track that you do not develop an ABC approach, but you should make it more explicit at the 

transition from the paragraph about the Saulnier’s paper (l.60-67) to the next paragraph (l.68-

80). 

l.122: The authors should more exactly specify here what they call the `sampling probability’ and 

what means `known’. This is clear later in the paper, but is ambiguous at this stage of the paper. 

l.196-197: The convergence issue only concerns BEAST2, doesn’t it? 

In the discussion, the authors should evoke the question about how their approaches scale up with 

larger data sets than those considered in the application and simulations, with larger trees, lower 

sampling probability, and models with more parameters. In particular, is there a need for a much 

larger number of simulations (than 4M) for training the deep learning tools that the authors 

proposed to use in these cases? Supp. Fig. 3 and 4 partly tackle this question and, if my 

interpretation is correct, SF3 states that the performance is relatively stable in terms of model 

selection when the tree size increases, and SF4 states that the performance in terms of parameter 

estimation accuracy increases with the number of simulations. The authors could make a synthesis 

of this type of results in the discussion and extrapolate (to some extents) for answering the other 

dimensions of the above-mentioned question. 



Fig. 4 and Supp. Fig. 8: the authors interestingly show that observed summary statistics for HIV 

are within the `simulated envelope’ of summary statistics throughout an analysis of the first two 

axes of a PCA. It would be interesting as well to perform the a priori check for the row summary 

statistics (without PCA). Since there are many summary statistics, the authors could provide a 

relatively concise table indicating, for each SS (i.e., marginally), to which quantile the observed 

value corresponds. This table could also be summarized into an histogram providing the 

distribution of the afore-mentioned quantiles. The table and the histogram would more precisely 

indicate how the class of used models represent real data. 

Supp. Table 1 should include the information given at l.823-825 that a different prior is used for 

the infectious period in the numerical experiment and in the application. Looking at Fig. 4, it seems 

to me that a different prior is also used for X_{SS}, but I am maybe wrong and I maybe missed 

this information in the text. 

Samuel Soubeyrand, INRAE, BioSP. 



April 22, 2022 

Dear RŜǾƛŜǿŜǊǎ,  

We would like to thank you for your comments on our manuscript "Deep learning from phylogenies to 

uncover  the  transmission  dynamics  of  epidemics",  submitted  to  Nature  Communications.  We  have  
uploaded  a  revised  version  to  the  journal's  website.  We  apologize  for  the  delay  in  revƛǎing  this 
manuscript. It was a complicated time for all of us with Covid‐19 and Jakub Voznica (first author) movŜ to 
another institution after his thesis defence.   

Your comments helped us to improve the methods, the PhyloDeep software and the original manuscript. 

Following  the comments of reǾƛŜǿŜǊ 1, we have considerably extended  the range of application of our 
neural networks, making them capable of analysing very large phylogenies in a few minutes, thanks to a 

novel decomposition of large pathogen phylogenies into sub‐epidemics (sub‐trees). We also assessed the 

generalization capabilities and the  likelihood performance of our approach. Following the comments of 

reǾƛŜǿŜǊ  2,  the  discussion  has  been  completed  and  we  changed  the  title  to  “Deep  learning  from 

phylogenies to infer the epidemiological dynamics of outbreaks”, which is clearer.  

We are confident that the new version  is much  improved thanks to your comments, all of which have 

been taken into account. In what follows, you will find our point‐by‐point responses/changes, as well as a 

highlighted version of the main manuscript where all changes are marked in blue. We have also uploaded 

highlighted versions of the Methods and Supplementary Information onto the journal website. 

We look forward to any further comments you may have. 

Sincerely, the authors



REVIEWER COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
This paper introduces PhyloDeep, a deep learning tool for predicting phylodynamic parameters 
under three birth-death models. The paper introduces machine learning models based on two 
different representations of timed phylogenies: (1) a summary statistic based representation, 
which represents timed phylogenies based on extended feature set first described by Saulnier 
et al., and (2) a vector based representation that uniquely describes timed phylogenies, which 
are rooted, binary, edge-labeled trees. On simulated data of modest size (of 50-200 and 200-
500 leaves), the paper demonstrates that (1) the two representations have equivalent 
performance for all birth-death models, (2) have similar performance as BEAST2 for the 
simplest model, (3) but better performance than BEAST2 for the more complicated birth-death 
models. Finally, the paper illustrates a use case of PhyloDeep on a HIV datasets with 200 
leaves, showing that the predicted birth-death model parameters are more in line 
with another previous study than BEAST's. Overall, the paper is well written and thorough, and 
will be of interest to the readership of this journal. I have a couple of comments that could 
strengthen the manuscript. 
 
1. How do learned models generalize? 
 
I would like to know how well learned models generalize to other smaller datasets. For instance, 
does the learned model for the larger instances (200-500 tips) perform well on the smaller 
instances (50-200 tips)? 
 
In statistical learning theory [31], generalization relates to the ability to predict new samples 
drawn from the same distribution as the training instances. Generalization is opposed to rote 
learning and overfitting, where the learned classifier or regressor predicts the training instances 
accurately, but new instances extracted from the same distribution or population poorly. The 
generalization capability of our NNs was extensively assessed in the submitted version of the 
manuscript, using large, independent testing sets (Fig. 3).  
 
However, we agree with the referee that extending the study to samples that differ from the 
training distribution is clearly of interest in phylodynamics, in particular when the input tree is 
smaller than the training trees (as he/she suggested), but also, most importantly, when the input 
tree is larger than the training trees. We added results along this line. To summarize: 
 
• We estimated the parameters of small trees (50-199 tips) using NNs trained with large trees 

(200-500 tips), and vice versa the parameters of large trees with NNs trained with small 
trees. The results (Supplementary Fig. 4) were surprisingly good from a machine learning 
standpoint, as the testing trees clearly departed from the training distribution. In particular, 
the accuracy obtained with FFNN-SS (summary statistics) was not affected very much by 
this strong violation of standard machine learning assumptions, while the accuracy of CNN-
CBLV (combinatorial tree representation) was impacted but remained relatively high. 



• However, in these experiments all trees are still of moderate size (≤500 tips), while very 
large trees will become increasingly common in the near future with viral pathogens (see the 
current epidemics…). We thus explored another use of our NNs (pages 7, 9-10, Fig. 4), 
where a ‘huge’ input tree (5,000 to 10,000 tips in our experiments) is first decomposed into a 
set of disjoint subtrees (50 to 500 tips), which cover most of the huge-tree branches. Then, 
we apply the NNs for predictions on each subtree and combine the results using weighted 
averages. The results are impressive, for both FFNN-SS and CNN-CBLV. The prediction 
requires ~1 CPU minute and the accuracy obtained with these huge trees is clearly higher 
than the one obtained with large trees (200-500 tips), with an error drop of a factor of 2 to 3 
(Fig. 4). When applying this decomposition method to the prediction of large trees using 
NNs trained with small trees, the error became nearly identical to the error obtained with the 
right NNs (Supplementary Fig. 4). 

• We believe that this capacity of NNs, made possible by their predictive speed, opens the 
way to many applications, which cannot be addressed today by any existing method. In 
particular, it is now possible to analyse extremely large phylogenies, and the approach could 
be used to track the evolution of parameters (e.g. R0) in different regions (sub-trees) of a 
global tree, as a function of dates (as in Bayesian skyline models), geographical areas, viral 
variants etc. This new decomposition approach and the corresponding algorithm, named 
‘subtree picker’, have been added to PhyloDeep and described in Methods (page 7).  

 
 
2. Guidance on which representation to use? 
 
Related to above, I'd like to see a more thorough investigation of the differences between the 
two representations? Can you find scenarios where one representation would be preferable 
over the other? Does one take longer to train? Is there a difference in generalizability? 
 
Thank you for this point, we added the following subsection, addressing all these issues (see 
also above comments and changes regarding generalizability): 
 
SS is simpler, but CBLV has high potential for application to new models 
 
FFNN-SS and CNN-CBLV show similar accuracy across all settings (Fig. 3, Supplementary 
Tab. 1-2), including when predicting huge trees from their subtrees (Fig. 4). The only exception 
is the prediction of large trees using NNs trained with small trees (Supplementary Fig. 4), where 
FFNN-SS is superior to CNN-CBLV, but this goes beyond the recommended use of the 
approach, as only a part of the (large) query tree is given to the (small) CNN-CBLV.  
 
However, the use of the two representations is clearly different, and it is likely that with new 
models and scenarios their accuracy will differ. SS requires a simpler architecture (FFNN) and 
is trained faster (e.g., 5 hours with large BDSS trees), with less training instances 
(Supplementary Fig. 6). However, this simplicity is obtained at cost of a long preliminary work to 
design appropriate summary statistics for each new model, as was confirmed in our analyses of 
BDSS simulations. To estimate the parameters of this model, we added summary statistics on 



transmission chains on top of the SS taken from Saulnier et al. [19]. This improved the accuracy 
of superspreading fraction estimates of the FFNN-SS, so that it was comparable to the CNN-
CBLV, while the accuracy for the other parameters remained similar (Supplementary Fig. 7). 
The advantage of the CBLV is its generality, meaning there is no loss of information between 
the tree and its representation in CBLV regardless of which model the tree was generated 
under. However, CBLV requires more complex architectures (CNN), more computing time in the 
learning phase (150 hours with large BDSS trees) and more training instances (Supplementary 
Fig. 6). Such an outcome is expected. With raw CBLV representation, the convolutional 
architecture is used to “discover” relevant summary statistics (or features, in machine learning 
terminology), which has a computational cost.  
 
In fact, the two representations should not be opposed. An interesting direction for further 
research would be to combine them (e.g., during the FFNN phase), to possibly obtain even 
better results. Moreover, SS are still informative and useful (and quickly computed), in particular 
to perform sanity checks, both a priori and a posteriori (Fig. 5, Supplementary Fig. 8), or to 
quickly evaluate the predictability of new models and scenarios. 
 

3. What is the impact of the additional features added to the SS representation. 
 
The authors introduced new summary statistics. I'd like to know more about the performance 
with and without these additional features.  
 
In the revised version, the accuracy of all parameter estimates for BDSS is provided in 
Supplementary Fig. 7, with and without these additional features, and compared to CBLV. To 
summarize: the accuracy for the superspreading fraction (the most difficult parameter) is 
substantially improved with the new features and becomes similar to CNN-CBLV’s, while the 
accuracy for the other parameters remains similar. Note, moreover, that the results for BD and 
BDEI were obtained with SS including these new features. All this is provided and explained in 
the revised version (see new subsection above and Supplementary Fig. 7). 
 
Also, how well does a joint representation perform, where you combine the two current 
representations (based on summary statistics, and based on tree topology/branch lengths). 
 
Combining both representations is certainly an interesting direction for further research. 
However, this imposes more complex NN architectures; for example, to incorporate the SS in 
the FFNN phase, after CNN and feature extraction from CBLV. Note, moreover, that the 
predictions of both approaches are highly correlated (close to 1 for most parameters of the three 
models), meaning that there is likely little room for improvement. Thus, we decided to leave this 
research direction for future works, and to give some indications in the Discussion (page 15). 
 
 
 
 
 



4. Compute likelihood of solutions identified by PhyloDeep 
 
To better understand where the improvement of performance relative to BEAST2 comes from, it 
would be good to evaluate the likelihood of the solutions identified by PhyloDeep. Do they have 
larger likelihood than BEAST2 solutions? 
 
We fully understand this demand, but a problem is that computing the likelihood is generally 
difficult (if not impossible) in phylodynamics, hence the numerous ABC and likelihood-free 
methods.  
 
However, with the simplest birth-death (BD) model we have a closed form solution to compute 
the likelihood function, and we applied Referee’s suggestion to our ‘large’ dataset, where 
BEAST2 and our NNs have similar accuracy (Fig. 3). We also computed the likelihood for the 
‘true’ parameter values used to simulate the trees, in order to have an independent and solid 
assessment of the performance of the various methods. If a given method tends to produce 
higher likelihood than the one obtained with the true parameters values, then it performs “well 
enough” in terms of likelihood optimization, as optimizing further should not result in higher 
accuracy. The results (Supplementary Tab. 3) were as follows: (i) all methods (BEAST2, FFNN-
SS and CNN-CBLV) obtained higher likelihood values than those obtained with true parameter 
values for ~70% of the trees, with a significant average difference; (ii) the difference of likelihood 
values between BEAST2, FFNN-SS and CNN-CBLV was non-significant, which explains their 
similar accuracy. These results are remarkable, as the NNs do not explicitly optimize the 
likelihood function associated with the model but use a radically different simulation-based 
learning approach. 
 
Applying the same to BDEI and BDSS turned out to be impossible, as we do not have closed 
form solutions, and BEAST2 does not converge for several datasets due to numerical issues in 
likelihood computation and possible local optima (Fig. 3). Using BEAST2, we were unable to 
compute the likelihood value of our estimates and the one of the true parameter values, for a 
large fraction of trees. However, for the partial results we obtained (not shown), the figure 
seems to be similar to that with BD: the NNs obtain highly likely solutions, with similar likelihood 
as BEAST2’s (when it converges and produces reasonable estimates), and significantly higher 
likelihood than that of the true parameter values.  
 
All this is explained and detailed in the manuscript (pages 8-9), Methods (page 18) and 
Supplementary Tab. 3. 
 
5. Additional real dataset. Preferably a large-scale one. 
 
Finally, I think the impact of the method/paper can be largely increased if you would consider an 
additional large-scale dataset. 
 
We agree with the referee on the importance of analysing large data sets and trees, as they are 
becoming increasingly common today. However, hardly any existing method can accurately 



estimate phylodynamics models with trees having (say) >1,000 tips (see our difficulties with 
BEAST2 and trees with <500 tips). When we submitted the first version of the paper, we were 
not sure how our NNs could be applied to very large trees, especially with CBLV (with SS it is 
still possible to summarize big trees using a few dozens of well-chosen features, but with the 
possible risk of losing essential information). In the revised version, we proposed, implemented 
and evaluated a solution based on disjoint subtrees extraction, estimation and averaging (see 
above). To assess this novel approach, we decided to use ‘huge’ simulated trees (5,000 to 
10,000 tips) rather than a real tree, where the actual value of the parameters is often 
questionable and subject to debate. Results (pages 7, 9-10, Fig. 4) are quite convincing, with 
remarkably fast and accurate inference (see above), meaning that this approach open the way 
for new applications of phylodynamics, which were just impossible before. We thank the referee 
for his/her suggestion, which prompted us to further developments and clearly improved the 
paper in our opinion. 
 
Minor comments: 
 
* More emphasis on PhyloDeep 
 
The first mention of PhyloDeep occurs very late in the paper, almost like an afterthought. I think 
it should be featured more prominently, e.g. in the Abstract and Introduction, especially if you 
want this to be a tool to be used by the community. 
 
Done, in both Abstract and Introduction, we thank the referee for his/her suggestion. 
 
* Line 452: maximal => maximum or largest 
 
Done. 
 
 
Reviewer #2 (Remarks to the Author): 
 
Review 
 
Deep learning from phylogenies to uncover the transmission dynamics of epidemics 
 
By Voznica et al. 
 
The authors propose an original likelihood-free, simulation-based approach grounded on deep 
learning to infer the dynamics of epidemics from genetic data. They compare different versions 
of their approach to existing approaches currently used in the domain. They apply the method to 
an existing real data set dealing with the HIV epidemic in Zurich, which was already analysed 
and leads the authors to refine the knowledge about the determinants of HIV transmission in 
Zurich. The short discussion gives several perspectives for extending the application domain of 



their approach. Codes implementing the approach are provided within the Python package 
PhyloDeep (note that I have not tested the codes).    
 
This study is particularly well designed and many aspects are explored (most of the 
interrogations that I had during the reading of the main text are actually treated in the 
supplementary material). The main text is clear and, as I write above, generally adequately 
complemented by supporting information. The methods are well described and relevant. 
 
The following concerns more specific points. 
 
The title, DEEP LEARNING FROM PHYLOGENIES TO UNCOVER THE TRANSMISSION 
DYNAMICS OF EPIDEMICS, induces a confusion since the inference of the transmission 
dynamics may refer to the estimation of `who infected whom’, whereas the authors’ objective is 
upstream: selecting a transmission model and estimating its parameters. Hence, I wonder if a 
title like DEEP LEARNING FROM PHYLOGENIES TO INFER THE DETERMINANTS OF 
DISEASE TRANSMISSION DYNAMICS (or something approaching) would be more adequate. 
 
Thank you for this point, we agree that “transmission” can be confusing and changed the title to: 
 
DEEP LEARNING FROM PHYLOGENIES TO INFER THE EPIDEMIOLOGICAL DYNAMICS 
OF OUTBREAKS 
 
To facilitate the reading across this rich piece of work, supplementary figures and tables should 
be ordered as they appear in the main text. 
 
Done. 
 
After reading the introduction, I was unsure whether you were embedding your method in the 
framework of ABC or not. If I understood correctly, you do not, and you simply mention ABC, 
and more specifically the paper by Saulnier et al., because you recycle summary statistics that 
were proposed by Saulnier and her colleagues. At l.68, the term `rejection-free’ puts the reader 
on the track that you do not develop an ABC approach, but you should make it more explicit at 
the transition from the paragraph about the Saulnier’s paper (l.60-67) to the next paragraph 
(l.68-80). 
 
This has been clarified. In fact, our approach is a continuation of regression-based ABC. We 
wrote (blue part is new; page 4): 
 
…To address this issue Saulnier et al. [19] developed a large set of summary statistics. In 
addition, they used a regression step to select the most relevant statistics and to correct for the 
discrepancy between the simulations retained in the rejection step and the analyzed phylogeny. 
They observed that the sensitivity to the rejection parameters were greatly attenuated thanks to 
regression (see also Blum et al. [20]).  
 



Our work is a continuation of regression-based ABC, and aims at overcoming its main 
limitations. Using the approximation power of currently available neural network architectures, 
we propose a likelihood-free method relying on deep learning from millions of trees of varying 
size simulated within a broad range of parameter values. By doing so, we bypass the rejection 
step, which is both time consuming with large simulation sets, and sensitive to the choice of the 
distance function and summary statistics… 
 
l.122: The authors should more exactly specify here what they call the `sampling probability’ and 
what means `known’. This is clear later in the paper, but is ambiguous at this stage of the paper. 
 
This has been clarified (page 6). 
 
l.196-197: The convergence issue only concerns BEAST2, doesn’t it? 
 
Yes, this has been clarified (page 8). 
 
In the discussion, the authors should evoke the question about how their approaches scale up 
with larger data sets than those considered in the application and simulations, with larger trees, 
lower sampling probability, and models with more parameters. In particular, is there a need for a 
much larger number of simulations (than 4M) for training the deep learning tools that the authors 
proposed to use in these cases? Supp. Fig. 3 and 4 partly tackle this question and, if my 
interpretation is correct, SF3 states that the performance is relatively stable in terms of model 
selection when the tree size increases, and SF4 states that the performance in terms of 
parameter estimation accuracy increases with the number of simulations. The authors could 
make a synthesis of this type of results in the discussion and extrapolate (to some extents) for 
answering the other dimensions of the above-mentioned question. 
 
Thank you for raising these points, which are addressed here and there, and summarized in the 
Discussion, where we added (pages 15-16):  
 
A key issue in both phylodynamics and machine learning applications is scalability. Our results 
show that very large phylogenies can be analysed very efficiently (~1 minute for 10,000 tips), 
with resulting estimates more accurate than with smaller trees (Fig. 4), as predicted by learning 
theory. Again, as expected, more complex models require more training instances, especially 
BDSS using CBLV (Supplementary Fig. 3), but the ratio remains reasonable, and it is likely that 
complex (but identifiable) models will be handled efficiently with manageable training sets. 
Surprisingly, we did not observe a substantial drop of the accuracy with lower sampling 
probabilities (results not shown). To analyse very large trees, we used a decomposition into 
smaller, disjoint subtrees. In fact, all our NNs were trained with trees of moderate size (<500 
tips). Another approach would be to learn directly from large trees. This is an interesting 
direction for further research, but this poses several difficulties. The first is that we need to 
simulate these very large trees, and a large number of them (millions or more). Then, SS is the 
easiest representation to learn, but at the risk of losing essential information, which means that 
new summary statistics will likely be needed for sufficiently complete representation of very 



large phylogenies. Similarly, with CBLV more complex NN architectures (e.g., with additional 
and larger kernels in the convolutional layers) will likely be needed, imposing larger training 
sets. Combining both representations (e.g., during the FFNN phase) is certainly an interesting 
direction for further research. Note, however, that the predictions of both approaches for the 
three models we studied are highly correlated (Pearson coefficient nearly equal to 1 for most 
parameters), which means that there is likely little room for improvement (at least with these 
models). 

Fig. 4 and Supp. Fig. 8: the authors interestingly show that observed summary statistics for HIV 
are within the `simulated envelope’ of summary statistics throughout an analysis of the first two 
axes of a PCA. It would be interesting as well to perform the a priori check for the row summary 
statistics (without PCA). Since there are many summary statistics, the authors could provide a 
relatively concise table indicating, for each SS (i.e., marginally), to which quantile the observed 
value corresponds. This table could also be summarized into an histogram providing the 
distribution of the afore-mentioned quantiles. The table and the histogram would more precisely 
indicate how the class of used models represent real data. 

Thanks for the suggestion; we have added this functionality to PhyloDeep (page 19 in Methods). 
The SSs of the input tree are provided to the user, along with the corresponding [min, max] 
values in our simulations. With the HIV dataset, some SSs rejected the BD and BDEI models, 
which consistently have probability 0 in model selection (Supplementary Tab. 5 and Fig. 8). 

Supp. Table 1 should include the information given at l.823-825 that a different prior is used for 
the infectious period in the numerical experiment and in the application. Looking at Fig. 4, it 
seems to me that a different prior is also used for X_{SS}, but I am maybe wrong and I maybe 
missed this information in the text. 

In Fig. 5 (previously Fig. 4) we display the posterior distributions of the parameters, not the 
priors which were the same as in the simulations (in fact, our “priors” correspond to the 
simulation parameters, displayed in Supplementary Table 1). This has been clarified in the 
figure legend. 
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ABSTRACT 21 

Widely applicable, accurate and fast inference methods in phylodynamics are needed to fully profit from the richness 22 

of genetic data in uncovering the dynamics of epidemics. Standard methods, including maximum-likelihood and 23 

Bayesian approaches, generally rely on complex mathematical formulae and approximations, and do not scale with 24 

dataset size. We develop a likelihood-free, simulation-based approach, which combines deep learning with (1) a large 25 

set of summary statistics measured on phylogenies or (2) a complete and compact representation of trees, which avoids 26 

potential limitations of summary statistics and applies to any phylodynamics model. Our method enables both model 27 

selection and estimation of epidemiological parameters from very large phylogenies. We demonstrate its speed and 28 

accuracy on simulated data, where it performs better than the state-of-the-art methods. To illustrate its applicability, 29 

we assess the dynamics induced by superspreading individuals in an HIV dataset of men-having-sex-with-men in 30 

Zurich. Our tool PhyloDeep is available on github.com/evolbioinfo/phylodeep. 31 

KEYWORDS 32 

Phylodynamics; molecular epidemiology; tree representation; neural networks; HIV.  33 
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INTRODUCTION 34 

Pathogen phylodynamics is a field combining phylogenetics and epidemiology[1]. Viral or bacterial samples from 35 

patients are sequenced and used to infer a phylogeny, which describes the pathogen’s spread among patients. The tips 36 

of such phylogenies represent sampled pathogens, and the internal nodes transmission events. Moreover, transmission 37 

events can be dated and thereby provide hints on transmission patterns. Such information is extracted by phylodynamic 38 

methods to estimate epidemiological and population dynamic parameters[2-4], assess the impact of population 39 

structure[2,5], and reveal the origins of epidemics[6]. 40 

Birth-death models[7] incorporate easily interpretable parameters common to standard infectious-disease 41 

epidemiology, such as basic reproduction number R0, infectious period, etc. In contrast to the standard epidemiological 42 

models, the birth-death models can be applied to estimate parameters from phylogenetic trees[8]. In these models, 43 

births represent transmission events, while deaths represent removal events for example due to treatment or recovery. 44 

Upon a patient’s removal, their pathogens can be sampled, producing tips in the tree.  45 

Here we focus on three specific, well-established birth-death models (Fig. 1): birth-death model (BD)[8,9], birth-death 46 

model with exposed and infectious classes (BDEI)[5,10,11], and birth-death model with superspreading (BDSS)[5,12]. 47 

These models were deployed using BEAST2[12,13] to study the phylodynamics of such diverse pathogens as Ebola 48 

virus[10], Influenza virus[12], Human Immunodeficiency Virus (HIV)[5], Zika[14] or SARS-CoV-2[15]. Using these 49 

models, we will demonstrate the reliability of our deep learning-based approach. 50 

While a great effort has been invested in the development of new epidemiological models in phylodynamics, the field 51 

has been slowed down by the mathematical complexity inherent to these models. BD, the simplest model, has a closed 52 

form solution for the likelihood formula of a tree for a given set of parameters[8,10], but more complex models (e.g., 53 

BDEI and BDSS) rely on a set of ordinary differential equations (ODEs) that cannot be solved analytically. To estimate 54 

parameter values through maximum-likelihood and Bayesian approaches, these ODEs must be approximated 55 

numerically for each tree node[5,10-12]. These calculations become difficult as the tree size increases, resulting in 56 

numerical instability and inaccuracy[12], as we will see below.  57 

Inference issues with complex models are typically overcome by approximate Bayesian computation (ABC)[16,17]. 58 

ABC is a simulation-based technique relying on a rejection algorithm[18], where from a set of simulated phylogenies 59 
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within a given prior (values assumed for parameter values), those closest to the analysed phylogeny are retained and 60 

give the posterior distribution of the parameters. This scheme relies on the definition of a set of summary statistics 61 

aimed at representing a phylogeny and on a distance measure between trees. This approach is thus sensitive to the 62 

choice of the summary statistics and distance function (e.g., Euclidean distance). To address this issue Saulnier et 63 

al.[19] developed a large set of summary statistics. In addition, they used a regression step to select the most relevant 64 

statistics and to correct for the discrepancy between the simulations retained in the rejection step and the analysed 65 

phylogeny. They observed that the sensitivity to the rejection parameters were greatly attenuated thanks to regression 66 

(see also Blum et al.[20]).  67 

Our work is a continuation of regression-based ABC, and aims at overcoming its main limitations.  Using the 68 

approximation power of currently available neural network architectures, we propose a likelihood-free method relying 69 

on deep learning from millions of trees of varying size simulated within a broad range of parameter values. By doing 70 

so, we bypass the rejection step, which is both time consuming with large simulation sets, and sensitive to the choice 71 

of the distance function and summary statistics. To describe simulated trees and use them as input for the deep learner, 72 

we develop two tree representations: (1) a large set of summary statistics mostly based on Saulnier et al.[19], and (2) a 73 

complete and compact vectorial representation of phylogenies, including both the tree topology and branch lengths. 74 

The summary statistics are derived from our understanding and knowledge of the epidemiological processes. 75 

However, they can be incomplete and thus miss some important aspects of the studied phylogenies, which can 76 

potentially result in low accuracy during inference. Moreover, it is expected that new phylodynamic models will 77 

require design of new summary statistics, as confirmed by our results with BDSS. In contrast, our vectorial 78 

representation is a raw data representation that preserves all information contained in the phylogeny and thus should 79 

be accurate and deployable on any new model, provided the model parameters are identifiable. Our vectorial 80 

representation naturally fits with deep learning methods, especially the convolutional architectures, which have 81 

already proven their ability to extract relevant features from raw representations, for example in image analysis[21,22] 82 

or weather prediction[23]. 83 

In the following, we introduce our vectorial tree representation and the new summary statistics designed for BDSS. 84 

We then present the deep learning architectures trained on these representations and evaluate their accuracy on 85 

simulated datasets in terms of both parameter estimation and model selection. We show that our approach applies not 86 
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only to trees of the same size as the training instances, but also to very large trees with thousands of tips through the 87 

analysis of their subtrees. The results are compared to those of the gold standard method, BEAST2[12,13]. Lastly, we 88 

showcase our methods on an HIV dataset[24,25] from the men-having-sex-with-men (MSM) community from Zurich. 89 

All technical details are provided in Methods. Our methods and tools are implemented in the PhyloDeep software, 90 

which is available on GitHub (github.com/evolbioinfo/phylodeep), PyPi (pypi.org/project/phylodeep) and Docker 91 

Hub (hub.docker.com/r/evolbioinfo/phylodeep). 92 

RESULTS 93 

Neural networks are trained on numerical vectors from which they can learn regression and classification tasks. We 94 

trained such networks on phylogenetic trees to estimate epidemiological parameters (regression) and select 95 

phylodynamic models (classification). We undertook two strategies for representing phylogenetic trees as numerical 96 

vectors, which we describe first, before showing the results with simulated and real data. 97 

Summary statistics (SS) representation. We used a set of 83 SS developed by Saulnier et al.[19]: 26 measures of 98 

branch lengths, such as median of both internal and tip branch lengths; 8 measures of tree topology, such as tree 99 

imbalance; 9 measures on the number of lineages through time, such as time and height of its maximum; and 40 100 

coordinates representing the lineage-through-time (LTT) plot. To capture more information on the phylogenies 101 

generated by the BDSS model, we further enriched these SS with 14 new statistics on transmission chains describing 102 

the distribution of the duration between consecutive transmissions (internal tree nodes). Our SS are diverse, 103 

complementary and somewhat redundant. We used feed-forward neural networks (FFNN) with several hidden layers 104 

(Fig. 2 b (i)) that select and combine relevant information from the input features. In addition to SS, we provide both 105 

the tree size (i.e., number of tips) and the sampling probability used to generate the tree, as input to our FFNN (Fig. 2 106 

a (vi)). We will refer to this method as FFNN-SS. 107 

Compact vectorial tree representation. While converting raw information in the form of a phylogenetic tree into a 108 

set of SS, information loss is unavoidable. This means not only that the tree cannot be fully reconstructed from its SS, 109 

but also that depending on how much useful and relevant information is contained in the SS, the neural network may 110 

fail to solve the problem at hand. As an alternative strategy to SS, and to prevent information loss in the tree 111 

representation, we developed a representation called ‘Compact Bijective Ladderized Vector’ (CBLV).  112 

http://github.com/evolbioinfo/phylodeep
https://pypi.org/
https://hub.docker.com/r/evolbioinfo/phylodeep
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Several vectorial representations of trees based either on polynomial[26,27], Laplacian spectrum[28] or F matrices[29] have 113 

been developed previously. However, they represent the tree shape but not the branch lengths[26] or may lose 114 

information on trees[28]. In addition, some of these representations require vectors or matrices of quadratic size with 115 

respect to the number of tips[29], or are based on complex coordinate systems of exponential size[27].  116 

Inspired by these approaches, we designed our concise, easily computable, compact, and bijective (i.e. 1-to-1) tree 117 

representation that applies to trees of variable size and is appropriate as machine learning input. To obtain this 118 

representation, we first ladderize the tree, that is, for each internal node, the descending subtree containing the most 119 

recently sampled tip is rotated to the left, Fig. 2 a (ii). This ladderization step does not change the tree but facilitates 120 

learning by standardizing the input data. Moreover, it is consistent with trees observed in real epidemiological datasets, 121 

for example Influenza, where ladder-like trees reflect selection and are observed for several pathogens[1]. Then, we 122 

perform an inorder traversal[30] of the ladderized tree, during which we collect in a vector for each visited internal 123 

node its distance to the root and for each tip its distance to the previously visited internal node. In particular, the first 124 

vector entry corresponds to the tree height. This transformation of a tree into a vector is bijective, in the sense that we 125 

can unambiguously reconstruct any given tree from its vector representation (Supplementary Fig. 1). The vector is 126 

as compact as possible, and its size grows linearly with the number of tips. We complete this vector with zeros to 127 

reach the representation length of the largest tree contained in our simulation set, and we add the sampling probability 128 

used to generate the tree (or an estimate of it when analysing real data; Fig. 2 a (v), b (i)). 129 

Bijectivity combined with ladderization facilitates the training of neural networks, which do not need to learn that 130 

different representations correspond to the same tree. However, unlike our SS, this full representation does not have 131 

any high-level features. In CBLV identical subtrees will have the same representation in the vector whenever the roots 132 

of these subtrees have the same height, while the vector representation of the tips in such subtrees will be the same no 133 

matter the height of the subtree's root. Similar subtrees will thus result in repeated patterns along the representation 134 

vector. We opted for Convolutional Neural Networks (CNN), which are designed to extract information on patterns 135 

in raw data. Our CNN architecture (Fig. 2 b (ii)) includes several convolutional layers that perform feature extraction, 136 

as well as maximum and average pooling layers that select relevant features and keep feature maps of reasonable 137 

dimensions. The output of the CNN is then fed into a FFNN that combines the patterns found in the input to perform 138 

predictions. In the rest of the manuscript, we refer to this method as CNN-CBLV.  139 
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Simulated datasets 140 

For each phylodynamic model (BD, BDEI, BDSS), we simulated 4 million trees, covering a large range of values for 141 

each parameter of epidemiological interest (R0, infectious period: 1/γ, incubation period: 1/ε, the fraction at 142 

equilibrium of superspreading individuals: fSS, and the superspreading transmission ratio: XSS). Of the 4 million trees, 143 

3.99 million were used as a training set, and 10,000 as a validation set for early stopping in the training phase[31]. 144 

Additionally, we simulated another 10,000 trees, which we used as a testing set, out of which 100 were also evaluated 145 

with the gold standard methods, BEAST2 and TreePar, which are more time consuming. Another 1 million trees were 146 

used to define confidence intervals for estimated parameters. For BD and BDEI we considered two settings: one with 147 

small trees (50 to 199 tips, in Supplementary Fig. 2) and a second with large trees (200 to 500 tips, Fig. 3). For 148 

BDSS, we considered only the setting with large trees, as the superspreading individuals are at a low fraction and 149 

cannot be detected in small trees (results not shown). Lastly, we investigated the applicability of our approach to very 150 

large data sets, which are increasingly common with viral pathogens. To this goal, we generated for each model 10,000 151 

‘huge’ trees, with 5,000 to 10,000 tips each and with the same parameter ranges as used with the small and large trees. 152 

To estimate the parameter values of a huge tree, we extracted a nearly complete coverage of this tree by disjoint 153 

subtrees with 50 to 500 leaves. Then, we predicted the parameter values for every subtree using our NNs, and averaged 154 

subtree predictions to obtain parameter estimates for the huge tree. 155 

To increase the generality of our approach and avoid the arbitrary choice of the time scale (one unit can be a day, a 156 

week, or a year), we rescaled all trees and corresponding epidemiological parameters, such that the average branch 157 

length in a tree was equal to 1. After inference, we rescaled the estimated parameter values back to the original time 158 

scale. 159 

Neural networks yield more accurate parameter estimates than gold standard methods 160 

We compared accuracy of parameter estimates yielded by our deep learning methods and those yielded by two state-161 

of-the-art phylodynamics inference tools, BEAST2[12,13] and TreePar[5]. The comparison shows that our deep learning 162 

methods trained with SS and CBLV are either comparable (BD) or more accurate (BDEI and BDSS) than the state-163 

of-the-art inference methods (Fig. 3, Supplementary Tab. 1). The simple BD model has a closed form solution for 164 

the likelihood function, and thus BEAST2 results are optimal in theory[8,9]. Our results with BD are similar to those 165 

obtained with BEAST2, and thus nearly optimal as well. For BDEI and BDSS our results are more accurate than 166 
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BEAST2, which is likely explained by numerical approximations of likelihood calculations in BEAST2[5,10,11] for 167 

these models. These approximations can lead BEAST2 to a lack of convergence (2% cases for BDEI and 15% cases 168 

for BDSS) or a convergence to local optima. We suspect BEAST2 of converging to local optima when it converged 169 

to values with high relative error (>1.0; 8% cases for BDEI and 11% cases for BDSS, Fig. 3 b-c). Furthermore, our 170 

deep learning approaches showed a lower bias in parameter estimation than BEAST2 (Supplementary Tab. 2). As 171 

expected, both approaches, FFNN-SS and CNN-CBLV, get more accurate with larger trees (Supplementary Fig. 3). 172 

We tried to perform maximum likelihood estimation (MLE) implemented in the TreePar package[5] on the same trees 173 

as well. While MLE under BD model on simulations yielded as accurate results as BEAST2, for more complex models 174 

it showed overflow and underflow issues (i.e., reaching infinite values of likelihood) and yielded inaccurate results, 175 

such as more complex models (BDEI, BDSS) having lower likelihood than a simpler, nested one (BD) for a part of 176 

simulations (results not shown). These issues were more prominent for larger trees. TreePar developers confirmed 177 

these limitations and suggested using the latest version of BEAST2 instead. 178 

To further explain the performance of our NNs, we computed the likelihood value of their parameter estimates. This 179 

was easy with the BD model since we have a closed form solution for the likelihood function. The results with this 180 

model (Supplementary Tab. 3, using TreePar) showed that the likelihoods of both FFNN-SS and CNN-CBLV 181 

estimates are similar to BEAST2’s, which explains the similar accuracy of the three methods (Fig. 3). We also 182 

computed the likelihood of the ‘true’ parameter values used to simulate the trees, in order to have an independent and 183 

solid assessment. If a given method tends to produce higher likelihood than that of the true parameter values, then it 184 

performs well in terms of likelihood optimization, as optimizing further should not result in higher accuracy. The 185 

results (Supplementary Tab. 3) were again quite positive, as BEAST2 and our NNs achieved a higher likelihood 186 

than the true parameter values for ~70% of the trees, with a significant mean difference. With BDEI and BDSS, 187 

applying the same approach proved difficult due to convergence and numerical issues, with both BEAST2 and TreePar 188 

(see above). For the partial results we obtained (not shown), the overall pattern seems to be similar to that with BD: 189 

the NNs obtain highly likely solutions, with similar likelihood as BEAST2’s (when it converges and produces 190 

reasonable estimates), and significantly higher likelihood than that of the true parameter values. All these results are 191 

remarkable, as the NNs do not explicitly optimize the likelihood function associated to the models, but use a radically 192 

different learning approach, based on simulation. 193 
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Neural networks are fast inference methods 194 

We compared the computing time required by each of our inference methods. All computing times were estimated for 195 

a single thread of our cluster, except for the training of neural architectures where we used our GPU farm. Neural 196 

networks require heavy computing time in the learning phase; for example, with BDSS (the most complex model), 197 

simulating 4M large trees requires ~800 CPU hours, while training FFNN-SS and CNN-CBLV requires ~5 and ~150 198 

hours, respectively. However, with NNs, inference is almost instantaneous and takes ~0.2 CPU seconds per tree on 199 

average, including encoding the tree in SS or CBLV, which is the longest part. For comparison, BEAST2 inference 200 

under the BD model with 5 million MCMC steps takes on average ~0.2 CPU hours per tree, while inference under 201 

BDEI and BDSS with 10 million MCMC steps takes ~55 CPU hours and ~80 CPU hours per tree, respectively. In 202 

fact, the convergence time of BEAST2 is usually faster (~6 CPU hours with BDEI and BDSS), but can be very long 203 

in some cases, to the point that convergence is not observed after 10 million steps (see above). 204 

Neural networks have high generalization capabilities and apply to very large data sets 205 

In statistical learning theory[31], generalization relates to the ability to predict new samples drawn from the same 206 

distribution as the training instances. Generalization is opposed to rote learning and overfitting, where the learned 207 

classifier or regressor predicts the training instances accurately, but new instances extracted from the same distribution 208 

or population poorly. The generalization capabilities of our NNs were demonstrated, as we used independent testing 209 

sets in all our experiments (Fig. 3). However, we expect poor results with trees that depart from the training 210 

distribution, for example showing very high R0, while our NNs have been trained with R0 in the range [1, 5]. If, for a 211 

new study, larger or different parameter ranges are required, we must retrain the NNs with ad hoc simulated trees. 212 

However, a strength of NNs is that thanks to their flexibility and approximation power, very large parameter ranges 213 

can be envisaged, to avoid repeating training sessions too often. 214 

Another sensible issue is that of the size of the trees. Our NNs have been trained with trees of 50-to-199 tips (small) 215 

and 200-to-500 tips (large), that is, trees of moderate size (but already highly time consuming in a Bayesian setting, 216 

for the largest ones). Thus, we tested the ability to predict the parameters of small trees using NNs trained on large 217 

trees, and vice versa, the ability to predict large trees with NNs trained on small trees. The results (Supplementary 218 

Fig. 4) are surprisingly good, especially with summary statistics (FFNN-SS) which are little impacted by these changes 219 

of scale as they largely rely on means (e.g., of branch lengths[19]). This shows unexpected generalization capabilities 220 
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of the approach regarding tree size. Most importantly, the approach can accurately predict huge trees (Fig. 4) using 221 

their subtrees and the means of the corresponding parameter estimates, in ~1 CPU minute. This extends the 222 

applicability of the approach to data sets that cannot be analysed today, unless using similar tree decomposition and 223 

very long calculations to analyse all subtrees. 224 

Neural networks are accurate methods for model selection 225 

We trained CNN-CBLV and FFNN-SS on simulated trees to predict the birth-death model under which they were 226 

simulated (BD or BDEI for small trees; BD, BDEI or BDSS for large trees). Note that for parameters shared between 227 

multiple models, we used identical parameter value ranges across all these models (Supplementary Tab. 4). Then, 228 

we assessed the accuracy of both of our approaches on 100 simulations obtained with each model and compared it 229 

with the model selection under BEAST2 based on Akaike information criterion through Markov Chain Monte Carlo 230 

(AICM)[32,33]. The AICM, similar to deviance information criterion (DIC) by Gelman et al.[32], does not add 231 

computational load and is based on the average and variance of posterior log-likelihoods along the Markov Chain 232 

Monte Carlo (MCMC). 233 

FFNN-SS and CNN-CBLV have similar accuracy (Supplementary Tab. 5), namely 92% for large trees (BD vs BDEI 234 

vs BDSS), and accuracy of 91% and 90%, respectively, for small trees (BD vs BDEI). BEAST2 yielded an accuracy 235 

of 91% for large trees and 87% for small trees. The non-converging simulations were not considered for any of these 236 

methods (i.e., 5% simulations for small trees and 24% for large trees). 237 

The process of model selection with a neural network is as fast as the parameter inference (~0.2 CPU seconds per 238 

tree). This represents a practical, fast and accurate way to perform model selection in phylodynamics. 239 

Neural networks are well suited to learn complex models 240 

To assess the complexity of learned models, we explored other inference methods, namely: (1) linear regression as a 241 

baseline model trained on summary statistics (LR-SS); (2) FFNN trained directly on CBLV (FFNN-CBLV); (3) CNN 242 

trained on Compact Random Vector (CNN-CRV), for which the trees were randomly rotated, instead of being 243 

ladderized as in Fig. 2 (ii); and (4) two “null models”. 244 

LR-SS yielded inaccurate results even for the BD model (Supplementary Tab. 1), which seems to contrast with 245 

previous findings[19], where LR approach combined with ABC performed only slightly worse than BEAST2. This can 246 
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be explained by the lack of rejection step in LR-SS, which enables to locally reduce the complexity of the relation 247 

between the representation and the inferred values to a linear one[18]. However, the rejection step requires a metric 248 

(e.g., the Euclidean distance), which may or may not be appropriate depending on the model and the summary 249 

statistics. Moreover, rejection has a high computational cost with large simulation sets. 250 

Neural networks circumvent these problems with rejection and allow for more complex, non-linear relationships 251 

between the tree representation and the inferred values to be captured. This is also reflected in our results with FFNN-252 

CBLV and CNN-CRV, which both proved to be generally more accurate than LR-SS. However, FFNN-CBLV was 253 

substantially less accurate than CNN-CBLV (Supplementary Tab. 1, Supplementary Fig. 5). This indicates the 254 

presence of repeated patterns that may appear all along the vectorial representation of trees, such as subtrees of any 255 

size, which are better extracted by CNN than by FFNN. In its turn, CNN-CRV required larger training sets to reach 256 

an accuracy comparable to CNN-CBLV (Supplementary Tab. 1, Supplementary Fig. 5), showing that the 257 

ladderization and bijectivity of the CBLV helped the training. 258 

To assess how much information is actually learned, we also measured the accuracy of two “null models”: FFNN 259 

trained to predict randomly permuted target values; and a random predictor, where parameter values were sampled 260 

from prior distributions. Results show that the neural networks extract a considerable amount of information for most 261 

of the estimated parameters (Supplementary Tab. 1). The most difficult parameter to estimate was the fraction of 262 

superspreading individuals in BDSS model, with accuracy close to random predictions with small trees, but better 263 

performance as the tree size increases (Fig. 4, Supplementary Fig. 3). 264 

SS is simpler, but CBLV has high potential for application to new models 265 

FFNN-SS and CNN-CBLV show similar accuracy across all settings (Fig. 3, Supplementary Tab. 1-2), including 266 

when predicting huge trees from their subtrees (Fig. 4). The only exception is the prediction of large trees using NNs 267 

trained with small trees (Supplementary Fig. 4), where FFNN-SS is superior to CNN-CBLV, but this goes beyond 268 

the recommended use of the approach, as only a part of the (large) query tree is given to the (small) CNN-CBLV.  269 

However, the use of the two representations is clearly different, and it is likely that with new models and scenarios 270 

their accuracy will differ. SS requires a simpler architecture (FFNN) and is trained faster (e.g., 5 hours with large 271 

BDSS trees), with less training instances (Supplementary Fig. 6). However, this simplicity is obtained at cost of a 272 
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long preliminary work to design appropriate summary statistics for each new model, as was confirmed in our analyses 273 

of BDSS simulations. To estimate the parameters of this model, we added summary statistics on transmission chains 274 

on top of the SS taken from Saulnier et al.[19]. This improved the accuracy of superspreading fraction estimates of the 275 

FFNN-SS, so that it was comparable to the CNN-CBLV, while the accuracy for the other parameters remained similar 276 

(Supplementary Fig. 7). The advantage of the CBLV is its generality, meaning there is no loss of information between 277 

the tree and its representation in CBLV regardless of which model the tree was generated under. However, CBLV 278 

requires more complex architectures (CNN), more computing time in the learning phase (150 hours with large BDSS 279 

trees) and more training instances (Supplementary Fig. 6). Such an outcome is expected. With raw CBLV 280 

representation, the convolutional architecture is used to “discover” relevant summary statistics (or features, in machine 281 

learning terminology), which has a computational cost.  282 

In fact, the two representations should not be opposed. An interesting direction for further research would be to 283 

combine them (e.g. during the FFNN phase), to possibly obtain even better results. Moreover, SS are still informative 284 

and useful (and quickly computed), in particular to perform sanity checks, both a priori and a posteriori (Fig. 5, 285 

Supplementary Fig. 8), or to quickly evaluate the predictability of new models and scenarios. 286 

Showcase study of HIV in MSM subpopulation in Zurich 287 

The Swiss HIV Cohort is densely sampled, including more than 16,000 infected individuals[24]. Datasets extracted 288 

from this cohort have often been studied in phylodynamics[8,25]. We analysed a dataset of an MSM subpopulation from 289 

Zurich, which corresponds to a cluster of 200 sequences studied previously by Rasmussen et al.[25], who focused on 290 

the degree of connectivity and its impact on transmission between infected individuals. Using coalescent approaches, 291 

they detected the presence of highly connected individuals at the beginning of the epidemic and estimated R0 to be 292 

between 1.0 and 2.5. We used their tree as input for neural networks and BEAST2. 293 

To perform analyses, one needs an estimate of the sampling probability. We considered that: (1) the cohort is expected 294 

to include around 45% of Swiss individuals infected with HIV[24]; and (2) the sequences were collected from around 295 

56% of individuals enrolled in this cohort[34]. We used these percentages to obtain an approximation of sampling 296 

probability of 0.45*0.56 ~ 0.25 and used this value to analyse the MSM cluster. To check the robustness of our 297 

estimates, we also used sampling probabilities of 0.2 and 0.3 in our estimation procedures. 298 
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First, we performed a quick sanity check considering the resemblance of HIV phylogeny with simulations obtained 299 

with each model. Two approaches were used, both based on SS (Supplementary Fig. 8). Using principal component 300 

analysis (PCA), all three considered birth-death models passed the check. However, when looking at the 97 SS values 301 

in detail, namely checking whether the observed tree SS were within the [min, max] range of the corresponding 302 

simulated values, the BD and BDEI models were rejected for some of the SS (5 for both models, all related to branch 303 

lengths). Then, we performed model selection (BD vs BDEI vs BDSS) and parameter estimation using our two 304 

methods and BEAST2 (Fig. 5 a-b). Finally, we checked the model adequacy with a second sanity check, derived from 305 

the inferred values and SS (Fig. 5 c, Supplementary Fig. 8). 306 

Model selection with CNN-CBLV and FFNN-SS resulted in the acceptance of BDSS (probability of 1.00 versus 0.00 307 

for BD and BDEI), and the same result was obtained with BEAST2 and AICM. These results are consistent with our 308 

detailed sanity check, and with what is known about HIV epidemiology, namely, the presence of superspreading 309 

individuals in the infected subpopulation[35] and the absence of incubation period without infectiousness such as is 310 

emulated in BDEI[36]. 311 

We then inferred parameter values under the selected BDSS model (Fig. 5 a-b). The values obtained with FFNN-SS 312 

and CNN-CBLV are close to each other, and the 95% CI are nearly identical. We inferred an R0 of 1.6 and 1.7, and 313 

an infectious period of 10.2 and 9.8 years, with FFNN-SS and CNN-CBLV, respectively. Transmission by 314 

superspreading individuals was estimated to be around 9 times higher than by normal spreaders and superspreading 315 

individuals were estimated to account for around 7-8% of the population. Our R0 estimates are consistent with the 316 

results of a previous study[8] performed on data from the Swiss cohort, and the results of Rasmussen et al.[25] with this 317 

dataset. The infectious period we inferred is a bit longer than that reported by Stadler et al, who estimated it to be 7.74 318 

[95% CI 4.39-10.99] years[8]. The infectious period is a multifactorial parameter depending on treatment efficacy and 319 

adherence, the times from infection to detection and to the start of treatment, etc. In contrast to the study by Stadler et 320 

al, whose data were sampled in the period between 1998 and 2008, our dataset covers also the period between 2008 321 

and 2014, during which life expectancy of patients with HIV was further extended[37]. This may explain why we found 322 

a longer infectious period (with compatible CIs). Lastly, our findings regarding superspreading are in accordance with 323 

those of Rassmussen et al.[25], and with a similar study in Latvia[5] based on 40 MSM sequences analysed using a 324 

likelihood approach. Although the results of the latter study may not be very accurate due to the small dataset size, 325 
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they still agree with ours, giving an estimate of a superspreading transmission ratio of 9, and 5.6% of superspreading 326 

individuals. Our estimates were quite robust to the choice of sampling probability (e.g., R0 = 1.54, 1.60 and 1.66, with 327 

FFNN-SS and a sampling probability of 0.20, 0.25 and 0.30, respectively, Fig. 5 b). 328 

Compared to BEAST2, the estimates of the infectious period and R0 were similar for both approaches, but BEAST2 329 

estimates were higher for the transmission ratio (14.5) and the superspreading fraction (10.6%). These values are in 330 

accordance with the positive bias of BEAST2 estimates that we observed in our simulation study for these two 331 

parameters, while our estimates were nearly unbiased (Supplementary Tab. 2). 332 

Finally, we checked the adequacy of BDSS model by resemblance of HIV phylogeny to simulations. Using inferred 333 

95% CI, we simulated 10,000 trees and performed PCA on SS, to which we projected the SS of our HIV phylogeny. 334 

This was close to simulations, specifically close to the densest swarm of simulations, supporting the adequacy of both 335 

the inferred values and the selected model (Fig. 5 c). When looking at the 97 SS in detail, some of the observed values 336 

where not in the [min, max] range of the 10,000 simulated values. However, these discordant SS were all related to 337 

the lineage-through-time plot (LTT; e.g., x and y coordinates of this plot; Supplementary Fig. 8), consistent with the 338 

fact that the probabilistic, sampling component of the BDSS model is an oversimplification of actual sampling 339 

schemes, which depend on contact tracing, sampling campaigns and policies, etc. 340 

DISCUSSION AND PERSPECTIVES 341 

In this manuscript, we presented new methods for parameter inference and model selection in phylodynamics based 342 

on deep learning from phylogenies. Through extensive simulations, we established that these methods are at least as 343 

accurate as state-of-the-art methods and capable of predicting very large trees in minutes, which cannot be achieved 344 

today by any other existing method. We also applied our deep learning methods to the Swiss HIV dataset from MSM 345 

and obtained results consistent with current knowledge of HIV epidemiology. 346 

Using BEAST2, we obtained inaccurate results for some of the BDEI and BDSS simulations. While BEAST2 has 347 

been successfully deployed on many models and tasks, it clearly suffers from approximations in likelihood 348 

computation with these two models. However, these will likely improve in near future. In fact, we already witnessed 349 

substantial improvements done by BEAST2 developers to the BDSS model, while carrying out this research. 350 
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Both of our neural network approaches circumvent likelihood computation and thereby represent a new way of using 351 

molecular data in epidemiology, without the need to solve large systems of differential equations. This opens the door 352 

to novel phylodynamics models, which would make it possible to answer questions previously too complex to ask. 353 

This is especially true for CBLV representation, which does not require the design of new summary statistics, when 354 

applied to trees generated by new mathematical models. A direction for further research would be to explore such 355 

models, for example based on structured coalescent[38,39], or to extend the approach to macroevolution and species 356 

diversification models[40], which are closely related to epidemiological models. Other fields related to phylodynamics, 357 

such as population genetics, have been developing likelihood-free methods[41], for which our approach might serve as 358 

a source of inspiration. 359 

A key issue in both phylodynamics and machine learning applications is scalability. Our results show that very large 360 

phylogenies can be analysed very efficiently (~1 minute for 10,000 tips), with resulting estimates more accurate than 361 

with smaller trees (Fig. 4), as predicted by learning theory. Again, as expected, more complex models require more 362 

training instances, especially BDSS using CBLV (Supplementary Fig. 3), but the ratio remains reasonable, and it is 363 

likely that complex (but identifiable) models will be handled efficiently with manageable training sets. Surprisingly, 364 

we did not observe a substantial drop of accuracy with lower sampling probabilities (results not shown). To analyse 365 

very large trees, we used a decomposition into smaller, disjoint subtrees. In fact, all our NNs were trained with trees 366 

of moderate size (<500 tips). Another approach would be to learn directly from large trees. This is an interesting 367 

direction for further research, but this poses several difficulties. The first is that we need to simulate these very large 368 

trees, and a large number of them (millions or more). Then, SS is the easiest representation to learn, but at the risk of 369 

losing essential information, which means that new summary statistics will likely be needed for sufficiently complete 370 

representation of very large phylogenies. Similarly, with CBLV more complex NN architectures (e.g., with additional 371 

and larger kernels in the convolutional layers) will likely be needed, imposing larger training sets. Combining both 372 

representations (e.g., during the FFNN phase) is certainly an interesting direction for further research. Note, however, 373 

that the predictions of both approaches for the three models we studied are highly correlated (Pearson coefficient 374 

nearly equal to 1 for most parameters), which means that there is likely little room for improvement (at least with 375 

these models). 376 
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A key advantage of the deep learning approaches is that they yield close to immediate estimates and apply to trees of 377 

varying size. Collection of pathogen genetic data became standard in many countries, resulting in densely sampled 378 

infected populations. Examples of such datasets include HIV in Switzerland and UK[24,42], 2013 Ebola epidemics[6], 379 

several Influenza epidemics and the 2019 SARS-Cov-2 pandemic (www.gisaid.org)[43]. For many such pathogens, 380 

trees can be efficiently and accurately inferred[44-46] and dated[47-49] using standard approaches. When applied to such 381 

dated trees, our methods can perform model selection and provide accurate phylodynamic parameter estimates within 382 

a fraction of a second. Such properties are desirable for phylogeny-based real-time outbreak surveillance methods, 383 

which must be able to cope with the daily influx of new samples, and thus increasing size of phylogenies, as the 384 

epidemic unfolds, in order to study local outbreaks and clusters, and assess and compare the efficiency of healthcare 385 

policies deployed in parallel. Moreover, thanks to the subtree picking and averaging strategy, it is now possible to 386 

analyse extremely large phylogenies, and the approach could be used to track the evolution of parameters (e.g., R0) in 387 

different regions (sub-trees) of a global tree, as a function of dates (as in Bayesian skyline models[4]), geographical 388 

areas, viral variants etc. 389 
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MAIN TEXT FIGURES 400 

Fig. 1: Birth-death models 401 

 402 

Note to Fig. 1. a Birth-death model (BD)[8,9], b, birth-death model with Exposed-Infectious individuals (BDEI)[5,10,11] 403 
and c, birth-death model with SuperSpreading (BDSS)[5,12]. BD is the simplest generative model, used to estimate R0 404 
and the infectious period (1/γ)[8,9]. BDEI and BDSS are extended version of BD. BDEI enables to estimate latency 405 
period (1/ε) during which individuals of exposed class E are infected, but not infectious[5,10,11]. BDSS includes two 406 
populations with heterogeneous infectiousness: the so-called superspreading individuals (S) and normal spreaders (N). 407 
Superspreading individuals are present only at a low fraction in the population (fss) and may transmit the disease at a 408 
rate that is multiple times higher than that of normal spreaders (rate ratio = Xss)[5,12]. Superspreading can have various 409 
complex causes, such as the heterogeneity of immune response, disease progression, co-infection with other diseases, 410 
social contact patterns or risk behaviour, etc. Infectious individuals I (superspreading infectious individuals IS and 411 
normal spreaders IN for BDSS), transmit the disease at rate β (βX,Y for an individual of type X transmitting to an 412 
individual of type Y for BDSS), giving rise to a newly infected individual. The newly infected individual is either 413 
infectious right away in BD and BDSS or goes through an exposed state before becoming infectious at rate ε in BDEI. 414 
Infectious individuals are removed at rate γ. Upon removal, they can be sampled with probability s, becoming of 415 
removed sampled class R. If not sampled upon removal, they move to non-infectious unsampled class U.  416 
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Fig. 2: Pipeline for training neural networks on phylogenies 417 

 418 
Note to Fig.2. Tree representations: a (i), simulated binary trees. Under each model from Fig. 1, we simulate many 419 
trees of variable size (50 to 200 tips for ‘small trees’ and 200 to 500 tips for ‘large trees’). For illustration, we have 420 
here a tree with 5 tips. We encode the simulations into two representations, either a (ii-v), in a complete and compact 421 
tree representation called ‘Compact Bijective Ladderized Vector’ abbreviated as CBLV or a (vi) with summary 422 
statistics (SS). CBLV is obtained through a (ii) ladderization or sorting of internal nodes so that the branch supporting 423 
the most recent leaf is always on the left and a (iii) an inorder tree traversal, during which we append to a real-valued 424 
vector for each visited internal node its distance to the root and for each visited tip its distance to the previously visited 425 
internal node. We reshape this representation into a (iv), an input matrix in which the information on internal nodes 426 
and leaves is separated into two rows. Finally, a (v), we complete this matrix with zeros so that the matrices for all 427 
simulations have the size of largest simulation matrices. For illustration purpose, we here consider that the maximum 428 
tree size covered by simulations is 10, and the representation is thus completed with 0s accordingly. SS consists of a 429 
(vi), a set of 98 statistics: 83 published in Saulnier et al[19], 14 on transmission chains and 1 on tree size. The 430 
information on sampling probability is added to both representations. b: Neural networks are trained on these 431 
representations to estimate parameter values or to select the underlying model. For SS, we use, b (i), a deep feed-432 
forward neural network (FFNN) of funnel shape (we show the number of neurons above each layer). For the CBLV 433 
representation we train, b (ii), Convolutional Neural Networks (CNN). The CNN is added on top of the FFNN. The 434 
CNN combines convolutional, maximum pooling and global average pooling layers, as described in detail in Methods.  435 



19 

Fig. 3: Assessment of deep learning accuracy 436 

 437 
Note to Fig. 3. Comparison of inference accuracy by BEAST2 (in blue), deep neural network trained on SS (in orange) 438 
and convolutional neural network trained on the CBLV representation (in green) on 100 test trees. The size of training 439 
and testing trees was uniformly sampled between 200 and 500 tips. We show the relative error for each test tree. The 440 
error is measured as the normalized distance between the median a posteriori estimate by BEAST2 or point estimates 441 
by neural networks and the target value for each parameter. We highlight simulations for which BEAST2 did not 442 
converge and whose values were thus set to median of the parameter subspace used for simulations by depicting them 443 
as red squares. We further highlight the analyses with a high relative error (>1.00) for one of the estimates as black 444 
diamonds. We compare the relative errors for a, BD-simulated, b, BDEI-simulated and c, BDSS-simulated trees. 445 
Average relative error is displayed for each parameter and method in corresponding colour below each figure. The 446 
average error of a FFNN trained on summary statistics but with randomly permuted target is displayed as black dashed 447 
line and its value is shown in bold black below the x-axis. The accuracy of each method is compared by paired z-test; 448 
P < 0.05 is shown as thick full line; non-significant is not shown. 449 

  450 
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Fig. 4: Deep learning accuracy with ‘huge’ trees 451 

 452 
Note to Fig. 4. Comparison of inference accuracy by neural networks trained on large trees in predicting large trees 453 
(CNN-CBLV, in grey, same as in Fig. 3) and huge trees (FFNN-SS, in orange, and CBLV-NN, in pink) on 100 large 454 
and 100 huge test trees. The training and testing large trees are the same as in Fig. 3 (between 200 and 500 tips each). 455 
The huge testing trees were generated for the same parameters as the large training and testing trees, but their size 456 
varied between 5,000 and 10,000 tips. We show the relative error for each test tree. The error is measured as the 457 
normalized distance between the point estimates by neural networks and the target values for each parameter. We 458 
compare the relative errors for a, BD-simulated, b, BDEI-simulated and c, BDSS-simulated trees. Average relative 459 
error is displayed for each parameter and method in corresponding colour below each plot.  460 
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Fig. 5: Parameter inference on HIV data sampled from MSM Zurich 461 

 462 
Note to Fig. 5. Using BDSS model with BEAST2 (in blue), FFNN-SS (in orange), and CNN-CBLV (in green) we 463 
infer, a (i), basic reproduction number, a (ii), infectious period (in years), a (iii), superspreading transmission ratio 464 
and, a (iv), superspreading fraction. For FFNN-SS and CNN-CBLV, we show the posterior distributions and the 95% 465 
CIs obtained with a fast approximation of the parametric bootstrap (Methods). For BEAST2, the posterior 466 
distributions and 95% CI were obtained considering all reported steps (9,000 in total) excluding the 10% burn-in. 467 
Arrows show the position of the original point estimates obtained with FFNN-SS and CNN-CBLV and the median a 468 
posteriori estimate obtained with BEAST2. Circles show lower and upper boundaries of 95% CI. b, these values are 469 
reported in a table, together with point estimates obtained while considering lower and higher sampling probabilities 470 
(0.20 and 0.30). c, 95% CI boundaries obtained with FFNN-SS are used to perform an a posteriori model adequacy 471 
check. We simulated 10,000 trees with BDSS while resampling each parameter from a uniform distribution, whose 472 
upper and lower bounds were defined by the 95% CI. We then encoded these trees into SS, performed PCA and 473 
projected SS obtained from the HIV MSM phylogeny (red stars) on these PCA plots. We show here the projection 474 
into c (i), first two components of PCA, c (ii), the 3rd and 4th components, together with the associated percentage of 475 
variance displayed in parentheses. Warm colours correspond to high density of simulations.  476 
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