## Discovery of archaeal fusexins homologous to eukaryotic HAP2/GCS1 gamete fusion proteins

David Moi<sup>1,2,3</sup>†<sup>,</sup>, Shunsuke Nishio<sup>4,</sup>†, Xiaohui Li<sup>5,</sup>†, Clari Valansi<sup>5</sup>, Mauricio Langleib<sup>6,7</sup>, Nicolas G. Brukman<sup>5</sup>, Kateryna Flyak<sup>5</sup>, Christophe Dessimoz<sup>2,3,8,9</sup>, Daniele de Sanctis<sup>10</sup>, Kathryn Tunyasuvunakool<sup>11</sup>, John Jumper<sup>11</sup>, Martin Graña<sup>7,\*</sup>, Héctor Romero<sup>6,12,\*</sup>, Pablo S. Aguilar<sup>1,13,\*</sup>, Luca Jovine<sup>4,\*</sup>, Benjamin Podbilewicz<sup>5,\*</sup>

<sup>1</sup>Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Buenos Aires, Argentina.

<sup>2</sup>Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.

<sup>3</sup>Swiss Institute of Bioinformatics, Lausanne, Switzerland.

<sup>4</sup>Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.

<sup>5</sup>Department of Biology, Technion- Israel Institute of Technology, Haifa, Israel.

<sup>6</sup>Unidad de Genómica Evolutiva, Facultad de Ciencias, Universidad de la República, Uruguay.

<sup>7</sup>Unidad de Bioinformática, Institut Pasteur de Montevideo, Uruguay.

<sup>8</sup>Centre for Life's Origins and Evolution, Dept. of Genetics, Evolution and Environment, University College London, United Kingdom.

<sup>9</sup>Department of Computer Science, University College London, United Kingdom.

<sup>10</sup>The European Synchrotron, Grenoble, France

<sup>11</sup>DeepMind, London, UK

<sup>12</sup>Centro Universitario Regional Este - CURE, Centro Interdisciplinario de Ciencia de Datos y Aprendizaje Automático - CICADA, Universidad de la República, Uruguay.

<sup>13</sup>Instituto de Investigaciones Biotecnológicas Universidad Nacional de San Martín (IIB-CONICET), San Martín, Buenos Aires, Argentina.

\*Corresponding authors. Email: <u>mgrana@pasteur.edu.uy</u>, <u>eletor@fcien.edu.uy</u>, <u>paguilar@iib.unsam.edu.ar</u>, <u>luca.jovine@ki.se</u>, <u>podbilew@technion.ac.il</u>

†These authors contributed equally to this work.

### This PDF file includes:

| Supplementary Figure 1   | . <u>page 3</u>  |
|--------------------------|------------------|
| Supplementary Figure 2   | . <u>page 6</u>  |
| Supplementary Figure 3   | . <u>page 8</u>  |
| Supplementary Figure 4   | . <u>page 9</u>  |
| Supplementary Figure 5   | . <u>page 10</u> |
| Supplementary Figure 6   | . <u>page 12</u> |
| Supplementary Figure 7   | . <u>page 15</u> |
| Supplementary Figure 8   | . <u>page 19</u> |
| Supplementary Figure 9   | . <u>page 21</u> |
| Supplementary Figure 10  | . <u>page 22</u> |
| Supplementary Figure 11  | <u>page 23</u>   |
| Supplementary Figure 12  | <u>page 24</u>   |
| Supplementary Table 1    | <u>page 25</u>   |
| Supplementary Table 2    | <u>page 26</u>   |
| Supplementary Table 3    | <u>page 27</u>   |
| Supplementary Table 4    | <u>page 28</u>   |
| Supplementary Table 5    | <u>page 29</u>   |
| Supplementary Table 6    | <u>page 30</u>   |
| Supplementary Table 7    | <u>page 32</u>   |
| Supplementary References | <u>page 34</u>   |

а



pH 7.4 VSV G

Fsx1

## Supplementary Fig. 1. Sequence similarities between fusexins and ectopic expression of archaeal fusexins in mammalian cells.

a Fsx1s are members of the fusexin superfamily. HMM homology probabilities of fusexins and archaeal candidates ectodomains evidence sequence similarity between archaeal candidates and sexual (HAP2/GCS1) fusexins. HMMs were constructed for each ectodomain sequence (UniProt and NCBI identifiers shown). HAP2/GCS1 and EFF-1 sequences were chosen from representative species of the major eukaryotic lineages where these fusexins are present. Flavi-, alpha-, rubi- and bunyaviruses encompass all currently known viral fusexins. All vs all probabilities of homology as determined by HHblits were clustered along rows and columns using UPGMA with Hamming distance. Several sequences selected for this analysis have corresponding crystal structures: Yellow fever virus (UniProt <u>Q89292</u>], PDB <u>6IW5</u><sup>1</sup>), Chikungunya virus (UniProt Q1H8W5, PDB 3N43<sup>2</sup>), Dengue virus (UniProt P12823, PDB <u>10AN<sup>3</sup></u>), Semliki forest virus (UniProt <u>P03315</u>, PDB <u>1RER<sup>4</sup></u>), Tick-borne encephalitis virus (UniProt P14336, PDB 1SVB<sup>5</sup>), Arabidopsis thaliana (UniProt F4JP36. PDB 50W3<sup>6</sup>), virus (UniProt P08563, Rubella PDB 4ADG<sup>z</sup>), Chlamydomonas reinhardtii (UniProt A4GRC6, PDB 5MF18), Hantavirus (UniProt P08668, PDB 5LK1<sup>9</sup>) and Rift valley fever virus (UniProt P03518, PDB 4HJC<sup>10</sup>). Although all of the sequences used as input belong to the fusexin structural superfamily, HMM vs HMM comparisons can only detect homology within subsets of the superfamily.

b-d Ectopic expression of archaeal fusexins in BHK cells. b-c Ten archaeal genes were synthesized (Supplementary Table 5) and independently expressed in BHK cells using an inducible promoter. **b** Immunofluorescence (n=2) and **c** Western blot showing ectopic expression detected with anti-V5 antibody (n=2). EFF-1 from C. elegans was used as a positive control. NaFsx1, Natrinema altunense Fsx1. HQ22Fsx1, Haloferax sp. Q22 Fsx1. HnFsx1, Haloplanus natans Fsx1. obtained LKMP01000007 1 was from Nanohaloarchaea B1-Br10 U2g21 LB-BRINE-C121. Fsx1 (the protein subsequently characterized), SAMEA2619974 and sequences starting with "330" were obtained from metagenomic databases (see Supplementary Table 5 for complete accession numbers). M, marker. Scale bars, 10 μm.

**d** Quantification of multinucleation in cells expressing archaeal fusexins. Cells were transfected with archaeal fusexins cloned into pCI::H2B-RFP/GFP vectors

separately. 48 h post-transfection, immunofluorescence was performed with anti-V5 antibody. Empty vector pCI::H2B-RFP or pCI::H2B-GFP co-transfected with myr-EGFP were the negative controls. AtHAP2 was used as a positive control. Multinucleation was determined as the ratio between the number of nuclei in multinucleated cells and the total number of nuclei in multinucleated cells and expressing cells that were in contact but did not fuse. The percentage of multinucleation is presented as individual data and means ± SEM of independent experiments (n≥4). Total number of nuclei counted in multinucleated cells and in cells in contact  $n \ge 1,000$  for each experimental condition. Comparisons were made with one-way ANOVA followed by Dunett's test against the empty vector. \*\*\*\* p< 0.0001. e VSV G activity, but not Fsx1, is enhanced at low pH. Quantification of multinucleation in cells expressing Fsx1 or VSV G. Cells were transfected with pCI::H2B-RFP bearing the coding sequence for Fsx1 or VSV G. 48 h post-transfection, a 5-minute incubation at pH 5.5 buffer was performed to some cells. After 2 h, cells were fixed and immunofluorescence was performed with anti-V5 antibody or anti-G for Fsx1 and VSV G, respectively. Multinucleation was determined as the ratio between the number of nuclei in multinucleated cells and the total number of nuclei in multinucleated cells and expressing cells that were in contact but did not fuse. The percentage of multinucleation is presented as individual data and means ± SEM of three independent experiments. Total number of nuclei counted in multinucleated cells and in cells in contact  $n \ge 1,000$  for each experimental condition. Comparisons were made with two-way ANOVA. ns, non-significant, \*\* p < 0.01. Source data are provided as a Source Data file.



## Supplementary Fig. 2 The Fsx1 ectodomain is a monomer in solution but crystallizes as a trimer.

**a**, **b** SDS-PAGE (a) and blue native PAGE (b) gels of purified Fsx1 ectodomain (Fsx1<sub>E</sub>). NR; non-reducing conditions. R; reducing conditions (see Supplementary Fig. 11). n=2.

**c** Size exclusion chromatography-multiangle light scattering (SEC-MALS) shows that, although  $Fsx1_E$  has a very different elution volume depending on the salt concentration, it is a monomer in solution in both normal and high salt conditions. BSA, whose elution volume does not change significantly at different salt concentrations, is used as a control. Asterisks indicate the high-molecular weight aggregate. n=2.

**d** SAXS analysis of  $Fsx1_E$ . Left panel, The SAXS envelope of  $Fsx1_E$ , obtained by averaging 20 *ab initio* shape reconstructions, is consistent with the crystallographic model of  $Fsx1_E$  chain A (top). However, as also indicated by the corresponding Kratky plot (see below), its relatively broad profile suggests that there is some flexibility between the domains of Fsx1 in solution. Accordingly, improved agreements can be obtained by flexibly fitting the  $Fsx1_E$  monomer model to envelopes generated by averaging the two most abundant clusters of SAXS models (middle and bottom). Center-left panel, Comparison of the experimental SAXS profile of  $Fsx1_E$  (green dots) and theoretical scattering curves calculated from the refined coordinates of  $Fsx1_E$  chain A (black dots) or the whole  $Fsx1_E$  trimer (red dots). Center-right panel, the Kratky plot of  $Fsx1_E$  suggests the presence of significant flexibility between the domains of the monomeric protein. Right panel, Pairwise interatomic distance distribution of  $Fsx1_E$ .

e Representative rhomboidal plate crystal of Fsx1<sub>E</sub>.

**f** The Chi=120 section of the self-rotation function of  $Fsx1_E$  (calculated using a 67.3-2.6 Å resolution range) shows a prominent peak with a height of 72% of the origin peak.



#### Supplementary Fig. 3 AlphaFold2-aided MR phasing of Fsx1<sub>E</sub>.

**a** Flowchart of  $Fsx1_E$  structure determination using different AlphaFold2 model fragments or a combination thereof. The top panel shows a superposition of the five initial predictions, colored by model (left) or by confidence (right); the dashed ovals indicate C-terminal residues D510-S535, which were predicted with low confidence by AlphaFold2. aa, amino acid; AU, asymmetric unit.

**b** Comparison of the top-ranked AlphaFold2 prediction and the refined experimental model of Fsx1 domains I/II and III.



Supplementary Fig. 4 Details of the electron density map of Fsx1<sub>E</sub>.

**a** View of the domain II helical bundle, looking down the molecular three-fold axis from the center of the structure towards the putative fusion loop end. Domain II  $\alpha$ 1 helix residues D260 and D263 coordinate a Ca<sup>2+</sup> ion sitting on the NCS axis and three symmetrically positioned Na<sup>+</sup> ions, respectively. The refined *2mFo-DFc* electron density map, contoured at 1.0  $\sigma$ , is shown as a gray mesh superimposed onto the protein model in stick representation. Fsx1 subunits and metal ions are coloured as in Fig. 3c.

**b** Section of the map centered around  $\beta$ -strands D<sub>0</sub>, E<sub>0</sub> and F<sub>0</sub> of domain I.

**c** Closeup of the map region where domain III of one protein subunit interacts with domains I and II of another. Clear density for the  $C_3389-C_4432$  disulfide is visible near the bottom left corner.

**d** Map of domain IV. The conserved  $C_7490-C_8506$  disulfide is at the top left corner, whereas  $C_6477$  of the  $C_5457-C_6477$  disulfide is visible at the bottom and the domain II  $C_1125-C_2155$  disulfide of the adjacent subunit can be seen on the top right corner.



## Supplementary Fig. 5 3D mapping of the evolutionary conservation of Fsx1 residues and key structural features of its domain II.

**a** Fsx1 domains I and III are more evolutionarily conserved than domains II and IV. Surface representation of the  $Fsx1_E$  monomer, with residues coloured from green to violet by increasing conservation among archaeal homologs. Approximate domain

boundaries are marked, and the position of the four highly conserved disulfides of Fsx1 is indicated.

**b** Helices  $\alpha 1$  and  $\alpha 2$  of domain II form a six-helix bundle around the molecular three-fold axis. Subunits are shown in cartoon representation and coloured as in Fig. 3c, with residues mediating direct or ion-mediated interactions between chains depicted in stick representation (for clarity, water-mediated interactions are not shown). The side chains of residues  $\alpha 2 L264$  and  $\alpha 3 V278$  (black circles), which face each other in the Fsx1<sub>E</sub> structure, are both replaced by Cys in the sequences of *Halogeometricum borinquense* and *Halobonum* sp. (Supplementary Fig. 6), suggesting that an additional disulfide bond stabilizes the helical bundle of the Fsx1 homologs from these species.

**c** AlphaFold-Multimer prediction of the Fsx1<sub>E</sub> homotrimer (left panel) generates models that either approximate the overall post-fusion conformation of the crystal structure (albeit with significant interchain clashes; model 1) or adopt an extended conformation that resembles an intermediate state thought to exist before fusion<sup>11</sup> (models 2-5). In both cases, the models contain the experimentally observed six-helix bundle and, as shown for the Ca<sup>2+</sup> coordinated by D260 (yellow sphere), in some instances even reproduce the orientation of side chains that bind ions in the crystal (right panel). Considering that these residues are poorly conserved in other homologs of Fsx1 (Supplementary Fig. 6) and taking into account that AlphaFold2 does not explicitly predict ions, this suggests that Ca<sup>2+</sup> and Na<sup>+</sup> stabilize the trimeric structure of Fsx1 rather than being required for its formation.

**d** Structure of the fusion loop of  $Fsx1_E$ . The domain II region encompassing the loop is shown in the same orientation as in Fig. 3f, with black and yellow dashes indicating protein hydrogen bonds and the coordination of the Ca<sup>2+</sup> ion, respectively. Note how binding of the ion locally twists the protein main chain, with the peptide bond between P147 and V148 adopting a *cis* configuration (black arrow).

#### а

| Fsx1E/7P4L                                                                                                                                                                                | A0                                                                                                                                                                                    | B0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>C0</u>                                                                                                                                                                                    |                                                                                                                                                                                         | D0                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fsxls/7P4L<br>Haloterrigena sp.<br>Halovivax sp.<br>Natrinema_altunense<br>Halofferax Q22<br>Haloplanus natans<br>Halogeometricum borinquense<br>Halobonum sp.                            | 30<br>DSITYNGGTSEFD<br>DRIDFQS.NSDFD<br>DSIQFDS.NSKF3<br>DQIEYTS.NSDFD<br>DTVTYES.NSDFD<br>DTVTYES.NSDFD<br>DTVSYKS.NSFFD<br>DEVFIDN.NARES<br>DEVRIES.SVLES                           | 40<br>GDVFATEVTADQSTD<br>NEAFVISYLSDFSTD<br>GEVFVIQYISNFDTD<br>GQVLQVKYSNFATD<br>GQVLQVGYSNFATD<br>G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60<br>                                                                                                                                                                                       | 7 0<br>                                                                                                                                                                                 | 80<br>DLSIEFTHODSKLKY<br>DLSIEVESONTYAEY<br>DLSIEVESONTYAEY<br>LSIDVVQQDTAALY<br>ELTIDITSOETTARY<br>PITFDVSHONTYARY<br>DFSLGINNFEAWFSN<br>DFTLGLTSFDAWFYQ                                                                 |
| Fsx1E/7P4L                                                                                                                                                                                | а<br>🗕 тт ——                                                                                                                                                                          | b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | α <b>S</b><br>2ΩΩΩΩΩΩ <b>Τ</b> '                                                                                                                                                             | r —                                                                                                                                                                                     | c                                                                                                                                                                                                                         |
| Fsx1s/TP4L<br>Haloterrigena sp.<br>Halotivas sp.<br>Natrinema altunense<br>Haloferas Q22<br>Haloglanus natans<br>Halogeometicum borinquense<br>Halogometicum borinquense<br>Halobonum sp. | 90 100<br>STSTŠDELRDĪVTI<br>SIADSVEQD.LVNI<br>SISPSGEPR.LGNI<br>STTSTSLSR.IVAR<br>PTQDTGLES.ITCG<br>PLQETGLKK.IVGW<br>PVI                                                             | 110<br>TTYYEDGF.DTEQDA<br>EPIKSDFL.SGSDTA<br>ELTTAEK.STEEL<br>KAINSEVETDTSSSE<br>DAVKKTV.SSKOEL<br>EGMKKTF.DTKSDE<br>DAVKTV.DTKDQL<br>DTKDQL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120<br>120<br>DATKSDSYPL<br>DDATKSDSYPL<br>DRWAWDTSYPL<br>VSRYCSWARDONSYPL<br>WDWTTTINGYPT<br>WNWTTSNCADF<br>RVR.MATY.NCGFL<br>TVR.SAUFSDCLF                                                 | 30<br>NONGNGSGR<br>GONGNIQ.<br>NGDCGKE<br>DGDSEIEQGD<br>DDSEIEQGD<br>DDAGTFTVDGYGTTDVD<br>TEGGVAIGD.RTSKVE<br>DCGGSNDQAKGD<br>SGDECPNSQDDGD                                             | 140<br>. \\SRYSVT.SPVY.<br>. \\VVOSTLT.FTGT.<br>. \\AVESVLT.NGGT.<br>D\TQRFWVD.GATA.<br>. ARANKMFDTWTGQY<br>. ARANKMFDTWTGQY<br>. ARANKMFDTWTGQY<br>. ARANKSYDYWTGSY<br>DFQAESPYT.SQAET<br>AFQAESSES.SPAEF<br>Fusion Loop |
| Fsx1=/7P4L                                                                                                                                                                                | d                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E0 F(                                                                                                                                                                                        |                                                                                                                                                                                         | HO                                                                                                                                                                                                                        |
| 1:<br>Fsxls/7P4L<br>Haloterrigena sp.<br>Halovivax sp.<br>Natrinema altunense<br>Haloferax Q22<br>Haloplanus natans<br>Halogeometricum borinquense<br>Halobonum sp.                       | 5,0 16<br>DYEIYCFQKN<br>KYEVYCARYN<br>VYRGYCARRN<br>DYYN.A.QVYCVREN<br>KYTIYCWQRN<br>RRTAVTELYCFKVE<br>RYTDGSDLYCYKVE                                                                 | 0     170       EKLATPAYIDNPDEI     GEVGPICNIQTPREL       GFYGPVGRLTKDREV     GFYGPVARLTKDREV       GYYGNLAELSSPDKB     GYYGNVADIGSPDEI       GYYGNVADIGSPDEI     KTGEAASFGLNQDSS       RVGSVSDWTLAQGTD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180<br>TAKAELQAGDKTIQS<br>ETTWQVEADDEPAOT<br>TTEWRVEASGESAQT<br>EAEVEVKADGETPQS<br>RTEWRLQAGDKNPQT<br>SAEVEVKAGGENNPQT<br>SAEVEVLAGDKNPQT<br>SATVQASADGRSDSD<br>DGTFTVEAAGRSDTD              | 200<br>ATLSNGDAGDGTVTDLG.<br>PTLSNNDDGEGRTTRIG.<br>ATLSNGDTGRGVVSDIG.<br>TTLSNSDLGQGRQDNIG.<br>AVLTNGDGGTGVVSNLG.<br>AITTNGDGGSGVVSNLG.<br>PISKDDPTASVNVGDVNRDG<br>TISKDDVTARLQVADVNVDG | 210<br>. D. SKISWNGNL.<br>DHVVVVDGNDGNV.<br>. DHVVVWDGNGNV.<br>. DHVVRWDGNL.<br>. EVVR&VTGN.<br>. RVAKVSWEGSL.<br>. RVAKVKWGGNL.<br>DSEEALVTWRGSFIG<br>DREHAHVTWTGSLAG                                                    |
| Fsx1z/7P4L                                                                                                                                                                                |                                                                                                                                                                                       | η1 <i>f</i> η2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $g \qquad \alpha 1$                                                                                                                                                                          | α2<br><u>000 000000.0000</u>                                                                                                                                                            | α3 α4<br>0000000 <u>00000</u>                                                                                                                                                                                             |
| Fsxlz/7P4L<br>Haloterrigena sp.<br>Halovivax sp.<br>Natrinema altunense<br>Haloferax 022                                                                                                  | 220<br>DLGASEPEN<br>DLGRDPPNP<br>DTGEEAPPA<br>PTGEGVPEP<br>STGENPPLV                                                                                                                  | 230<br>SRVIALYSNDFEN(<br>GDEGAAALYVRT.AN<br>DKEYALHGNQFED(<br>YNVYAIHSNTFSPI<br>DDEYALHSNDYEG(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 250<br>WRIGNKQSYEDYKTF<br>WRVISASRYDDWDTY<br>WRVISASRYDDWDTY<br>WRVISAERYSSYNSY<br>WRVISESRYSSYOSF                                                                                           | 260<br>IGGGDAYDLLI.DWQDGTYT<br>V.RDLVTRYD.DWAEGSIS<br>V.R.DLDTAYE.QWRDGDRS<br>V.ENNLYSQIE.AWKEGSLS<br>V.ONNADDLLG.EWGAGLTT                                                              | 280<br>ASEVEDELVNTDANQ<br>QDELRREI.QSRAES<br>RDYLQNQL.DTATEQ<br>QEEVVSTA.NDQAAQ<br>ESHIESEM.NGKAEE                                                                                                                        |
| Haloplanus natans<br>Halogeometricum borinquense<br>Halobonum sp.                                                                                                                         | DTRSIDISPVKPV<br>DTRSIDISPVKPV<br>ELRSMDLSEFIAT                                                                                                                                       | DDELAIHGNNYEG<br>DSNCERPTNNVD.<br>ENNCEQHTNEIS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SWRVISEQRYDNYWNY<br>WIVGSQDLFTEWNQY<br>WGVGAESQYSAYSAY                                                                                                                                       | I.KNDGNRLLD.KWKSGDYS<br>D.EGGFDQ <b>G</b> VQNSNIDRLS.<br>D.GGGFQS <b>C</b> VE.TEVDANGA                                                                                                  | ESYIEGLI.NGKAEN<br>DGVIRY.NDRAAN<br>PHTGVNAY.NNRASN                                                                                                                                                                       |
| Fsx1 <sub>E</sub> /7P4L                                                                                                                                                                   | 2                                                                                                                                                                                     | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                                                                                                                                                                                           | → TT → J0                                                                                                                                                                               |                                                                                                                                                                                                                           |
| 2:<br>Fsx1s/7P4L<br>Halottorrigena sp.<br>Halotivas sp.<br>Natrinema altunense<br>Haloferas Q22<br>Haloplanus natans<br>Halogeometricum borinquense<br>Halogonum sp.                      | 90 300<br>AVEEASSTIDLVN<br>AASVYSSSDLAT<br>AAAEYTGSPLTS<br>AAQRVSSGSFID<br>AASETTESPLSN<br>AQKRYSESPLAN<br>VFADSSRIIQDQTS<br>VFADSSRIIQDQTS                                           | AIQ<br>AKVKDSSLDTGSFVY<br>ASTSGDA.SSGHLRL<br>AETVSSTYTDGQLRL<br>SEILDSSFQNGAFKL<br>AEVLDSSFQSGALKA<br>IDIARVDVIGTELRM<br>FDVADVRFQDGQIQV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 320<br>. DTPELLSYBSFTVY<br>. MNDGELANDOFTVY<br>. EMDTDLAYSFTV<br>. NPSYDIAWEFTFY<br>. DMRSLAYEFSVY<br>. DMRSLAYEFSVY<br>. DMSRLAYEFSVY<br>. DMSRLAYEFSVY<br>. DMSRLAYEFSVY<br>. DMSRLAYEFSVY | 340<br>350<br>350<br>350<br>350<br>350<br>350<br>350<br>35                                                                                                                              | 360<br>VS.TDGDRFGELESG<br>VS.TDGDRFGELESG<br>VN.VEGDFGELOFG<br>VN.VEGDFGELGSG<br>VS.SSGASFGELSSG<br>QFPLPEIDIVGNSRT<br>ES.VPDVTVIGNSS                                                                                     |
| Fsx1E/7P4L                                                                                                                                                                                | B                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                              |                                                                                                                                                                                         | F                                                                                                                                                                                                                         |
| Fsx1s/7P4L<br>Halotterrigena sp.<br>Halotivax sp.<br>Natrinema altunense<br>Haloferax Q22<br>Haloglanus natans<br>Halogeometricum borinquense<br>Halogeometricum borinquense              | TVTATVENVGD GDG<br>TVTATVENVGD GDG<br>TVTAEVENVGD GDG<br>TVTAEVENVGD GBG<br>TVTAEVENTASYEG<br>TISVDVKNVGGAEG<br>TADFQVLNDAAG.G<br>TAAIDVRNTGE                                         | EFSGRLS.SCGEGFS:<br>SFSARIQ.SCSCGFG<br>SFARLT.SCSDGFS<br>SFSARVS.KCSDSFC<br>SFSARVS.KCSDSFC<br>SFSARVS.KCSDSFC<br>SFSARACSCSCSST<br>SFSARACSCSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSARACSCS<br>SFSASACS | UDDONTKNUGAGESU<br>FDDUQOTEDNAESSTU<br>FDDUQOTEDNAESSTU<br>FDSTORTORUDPGASU<br>FDSTORTORUDPGASU<br>FDSTORTORUDPGASU<br>FDSTORTORUSPGGTA<br>ADALONTKRUAPGETA<br>GGS. JDTANUPSGETG             | TYSFDVAFSSVSSESKEIG<br>TYEFDVSLLTDA.DDEVGG<br>SYDPRVSFTSTG.DDEVGG<br>SYDPRVSFTSDSPOKTVG<br>SPPRVTFTSTSMCQASYTG<br>TSVPIEIGATNTRY<br>RPFIPISAGPTETRY                                     | SCTFEVNGVESS<br>OCTVEVANOESS<br>SCTLEVTDTG.SCER<br>SCTLEVTDTG.SCER<br>SCELVVSDTGDSNS<br>CEVVVEDTG.SCNE<br>RCSLTVEDTG.SCNE<br>TCDVERFDTDDSS<br>TCTVTSQDTDTAE                                                               |
| Fsx1E/7P4L                                                                                                                                                                                | G                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B1                                                                                                                                                                                           |                                                                                                                                                                                         | E1                                                                                                                                                                                                                        |
| Fsx1s/7P4L<br>Haloterrigena sp.<br>Halovivax sp.<br>Natrinema_altunense<br>Halofferax Q22<br>Haloplanus_natans<br>Halogeometricum_borinquense<br>Halobonum sp.                            | 450<br>DSTS (VIG I Q OSE<br>VT D D VE VT G I PE OT<br>D PATAAV TG V Q EN E<br>DTA VV DV EA TQ SNE<br>VSASV SV TA TQ EDE<br>VSASV SV EA TQ OSE<br>TRATAQV TV NAQNS<br>TA QTTELTV HAKTS | 470<br>CNPGDQRREKNEND.<br>CTPGERFDQVDANG.<br>CSPGERFSKVASGG.<br>CTPNEFVRTINST.<br>CTGGETKKEKQVNGI<br>CTQGKETVKQKNGI<br>CTQGCETVKQKNG<br>CPDGDGDGVCDQLDA<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 480<br>RWEIYTCODNGLTY<br>.VYTIYECTEDGSDY<br>.VYTIYECTEDGSDY<br>.HSRILCSSDGLTT<br>STVDVIMSCT.NGLKI<br>.DVIYSCPLDGLKI<br>.GPSVAGASTNNCCPL                                                      | • 99<br>ENDTCAEDEKAVAQGDNOF<br>FVDEECGHGEETDIV.DDEL<br>TEVERCEGGEEARQI.DBEL<br>TEVERCEGEEARF.DSSW<br>EEDEVCSADEEARYI.DDDV<br>QKODTCTGELKAVFV.NNDI<br>K.EVCGDSIDNNG<br>E.EVCGNDVDDDG     | 5 CEKQD<br>0 CVEEE<br>0 CVEE<br>0 CVSDG<br>0YECRDKD<br>0YECRDKD<br>0YECREEG<br>NGRVDEDCGTTG<br>DGRVDEDCGEEPG                                                                                                              |



## Supplementary Fig. 6 Alignments of archaeal Fsx1s from cultivated species and with HAP2 fusexin ectodomains.

For reproducibility, no gap or block was altered from alignments. Identical column residues are depicted in bold white on a red background; conserved positions are boxed and labeled red. On top are displayed secondary structure elements and sequence numbering corresponding to  $Fsx1_E/7P4L$ .

**a** Archaeal sequences from pure culture genomes (PCGs), with N- and C-terminal regions cropped to match  $Fsx1_E$  (PDB <u>7P4L</u>). Secondary structure elements are shown within boxed domains, coloured and labeled following the previous nomenclature (domain I, red; domain II, yellow; domain III, blue). Disulfide bonds are indicated by orange numbers below the alignment. Additional, lineage-specific cysteines are black-boxed and depicted in bold white. The fusion (cd) loop is highlighted in light orange within the alignment; as in eukaryotic HAP2, it has poor sequence conservation (Supplementary Fig. 5a) but shows a high prevalence of hydrophobic residues (Fig. 6). Domain IV (green) has relatively poor sequence conservation within archaea (Supplementary Fig. 5a), yet preserves its disulfide bonds.

**b** Sequence alignment of HAP2s from *A. thaliana* and *C. reinhardtii* (PDB <u>6E18<sup>12</sup></u>) and archaeal fusexins from cultivated genomes. Of note are the inserts of HAP2 relative to Fsx1s, as well as the absence of domain IV, which seems confined to Archaea. The conserved fusion loop region is orange shaded; lineage-specific cysteines black boxed. C-terminal regions shaded with a gradient from gray to white indicate portions absent from Fsx1<sub>E</sub> (PDB <u>7P4L</u>) and HAP2 (PDB <u>5OW3</u> and <u>6E18</u>) crystal structures, either with no electron density or absent from the expression construct. HAP2s introduce gaps; for clarity, disulfide bonds shown in panel a are omitted and replaced by secondary structure elements from PDB <u>6E18</u>.







Supplementary Fig. 7 Fsx1 mediates bilateral cell-cell fusion and structure-function analysis.

**a** Images from Fig. 4a in each separate channel (red, green, DAPI and far red) and merge. Scale bars, 20  $\mu$ m. n=4.

**b** Multinucleated cells containing green nuclei (H2B-GFP) and magenta nuclei (H2B-RFP) (arrows). Immunofluorescence against the V5 tag was performed in green to facilitate counting. n=4.

**c**, **d** in the negative control, cell-cell fusion was measured by content-mixing, indicated by the appearance of multinucleated cells containing green nuclei (H2B-GFP) and magenta nuclei (H2B-RFP). To reveal the cytoplasm of the transfected cells, a plasmid encoding for cytoplasmic RFP (RFPnes) was co-transfected. n=3. **c** Representative images of mononucleated cells with a green or red nucleus. DAPI staining is shown in blue. **d** Cartoon showing the experimental design for negative control.

**e** Images from Fig. 4d in each separate channel (red, green and DAPI) and merge. Multinucleated GFPnes only (arrowheads) or mixed cells (arrows). Scale bars, 20 μm. n=3.

**f** Images from Fig. 5c in each separate channel: red (RFP); green (GFP) and blue (DAPI) and the merged images. Scale bars, 20  $\mu$ m. n>3 as specified in Fig. 5b for each condition.

**g** Surface expression of Fsx1, mutants and eukaryotic fusexins. For colors and abbreviations see legend of Fig. 2. BHK cells were transfected with FLAG-tagged

Fsx1 (WT) and the indicated mutants; the FLAG tag was inserted before the membrane anchor. Non-permeabilized staining using anti-FLAG antibody showed surface expression of Fsx1 and the various mutants as detected by immunofluorescence. The proportion of non-permeabilized cells showing surface expression was: AFF-1-FLAG (negative control; 0%, n=2), Fsx1-FLAG (3.9%, n=1), Fsx1-ΔFL→AG₄A-FLAG (4.4%, n=1), Fsx1-ΔDIV→EFF-1 stem-FLAG (2.6%, n=1), Fsx1 $\Delta$ TMs $\rightarrow$ EFF-1 TM-FLAG (3.3%, n=2), Fsx1 $\Delta$ TMs $\rightarrow$ GPI-FLAG (32.6%, n=3), AtHAP2 $\Delta$ TM $\rightarrow$ GPI-FLAG (22.8%, n=2). Total number of cells with red nuclei counted n ≥850 for each experimental condition; the percentage of surface expression was counted by at least two different observers. Another group of transfected BHK cells in parallel were fixed, permeabilized and stained with anti-FLAG antibody. Permeabilized staining showed the main distribution in the cytoplasm (endoplasmic reticulum) of Fsx1 WT, Fsx1 mutants and AtHAP2 $\Delta$ TM $\rightarrow$ GPI mutant. C. elegans AFF-1 tagged with FLAG at the C terminus (cytoplasmic tail) worked as a negative control for non-permeabilized staining. Scale bars, 10 µm.



#### Supplementary Fig. 8 Bioinformatics workflow for IMEs.

The general workflow is divided into two parts. First, we re-annotated the ORFs of each IME and searched for potential homologs between them. Then we enriched these initial groups by searching the UniRef50 database and generated new HMM profiles. With these new HMMs we searched again within each IME to capture any potentially missing homolog. Finally, we performed HMM vs HMM<sup>13</sup> search to collapse similar groups into one. CG1, CG2...CGN are final collapsed homologous groups which are the basis for IME clustering, synteny conservation and gene content analyses shown in Supplementary Fig. 9, Fig. 8 and Supplementary Table 3, respectively.



## Supplementary Fig. 9 Clustering of IMEs from complete genomes, MAGs and metagenomic contigs based on gene content.

A distance metric based on the sharing of homologous genes between all IMEs was computed (see Methods). Then a pairwise distance matrix was built to perform hierarchical clustering. There is a clear cluster, marked in red, which contains all PCG IMEs and the DNA contig containing the crystallized Fsx1 (jgi12330j12834\_1000008). This cluster of 11 IMEs was used for the synteny conservation analysis shown in Fig. 8.



Supplementary Fig. 10 Unrooted phylogenetic tree of Archaea/Eukarya fusexins and structure-based tree of all fusexins.

**a** Unrooted phylogenetic sequence tree of archaeal and eukaryotic fusexins. Archaeal Fsx1s from cultivated species are shown in red; eukaryotic HAP2 major clades are indicated in colors. Relevant branch support values are indicated, raw tree available in Supplementary Data 5.

**b** Monomer models based on the  $Fsx1_E$  crystal structure and experimental structures of other fusexins were compared using flexible structural alignment to build a minimum evolutionary tree. Scale bar represents distance as 1-TMscore, which supports their homology.



### Supplementary Fig. 11 Uncropped gel images from Supplementary Fig. 2.

**a** SDS-PAGE gel stained with Coomassie G-250. The section indicated by a red dashed square is used in Supplementary Fig. 2a. n=2.

**b** BN-PAGE gel stained with Coomassie G-250. The section indicated by a red dashed square is used in Supplementary Fig. 2b. n=2.



## Supplementary Fig. 12 Uncropped Western blot images from Supplementary Fig. 1c and Fig. 5d, e.

**a** Western blot probed with anti-V5 (upper) and anti-actin (lower) antibodies. The sections indicated by red dashed squares are used in Supplementary Fig. 1c. n=3.

**b** Western blot probed with anti-V5 (upper) and anti-actin (lower) antibodies. The sections indicated by red dashed squares are used in Fig. 5d. n=3.

**c** Western blots probed with anti-V5 (upper) and anti-actin (lower) antibodies. The sections indicated by red dashed squares are used in Fig. 5e. n=3.

#### Supplementary Table 1. Fsx1s in genomes with assigned taxonomy

| Sequence ID    | Species                                  | Taxonomy                                                                                        |
|----------------|------------------------------------------|-------------------------------------------------------------------------------------------------|
| WP_058826362.1 | Haloferax sp. Q22                        | Archaea > Euryarchaeota > Stenosarchaea group > Halobacteria > Haloferacales > Haloferacaceae   |
| WP_144240185.1 | Natrinema altunense (AJ2)                | Archaea > Euryarchaeota > Stenosarchaea group > Halobacteria > Natrialbales > Natrialbaceae     |
| ELY83688.1     | Natrinema altunense JCM12890)            | Archaea > Euryarchaeota > Stenosarchaea group > Halobacteria > Natrialbales > Natrialbaceae     |
| WP_157573584.1 | Haloplanus natans DSM 17983              | Archaea > Euryarchaeota > Stenosarchaea group > Halobacteria > Haloferacales > Haloferacaceae   |
| WP_174701778.1 | Haloterrigena sp. SYSU A121-1            | Archaea > Euryarchaeota > Stenosarchaea group > Halobacteria > Natrialbales > Natrialbaceae     |
| WP_179268568.1 | Halobonum sp. NJ-3-1                     | Archaea > Euryarchaeota > Stenosarchaea group > Halobacteria > Haloferacales > Halorubraceae    |
| WP_163487151.1 | Halogeometricum borinquense stra<br>wsp4 | n Archaea → Euryarchaeota → Stenosarchaea group → Halobacteria → Haloferacales → Haloferacaceae |
| WP_207587115.1 | Halovivax sp. KZCA124                    | Archaea › Euryarchaeota › Stenosarchaea group › Halobacteria › Natrialbales › Natrialbaceae     |

#### Fsx1s in Pure Culture Genomes (PCGs)

#### Fsx1s in Metagenome-Assembled Genomes (MAGs)

| Sequence ID      | Assigned taxon                         | Taxonomy                                                                                                        |
|------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| MGYP000598426430 | Halobacteriales                        | Archaea > Euryarchaeota > Stenosarchaea group > Halobacteria > Halobacteriales                                  |
| LKMP01000007_1   | Nanohaloarchaea archaeon B1-Br10_U2g21 | Archaea > Euryarchaeota > Stenosarchaea group > Candidatus Nanohaloarchaeota                                    |
| RLG58774.1       | Candidatus Geothermarchaeota B85_G10   | 6 Archaea >TACK group > Candidatus Geothermarchaeota                                                            |
| RLI53188.1       | Candidatus Thorarchaeota archaeon      | Archaea > Asgard group > Candidatus Thorarchaeota                                                               |
| RKX41251.1       | Thermotogae bacterium                  | Bacteria > Thermotogae                                                                                          |
| RKZ11204.1       | Candidatus Fermentibacteria bacterium  | Bacteria > Candidatus Fermentibacteria                                                                          |
| RLG94066.1       | Candidatus Bathyarchaeota archaeon     | Archaea >TACK group > Candidatus Bathyarchaeota                                                                 |
| AJF63093.1       | archaeon GW2011_AR20                   | Archaea yunclassified                                                                                           |
| HEX32987.1       | Candidatus Aenigmarchaeota archaeon    | Archaea > DPANN group > Candidatus Aenigmarchaeota                                                              |
| HDD44259.1       | Candidatus Desulfofervidus auxilii     | Bacteria > Proteobacteria > Deltaproteobacteria > Candidatus Desulfofervidaceae                                 |
| HDI72891.1       | Candidatus Altiarchaeales archaeon     | Archaea → DPANN group → Candidatus Altiarchaeota → Candidatus Altiarchaeales                                    |
| HHR27186.1       | Candidatus Bathyarchaeota archaeon     | Archaea >TACK group > Candidatus Bathyarchaeota                                                                 |
| NJD53946.1       | Candidatus Methanoperedens sp.         | Archaea > Euryarchaeota > Stenosarchaea group > Methanomicrobia > Methanosarcinales > Cand. Methanoperedenaceae |
| NOZ47386.1       | Chlorobi bacterium                     | Bacteria › Chlorobi                                                                                             |
| HGF63239.1       | Candidatus Micrarchaeota archaeon      | Archaea > DPANN group > Candidatus Micrarchaeota                                                                |
| HID09282.1       | Candidatus Micrarchaeota archaeon      | Archaea > DPANN group > Candidatus Micrarchaeota                                                                |

| Data collection                                             |                                                 |
|-------------------------------------------------------------|-------------------------------------------------|
| Space group                                                 | C2 (5)                                          |
| Cell dimensions<br>a, b, c (Å)<br>α, β, γ (°)               | 262.51, 111.33, 68.51<br>90, 100.709, 90        |
| Wavelength (Å)                                              | 1.005                                           |
| Resolution range (Å)                                        | 67.3-2.3 (2.38-2.30) <sup>§</sup>               |
| Unique reflections                                          | 85618 (8536)                                    |
| Multiplicity                                                | 4.2 (4.4)                                       |
| Completeness (%)                                            | 99.5 (99.9)                                     |
| Mean I / σI                                                 | 11.4 (1.4)                                      |
| Wilson B-factor                                             | 42.8                                            |
| R <sub>merge</sub><br>R <sub>meas</sub><br>R <sub>pim</sub> | 0.100 (1.218)<br>0.115 (1.385)<br>0.055 (0.651) |
| CC <sub>1/2</sub><br>CC*                                    | 1.0 (0.58)<br>1.0 (0.86)                        |
| Refinement                                                  |                                                 |
| Reflections used in refinement                              | 85574 (6092) <sup></sup>                        |
| Reflections used for R <sub>free</sub>                      | 2012 (149)                                      |
| R <sub>work</sub><br>R <sub>free</sub>                      | 0.199 (0.303)<br>0.243 (0.377)                  |
| Number of non-H atoms<br>macromolecules / ligand / solvent  | 11733<br>11051 / 66 / 616                       |
| Protein residues                                            | 1432                                            |
| RMS<br>bonds (Å)<br>angles (°)                              | 0.004<br>0.58                                   |
| Ramachandran favored / allowed / outliers (%)               | 98.9 / 1.1 / 0.0                                |
| Rotamer outliers (%)                                        | 0.2                                             |
| Clashscore                                                  | 2.5                                             |
| Average B-factor<br>macromolecules / ligand / solvent       | 53.4<br>53.5 / 58.8 / 50.0                      |

### Supplementary Table 2. $Fsx1_{E}$ data collection and refinement statistics

 $^\$$  Values in parenthesis are for the highest resolution shell  $^{**}$  The highest resolution shell used in refinement included reflections between 2.36 and 2.30 Å

| Collapsed  | IMEs               | arCOG              | ;<br>;                             |          |                                                 |
|------------|--------------------|--------------------|------------------------------------|----------|-------------------------------------------------|
| Group Name | count <sup>b</sup> | count <sup>c</sup> | arCOG                              | Category | Annotation                                      |
| CG_2       | 11                 | 22                 | arCOG00280, arCOG00285, arCOG06224 | L        | HerA helicase                                   |
| CG_17      | 10                 | 21                 | arCOG01241, arCOG01248, arCOG01250 | х        | XerC XerD/XerC family integrase                 |
| 41684      | 10                 | 3                  | arCOG01680, arCOG02808, arCOG04362 | к        | Transcriptional regulator containing HTH domain |
| 43214      | 9                  | 9                  | arCOG08903                         | S        | Uncharacterized protein                         |
| CG_1       | 8                  | 8                  | arCOG12186                         | S        | Uncharacterized protein                         |
| CG_2       | 7                  | 7                  | arCOG04816                         | U        | TraG/TraD/VirD4 family enzyme, ATPase           |
| 43797      | 7                  | 7                  | arCOG12187                         | S        | Uncharacterized membrane protein                |
| 43810      | 7                  | 7                  | arCOG10296                         | S        | Uncharacterized membrane protein                |
| 43833      | 7                  | 7                  | arCOG08907                         | S        | Uncharacterized protein                         |
| 43868      | 7                  | 7                  | arCOG10381                         | S        | Uncharacterized protein                         |
| CG_2       | 6                  | 7                  | arCOG00467                         | L        | Cdc6-related protein, AAA superfamily ATPase    |
| CG_2       | 6                  | 6                  | arCOG07496                         | U        | VirB4, Type IV secretory pathway                |
| 42763      | 6                  | 6                  | arCOG06216                         | К        | Transcriptional regulator                       |
| CG_2       | 5                  | 5                  | arCOG01308                         | 0        | ATPase of the AAA+ class , CDC48 family         |
| CG_21      | 3                  | 3                  | arCOG07871                         | К        | Helicase                                        |
| CG_2       | 2                  | 2                  | arCOG00439                         | L        | ATPase involved in replication control          |
| CG_2       | 2                  | 2                  | arCOG03779                         | V        | GTPase subunit of restriction endonuclease      |
| CG_2       | 2                  | 2                  | arCOG05935                         | R        | Helicase of FtsK superfamily                    |
| CG_21      | 2                  | 2                  | arCOG00878                         | V        | restriction-modification related helicase       |
| CG_9       | 1                  | 1                  | arCOG03600                         | E        | Transglutaminase-like cysteine protease         |
| CG_21      | 1                  | 1                  | arCOG04818                         | к        | Superfamily II DNA/RNA helicase, SNF2 family    |

#### Supplementary Table 3. Most common arCOGs from 11 IMEs<sup>a</sup>

a. Collapsed Homology Groups (Supplementary Fig. 8) corresponding to the 11 IME clusters (Supplementary Fig.
9) were analyzed using HMMER against the arCOGs database. Collapsed Homology Groups with zero identified arCOGs are not shown. Full dataset with results is in Supplementary Data 3.

b. Number of IMEs where the indicated arCOGs are present.

c. Total number of ORFs belonging to arCOGs in the next column identified in the set of 11 IMEs.

## Supplementary Table 4. IMEs carrying the *fsx1* gene in completely sequenced genomes

| Species with fsx1                          | NCBI    | PATRIC    | sequence ID <sup>a</sup> | ME                 | ME end             | Length | ME              | ME              | Length | Species w/o fsx1 <sup>d</sup>              | NCBI    | PATRIC        | ANI <sup>e</sup> |
|--------------------------------------------|---------|-----------|--------------------------|--------------------|--------------------|--------|-----------------|-----------------|--------|--------------------------------------------|---------|---------------|------------------|
|                                            | TaxID   | ID        |                          | start              | k-mer <sup>b</sup> | ME     | start           | end             | ME CG  |                                            | TaxID   | ID            |                  |
|                                            |         |           |                          | k-mer <sup>b</sup> |                    | k-mer  | CG <sup>c</sup> | CG <sup>C</sup> |        |                                            |         |               |                  |
| Haloplanus natans DSM<br>17983             | 926690  | 926690.3  | ATYM01000002             | 1422500            | 1526500            | 104001 | 1422548         | 1535558         | 113011 | Haloplanus sp. CBA1112                     | 1547898 | 1547898.<br>3 | 88.0             |
| Natrinema altunense<br>strain AJ2          | 222984  | 222984.5  | JNCS01000001             | 496500             | 593500             | 97001  | 497005          | 591892          | 94888  | <i>Natrinema altunense</i> strain 4.1R     | 222984  | 222984.1<br>0 | 98.0             |
| Halobonum sp. NJ-3-1                       | 2743089 | 2743089.3 | CP058579                 | 1918000            | 2078500            | 160501 | 1906722         | 2078630         | 171909 | Halobonum sp. Gai3-2                       | 2743090 | 2743090.<br>3 | 85.0             |
| Haloferax sp. Q22                          | 1526048 | 1526048.3 | LOEP01000012             | 1                  | 56511              | 56511  | 1               | 56511           | 56511  | Haloferax gibbonsii strain<br>LR2-5        | 35746   | 35746.12      | 94.8             |
| Haloterrigena sp. SYSU<br>A121-1           | 2496101 | 2496101.3 | JABURA010000001          | 1761500            | 1860500            | 99001  | 1761690         | 1860499         | 98810  | Haloterrigena turkmenica<br>DSM 5511       | 543526  | 543526.1<br>3 | 92.4             |
| Halogeometricum<br>borinquense strain wsp4 | 60847   | 60847.21  | CP048739                 | 2797000            | 2827000            | 30001  | 2763703         | 2853374         | 89672  | Halogeometricum<br>borinquense strain wsp3 | 60847   | 60847.22      | 99.6             |
| Halovivax sp. KZCA124                      | 2817025 | 2817025.3 | NZ_CP071597              | 3085000            | 3179500            | 94501  | f               |                 |        |                                            |         |               |                  |

a. Genomic contig carrying the IME.

b. Sequence coordinates of the start and end of the IME identified by k-mer spectrum.

c. Sequence coordinates of the start and end of the IME identified by comparative genomics (CG).

d. Closest species not carrying the fsx1 gene with a completely sequenced genome (used for CG analysis).

e. Average nucleotide identity between the complete genomes of compared species.

f. No species with a completely sequenced genome was similar enough to *Halovivax* sp. KZCA124 to compute an accurate estimate of IME's insertion sites with CG.

# Supplementary Table 5. Synthesized archaeal fusexin genes for fusogenic tests in mammalian cells

| Synthesized | Accession number/Sequence                               | Species/Assembly source                              |  |  |
|-------------|---------------------------------------------------------|------------------------------------------------------|--|--|
| plasmids    | Accession number/sequence                               |                                                      |  |  |
| pBPT01      | WP_007110832                                            | Natrinema altunense                                  |  |  |
| pBPT02      | WP_058826362                                            | Haloferax sp.Q22                                     |  |  |
| pBPT03      | WP_049937247                                            | Haloplanus natans                                    |  |  |
| pBPT04      | SAMEA2619974_10776_4                                    | MAG                                                  |  |  |
| pBPT05      | LKMP01000007_1                                          | Nanohaloarchaea archaeon B1-Br10_U2g21 LB-BRINE-C121 |  |  |
| pBPT06      | 3300014206-Ga0172377-10000119-870930-129                | unassembled metagenome                               |  |  |
| pBPT07      | 3300014208-Ga0172379-10000243-871512-158                | unassembled metagenome                               |  |  |
| pBPT08      | 3300014208-Ga0172379-10001592-871560-40                 | unassembled metagenome                               |  |  |
| pBPT10      | 3300018015-Ga0187866_1000629 915963_9                   | unassembled metagenome                               |  |  |
| pBPT11      | 3300000868-JGI12330J12834-1000008-299010-8, <b>Fsx1</b> | unassembled metagenome                               |  |  |

|--|

| Plasmid        | Description                                            | Use                                                                                                                               | Source                                       |
|----------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| name           |                                                        |                                                                                                                                   |                                              |
| pLJFX11B       | pLJ6-Fsx1 <sub>E</sub>                                 | For SAXS and SEC-MALS (Supplementary Fig. 2)                                                                                      | this study, amplified from pBPT11            |
| pLJFX11B_T369C | pLJ6-Fsx1 <sub>E</sub> -T369C mutant                   | For crystallographic study (Figs. 2-3; Supplementary Fig. 2)                                                                      | this study, amplified from pBPT11            |
| pBPT01         | Natrinema altunense fsx1 synthesized into pGene/V5-His | Inducible expression in mammalian cells (Supplementary Fig.1)                                                                     | this study                                   |
| pBPT02         | Haloferax sp. Q22 fsx1 synthesized into pGene/V5-His   | Inducible expression in mammalian cells (Supplementary Fig.1)                                                                     | this study                                   |
| pBPT03         | Haloplanus natans fsx1 synthesized into pGene/V5-His   | Inducible expression in mammalian cells (Supplementary Fig. 1                                                                     | ) this study                                 |
| pBPT04         | SAMEA2619974 synthesized into pGene/V5-His             | Inducible expression in mammalian cells (Supplementary Fig. 1                                                                     | ) this study                                 |
| pBPT05         | LKMP01000007_1 synthesized into pGene/V5-His           | Inducible expression in mammalian cells (Supplementary Fig. 1                                                                     | ) this study                                 |
| pBPT06         | 3300014206 synthesized into pGene/V5-His               | Inducible expression in mammalian cells (Supplementary Fig. 1                                                                     | ) this study                                 |
| pBPT07         | 3300014208-158 synthesized into pGene/V5-His           | Inducible expression in mammalian cells (Supplementary Fig. 1)                                                                    | ) this study                                 |
| pBPT08         | 3300014208-40 synthesized into pGene/V5-His            | Inducible expression in mammalian cells (Supplementary Fig. 1)                                                                    | ) this study                                 |
| pBPT10         | 3300018015 synthesized into pGene/V5-His               | Inducible expression in mammalian cells (Supplementary Fig. 1)                                                                    | ) this study                                 |
| pBPT11         | fsx1 synthesized into pGene/V5-His                     | Inducible expression in mammalian cells (Supplementary Fig. 1)                                                                    | ) this study                                 |
| oGene/V5-His   | pGene/V5-His                                           | GeneSwitch™ inducible Mammalian Expression                                                                                        | INVITROGEN                                   |
| pSwitch        | pSwitch                                                | Regulatory vector for Mifepristone induction                                                                                      | INVITROGEN                                   |
| 0OA34          | pGene::EFF-1-V5                                        | C. elegans eff-1 fused to a C-terminal V5 tag (EFF-1-V5) in pGene                                                                 | Avinoam et al., 2011 <sup>14</sup>           |
| pCI H2B-RFP    | pCI::H2B-RFP                                           | A CAG promoter (CMV immediate early enhancer and chicken<br>beta actin promoter) and IRES controlled Histone2B-mRFP1<br>reporter. | Addgene plasmid # 92398 <sup>15</sup>        |
| pCI H2B-GFP    | pCI::H2B-GFP                                           | A CAG promoter (CMV immediate early enhancer and chicken<br>beta actin promoter) and IRES controlled Histone2B-EGFP<br>reporter.  | Addgene plasmid # 92399 <sup>15</sup>        |
| pCAGIG         | pCAGIG                                                 | A CAG promoter (CMV immediate early enhancer and chicken beta actin promoter) and IRES controlled EGFP reporter.                  | Addgene plasmid # 11159 <sup>16</sup>        |
| oNB25          | pCAGIGnes                                              | Intermediate construct to create pNB32                                                                                            | this study                                   |
| NB32           | pCI::GFPnes                                            | Content-mixing, Fig. 4a-c                                                                                                         | this study                                   |
| RFPnes         | DsRed2 with a nuclear export signal                    | Content-mixing, Fig. 4a-c                                                                                                         | Avinoam et al., 201114                       |
| oXL27          | pCI::Fsx1-V5::H2B-RFP                                  | Content-mixing, Fig. 4a-c                                                                                                         | this study                                   |
| oXL28          | pCI::Fsx1-V5::H2B-GFP                                  | Content-mixing, Fig. 4a-c; live imaging of fusion, Fig. 4g                                                                        | this study                                   |
| pXL29          | pCI::AtHAP2-V5::H2B-RFP                                | Content-mixing, Fig. 4a-c;<br>Multinucleation assay (Supplementary Fig. 1)                                                        | this study                                   |
| pXL30          | pCI::AtHAP2-V5::H2B-GFP                                | Content-mixing, Fig. 4a-c;<br>Multinucleation assay (Supplementary Fig. 1)                                                        | this study                                   |
| oXL49          | pCI::Fsx1-V5::GFPnes                                   | Content-mixing, Fig. 4d-e                                                                                                         | this study                                   |
| NB34           | pCI::EFF-1-V5::GFPnes                                  | Content-mixing, Fig. 4d-e                                                                                                         | this study                                   |
| XL68           | pCI::VSV-G::GFPnes                                     | Content-mixing, Fig. 4d-e                                                                                                         | this study                                   |
| DOA19          | pCAGGS::EFF-1-V5                                       | Surface biotinylation of EFF-1 (Fig. 5d)                                                                                          | Avinoam et al., 201114                       |
| XL50           | pCAGGS::Fsx1-V5                                        | Surface biotinylation of Fsx1 (Fig. 5d)                                                                                           | this study                                   |
| myr-mCherry    | myr-mCherry                                            | mCherry linked to a myristoylated and palmitoylated peptide, live imaging of fusion (Fig. 4g)                                     | Dunsing et al., Sci. Rep. 2018 <sup>1Z</sup> |
| myr-EGFP       | myr-EGFP                                               | EGFP linked to a myristoylated and palmitoylated peptide (Supplementary Fig. 1)                                                   | Dunsing et al., Sci. Rep. 2018 <sup>17</sup> |
| pXL21          | pCI::NaFsx1-V5::H2B-RFP                                | Multinucleation assay (Supplementary Fig. 1)                                                                                      | this study                                   |
| pXL22          | pCI::NaFsx1-V5::H2B-GFP                                | Multinucleation assay (Supplementary Fig. 1)                                                                                      | this study                                   |
| oXL23          | pCI::HQ22Esx1-V5::H2B-REP                              | Multinucleation assay (Supplementary Fig. 1)                                                                                      | this study                                   |

| Plasmid | Description                                      | Use                                                                                                                             | Source                                                                         |
|---------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| name    |                                                  |                                                                                                                                 |                                                                                |
| pXL24   | pCI::HQ22Fsx1-V5::H2B-GFP                        | Multinucleation assay (Supplementary Fig. 1)                                                                                    | this study                                                                     |
| pXL25   | pCl::HnFsx1-V5::H2B-RFP                          | Multinucleation assay (Supplementary Fig. 1)                                                                                    | this study, subcloned from pBPT03 with modification of complete signal peptide |
| pXL26   | pCI::HnFsx1-V5::H2B-GFP                          | Multinucleation assay (Supplementary Fig. 1)                                                                                    | this study, subcloned from pBPT03 with modification of complete signal peptide |
| pXL57   | pCI::Fsx1- $\Delta$ FL-AG <sub>4</sub> A::GFPnes | Content-mixing, Fig. 5a-c                                                                                                       | this study                                                                     |
| pXL58   | pCl::Fsx1-ΔFL-AG₄A::H2B-RFP                      | Content-mixing, Fig. 5a-c                                                                                                       | this study                                                                     |
| pXL63   | pCI::Fsx1-∆DIV-EFF-1-stem::H2B-RFP               | Content-mixing, Fig. 5a-c                                                                                                       | this study                                                                     |
| pXL64   | pCI::Fsx1-ΔDIV-EFF-1-stem::GFPnes                | Content-mixing, Fig. 5a-c                                                                                                       | this study                                                                     |
| pXL108  | pCAGGS::Fsx1-ΔDIV-EFF-1-stem                     | Surface biotinylation of Fsx1-ΔDIV-EFF-1-stem mutant (Fig. 5e)                                                                  | this study                                                                     |
| pXL82   | pCI::Fsx1-WT-FLAG-3TMs::H2B-RFP                  | Surface expression tests, FLAG tag inserted before the first TM segment of Fsx1 (Fig. 5f)                                       | this study                                                                     |
| pXL86   | pCl::Fsx1-∆FL-AG₄A-FLAG-3TMs::H2B-RFP            | Surface expression tests, FLAG tag inserted before the first TM segment of Fsx1- $\Delta$ FL-AG <sub>4</sub> A mutant (Fig. 5f) | this study                                                                     |
| pXL92   | pCI::Fsx1-ΔDIV-EFF-1-stem-FLAG-3TMs::H2B-RFP     | Surface expression tests, FLAG tag inserted before the first TM segment of Fsx1- $\Delta$ DIV-EFF-1-stem mutant (Fig. 5f)       | this study                                                                     |
| pOA20   | pCAGGS::AFF-1-FLAG                               | C. elegans aff-1 fused to a C-terminal FLAG tag (AFF-1-FLAG) in pCAGGS                                                          | Avinoam et al., 2011 <sup>14</sup>                                             |
| pXL100  | pCI::AFF-1-FLAG::H2B-RFP                         | Surface expression tests of AFF-1 (Fig. 5f)                                                                                     | this study                                                                     |
| pXL106  | pCAGGS-Fsx1-ΔFL-AG₄A                             | Surface biotinylation of Fsx1- $\Delta$ FL-AG <sub>4</sub> A mutant (Fig. 5e)                                                   | this study                                                                     |
| pXL123  | pCAGGS-Fsx1∆TMs-EFF-1 TM                         | Surface biotinylation of Fsx1 $\Delta$ TMs-EFF-1 TM mutant (Fig. 5e)                                                            | this study                                                                     |
| pXL119  | pCI∷Fsx1∆TMs-EFF-1 TM∷H2B-RFP                    | Content-mixing, Fig. 5a-c; Surface expression tests, FLAG tag inserted before the EFF-1 TM region (Fig. 5f)                     | this study                                                                     |
| pXL120  | pCI::Fsx1∆TMs-EFF-1 TM::GFPnes                   | Content-mixing, Fig. 5a-c                                                                                                       | this study                                                                     |
| pXL115  | pCl∷Fsx1∆TMs-GPI∷H2B-RFP                         | Content-mixing, Fig. 5a-c; Surface expression tests, FLAG tag inserted before the GPI (Fig. 5f)                                 | this study                                                                     |
| pXL116  | pCI::Fsx1∆TMs-GPI::GFPnes                        | Content-mixing, Fig. 5a-c                                                                                                       | his study                                                                      |
| pXL117  | pCI::AtHAP2ATM-GPI::H2B-RFP                      | Content-mixing, Fig. 5a-c; Surface expression tests, FLAG tag inserted before the GPI (Fig. 5f)                                 | this study                                                                     |
| pXL118  | pCI::AtHAP2ΔTM-GPI::GFPnes                       | Content-mixing, Fig. 5a-c                                                                                                       | this study                                                                     |

| Primer name    | Sequence                                | Description                                                                                            |
|----------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------|
| SNFX11_F       | CGTAGCTGAAACCGGTGATTCAATCACGTATAACTCTGG | Forward primer for cloning $Fsx1_E$ and T369C mutant into pLJ6 with Agel                               |
| SNFX11_R       | GGTGATGGTGCTCGAGGGAACCAGAACCTCCGAA      | Reverse primer for cloning $\ensuremath{Fsx1}\xspace_{\rm E}$ and T369C mutant into pLJ6 with XhoI     |
| SNFX11_T369C_F | ACTGTAtgcGCCACCGTTGAGAATGTC             | Forward primer for T369C mutant                                                                        |
| SNFX11_T369C_R | GGTGGCgcaTACAGTTCCCTCATCTCCCTC          | Reverse primer for T369C mutant                                                                        |
| seq_up         | GCTGGTTGTTGTGCTGTCTCATC                 | Sequencing primer for pLJ6                                                                             |
| seq_down       | CACCAGCCACCATCTGATAG                    | Sequencing primer for pLJ6                                                                             |
| LXH1           | GATGGTGCGATTGCGGAT                      | Sequencing primer for pBPT01                                                                           |
| LXH2           | CCTACGAGAATGGGCAGA                      | Sequencing primer for pBPT01                                                                           |
| LXH3           | TTGCTGGCAGAGAAATGA                      | Sequencing primer for pBPT02                                                                           |
| LXH4           | TGATGTACCCCGAGTTCA                      | Sequencing primer for pBPT02                                                                           |
| LXH5           | GGATGAAATCTTCAGAAC                      | Sequencing primer for pBPT03                                                                           |
| LXH6           | ACTGTCTCGAAGCCGGTT                      | Sequencing primer for pBPT03                                                                           |
| LXH7           | CAAAATCACCCTCACATC                      | Sequencing primer for pBPT04                                                                           |
| LXH8           | CCTACAATATTAAGTTGTG                     | Sequencing primer for pBPT04                                                                           |
| LXH9           | TGAGTCTGAATGGATTAT                      | Sequencing primer for pBPT05                                                                           |
| LXH10          | TAGGACTACAGCGAAAAT                      | Sequencing primer for pBPT05                                                                           |
| LXH11          | TTGGGGAGGAAATGTAAA                      | Sequencing primer for pBPT06                                                                           |
| LXH12          | TAGAAGAATAAATATTCC                      | Sequencing primer for pBPT06                                                                           |
| LXH13          | TCCTCTTCCCTCGGAGAA                      | Sequencing primer for pBPT07                                                                           |
| LXH14          | CCTACTCAGGTAACGTAA                      | Sequencing primer for pBPT07                                                                           |
| LXH15          | CAGTAACAATAAATGGTG                      | Sequencing primer for pBPT08                                                                           |
| LXH16          | CAGAAGAATAAACATTCC                      | Sequencing primer for pBPT08                                                                           |
| LXH17          | AACAATAGGACAAGCAAA                      | Sequencing primer for pBPT10                                                                           |
| LXH18          | ACCAAAAATATTGTCTGC                      | Sequencing primer for pBPT10                                                                           |
| LXH19          | AGCATACATAGACAACCC                      | Sequencing primer for pBPT11, Fsx1                                                                     |
| LXH20          | ACGTCGATGCCGGAGAAA                      | Sequencing primer for pBPT11, Fsx1                                                                     |
| pGene FW       | CTGCTCAACCTTCCTATC                      | pGene backbone sequencing forward primer                                                               |
| pGene REV      | TTAGGAAAGGACAGTGGGAGTG                  | pGene backbone sequencing reverse primer                                                               |
| PCA-5          | GGTTCGGCTTCTGGCGTGTGACC                 | pCI::H2B-RFP/H2B-GFP/GFPnes backbones sequencing forward<br>primer                                     |
| IRES-REV       | GCATTCCTTTGGCGAGAG                      | pCI::H2B-RFP/H2B-GFP/GFPnes backbones sequencing reverse<br>primer                                     |
| pCAGGS FW      | GCAACGTGCTGGTTGTTGTGCTGTC               | pCAGGS backbone sequencing forward primer                                                              |
| pCAGGS RV      | TCCCATATGTCCTTCCGAGTGA                  | pCAGGS backbone sequencing reverse primer                                                              |
| LXH24          | CGGGGTACCATGAGACGTGCAGCATTG             | Forward primer for cloning Fsx1 and its mutants into pCAGGS vector with KpnI                           |
| LXH42          | CTAGCTAGCGGTACCATGAGACGTGCAGCATTGATT    | Forward primer for cloning Fsx1 into pCI::H2B-RFP/H2B-GFP/GFPnes vectors with Nhel and KpnI            |
| LXH44          | CTAGCTAGCGGTACCATGGAACCGCCGTTTGAGTGG    | Forward primer for cloning EFF-1 into pCI::GFPnes vector with Nhel and Kpnl                            |
| LXH45          | CTAGCTAGCGGTACCATGGTGAACGCGATTTTAATG    | Forward primer for cloning AtHAP2 into pCI::H2B-RFP/GFP vectors with Nhel and KpnI                     |
| LXH79          | TCCCCCGGGCTAATGGTGATGGTGATGATGACC       | Reverse primer for cloning fusexins into pCI vectors with Smal which binds to $\ensuremath{6xHis}$ tag |
| LXH81          | CTAGCTAGCTCAATGGTGATGGTGATGATGACC       | Reverse primer for cloning Fsx1 and its mutants into pCAGGS vector with Nhel                           |
| LXH111         | CTAGCTAGCATGAAGTGCCTTTTGTACTTAG         | Forward primer for cloning VSV-G into pCI::GFPnes vector with NheI                                     |

## Supplementary Table 7. Primers used in this study

| Primer name | Sequence                                                                                                        | Description                                                                                                                                    |
|-------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| LXH112      | TCCCCCGGGTTACTTTCCAAGTCGGTTCATC                                                                                 | Reverse primer for cloning VSV-G into pCI::GFPnes vector with Smal                                                                             |
| LXH39       | CTAGCTAGCGGTACCATGCGGGCGGTGTCTGATTTC                                                                            | Forward primer for cloning NaFsx1 into pCI::H2B-RFP/GFP vectors with Nhel and KpnI                                                             |
| LXH40       | CTAGCTAGCGGTACCATGAAAAACGGGTTGAAGGCC                                                                            | Forward primer for cloning HQ22Fsx1 into pCI::H2B-RFP/GFP vectors with Nhel and KpnI                                                           |
| LXH134      | CTAGCTAGCATGGTGAAACGAGTGGGTAATTGTTGG<br>AAGGCCTCAGTAGCGGCATTCTTCCTTCTCATGTTCACTGCATTT                           | Forward primer for cloning HnFsx1 into pCI::H2B-RFP/GFP vectors with Nhel; containing modification of complete signal peptide                  |
| LXH107      | GCGGAAGGTACAGCAGGTACGCCGGTGGAGGTGGAGCTGATTACGA<br>GATCTATTGTTT                                                  | Forward primer for cloning downstream of Fsx1- $\Delta FL-AG_{*}A$ mutant by overlap PCR                                                       |
| LXH108      | AAACAATAGATCTCGTAATCAGCTCCACCTCCACCGGCGTACCTGCTG<br>TACCTTCCGC                                                  | Reverse primer for cloning upstream of Fsx1- $\Delta FL-AG_{4}A$ mutant by overlap PCR                                                         |
| LXH101      | ACCGGTATCCAGCAGGAAATCGATCTTGTT                                                                                  | Forward primer 1 for cloning Fsx1-∆DIV-EFF-1-stem by overlap PCR                                                                               |
| LXH102      | AACAAGATCGATTTCCTGCTGGATACCGGT                                                                                  | Reverse primer 1 for cloning Fsx1- $\Delta$ DIV-EFF-1-stem by overlap PCR                                                                      |
| LXH103      | ATGATTGCTACGGATCAGGACGATGATTCA                                                                                  | Forward primer 2 for cloning Fsx1- $\Delta$ DIV-EFF-1-stem by overlap PCR                                                                      |
| LXH104      | TGAATCATCGTCCTGATCCGTAGCAATCAT                                                                                  | Reverse primer 2 for cloning Fsx1-∆DIV-EFF-1-stem by overlap PCR                                                                               |
| LXH128      | TGTTCGGAGGTTCTGGTTCCGACTACAAGGACGACGATGACAAAGGA<br>GATCTGCTTAC                                                  | Forward primer for cloning downstream of Fsx1-WT/mutants-FLAG by overlap $\ensuremath{PCR}$                                                    |
| LXH129      | GGAACCAGAACCTCCGAACA                                                                                            | Reverse primer for cloning upstream of Fsx1-WT/mutants-FLAG by overlap $\ensuremath{PCR}$                                                      |
| LXH135      | CTAGCTAGCATGGTACTGTGGCAATGGTCAATAG                                                                              | Forward primer for cloning <i>C. elegans</i> AFF-1-FLAG into pCI::H2B-RFP vector with Nhel                                                     |
| LXH136      | TCCCCCGGGTTATTTGTCATCGTCGTCCTTGTAGTC                                                                            | Reverse primer for cloning <i>C. elegans</i> AFF-1-FLAG into pCI::H2B-RFP vector with Smal                                                     |
| LXH140      | GACGGGTAGTACCTGAAGTGGTTCCACTTCCTTTATTTGGAGAACCT<br>CCTTTGTCATCGTCGTCCTTGTAGTCGGAACCAGAACCTCCG                   | Reverse primer 1 for fusing GPI signal from DAF to Fsx1                                                                                        |
| LXH141      | TCCCCCGGGCTAAGTCAGCAAGCCCATGGTTACTAGCGTCCCAAGC<br>AAACCTGTCAACGTGAAACACGTGTGCCCAGATAGAAGACGGGTAG<br>TACCTGAAGTG | Reverse primer 2 for fusing GPI signal from DAF to Fsx1; Reverse primer for cloning downstream of AtHAP2 $\Delta$ TM-GPI mutant by overlap PCR |
| LXH142      | AATACGTTTGCTTAAGCTGGGGTGGAAGCGACTACAAGGACGACGA<br>T                                                             | Forward primer for cloning downstream of AtHAP2 $\Delta$ TM-GPI mutant by overlap PCR                                                          |
| LXH143      | CCAGCTTAAGCAAACGTATT                                                                                            | Reverse primer for cloning upstream of AtHAP2 $\Delta TM\text{-}GPI$ mutant by overlap PCR                                                     |
| LXH144      | GGAGGTTCTGGTTCCGACTACAAGGACGACGATGACAAAATTGTTG<br>TGTATCTC                                                      | Forward primer for cloning downstream of Fsx1 $\Delta$ TMs-EFF-1 TM mutant by overlap PCR which contains one FLAG tag                          |

#### Supplementary References

- Lu, X. *et al.* Double Lock of a Human Neutralizing and Protective Monoclonal Antibody Targeting the Yellow Fever Virus Envelope. *Cell Rep.* 26, 438–446.e5 (2019).
- Voss, J. E. *et al.* Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography. *Nature* 468, 709–712 (2010).
- Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. A ligand-binding pocket in the dengue virus envelope glycoprotein. *Proc. Natl. Acad. Sci. U. S. A.* 100, 6986–6991 (2003).
- Gibbons, D. L. *et al.* Conformational change and protein-protein interactions of the fusion protein of Semliki Forest virus. *Nature* 427, 320–325 (2004).
- Rey, F. A., Heinz, F. X., Mandl, C., Kunz, C. & Harrison, S. C. The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. *Nature* 375, 291–298 (1995).
- Fedry, J. *et al.* Evolutionary diversification of the HAP2 membrane insertion motifs to drive gamete fusion across eukaryotes. *PLoS Biol.* 16, e2006357 (2018).
- DuBois, R. M. *et al.* Functional and evolutionary insight from the crystal structure of rubella virus protein E1. *Nature* 493, 552–556 (2013).
- Fédry, J. *et al.* The Ancient Gamete Fusogen HAP2 Is a Eukaryotic Class II Fusion Protein. *Cell* 168, 904–915.e10 (2017).
- Guardado-Calvo, P. *et al.* Mechanistic Insight into Bunyavirus-Induced Membrane Fusion from Structure-Function Analyses of the Hantavirus Envelope Glycoprotein Gc. *PLoS Pathog.* **12**, e1005813 (2016).
- 10. Dessau, M. & Modis, Y. Crystal structure of glycoprotein C from Rift Valley fever virus. *Proc. Natl. Acad. Sci. U. S. A.* **110**, 1696–1701 (2013).
- Kielian, M. Mechanisms of Virus Membrane Fusion Proteins. *Annu. Rev. Virol.* 1, 171–189 (2014).
- Baquero, E., Fedry, J., Legrand, P., Krey, T. & Rey, F. A. Species-Specific Functional Regions of the Green Alga Gamete Fusion Protein HAP2 Revealed by Structural Studies. *Structure* 27, 113–124.e4 (2019).
- Söding, J. Protein homology detection by HMM–HMM comparison. Bioinformatics 21, 951–960 (2004).

- 14. Avinoam, O. *et al.* Conserved eukaryotic fusogens can fuse viral envelopes to cells. *Science* **332**, 589–592 (2011).
- 15. Williams, R. M. *et al.* Genome and epigenome engineering CRISPR toolkit for in vivo modulation of cis-regulatory interactions and gene expression in the chicken embryo. *Development* **145**, dev160333 (2018).
- 16. Matsuda, T. & Cepko, C. L. Electroporation and RNA interference in the rodent retina in vivo and in vitro. *Proc. Natl. Acad. Sci. U. S. A.* **101**, 16–22 (2004).
- 17. Dunsing, V. *et al.* Optimal fluorescent protein tags for quantifying protein oligomerization in living cells. *Sci. Rep.* **8**, 1–12 (2018).