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Supplementary Figure 1. Schematic representation of the data collection, gene annotation, 
prediction and validation setups. See ‘Methods’. 
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Supplementary Figure 2. Differences in |ΔΔG| values between gnomAD, autosomal dominant and 
autosomal recessive mutations are observed across interior, interface and surface locations. All 
pairwise group comparisons showed significant differences (p < 5.0 x 10-6, two-sided Holm-corrected 
Dunn’s test). 
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Supplementary Figure 3. Accounting for variant zygosity reveals highly similar |ΔΔG| values and 
location distributions for gnomAD variants in autosomal dominant and autosomal recessive 
disease genes. a Stability perturbation differences between gnomAD variants of different 
inheritance contexts and zygosity. ‘AR, All’ considers all gnomAD variants from the AR genes, while 
‘AR, Hom’ only includes those variants that have been observed in a homozygous state in gnomAD at 
least once. Boxes denote data within 25th and 75th percentiles, and contain median (middle line) 
and mean (red dot) value notations. Whiskers extend from the box to furthest values within 1.5x the 
inter-quartile range. Pairwise group comparisons are significant unless specified (p < 1.4 x 10-34, two-
sided Holm-corrected Dunn’s test). b Proportions of gnomAD variants throughout spatial structure 
locations for gene variants characterised by different inheritance context groups (all Chi-square 
comparisons are significant; Cramer’s V effect sizes are 0.01 and 0.08 for AD vs AR comparisons, 
using only homozygous recessive variants or all recessive variants, respectively). 
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Supplementary Figure 4. Inheritance and molecular mechanism gene groups are characterised by 
distinct functional protein class label prevalence. Chi-square test comparisons were performed 
within the inheritance and mechanism groups, with only the non-LOF DN vs GOF mechanism genes 
showing insufficient difference (p = 0.147, highest significant p = 4.116 x 10-3 after Holm’s correction 
for multiple comparisons). Sample sizes denote functional class label number. The same gene can be 
associated with multiple functional classes. 
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Supplementary Figure 5. Underlying functional protein class does not necessarily drive the 
observed variance differences in distinct molecular mechanism perturbation magnitude. Boxes 
denote data within 25th and 75th percentiles, and contain median (middle line) and mean (red dot) 
value notations. Whiskers extend from the box to furthest values within 1.5x the inter-quartile 
range. Only functional class groups with at least 20 variants in each molecular mechanism were 
analysed. Statistically significant comparisons are shown (two-sided Holm-corrected Dunn’s test). 
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Supplementary Figure 6. Gain-of-function variants are also milder than loss-of-function mutations 
in mixed inheritance and mechanism genes. The variant-level validation dataset is based on the 
HGMD GOF/LOF disease mechanism data from Bayrak et al., 20211. a Comparison of predicted 
absolute ΔΔG value differences between GOF and LOF variants in several distinct contexts: the full 
dataset; only looking at mixed inheritance OMIM ‘ADAR’ genes; only genes with both GOF and LOF 
variants. Boxes denote data within 25th and 75th percentiles, and contain median (middle line) and 
mean (red dot) value notations. Whiskers extend from the box to furthest values within 1.5x the 
inter-quartile range. Significant group comparisons are denoted (two-sided Wilcoxon rank-sum test). 
b Proportion of genes with both kind of variants (GOF & LOF), according to which mechanism group 
demonstrates a lower predicted ΔΔG mean within the same gene (Chi-square p-values depicted). 
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Supplementary Figure 7. Gain-of-function variants occur in less structurally ordered positions than 
other mechanism mutations, according to the AlphaFold pLDDT modelling quality metric. The 
AlphaFold pLDDT metric has been shown to be an accurate proxy for structural disorder2. Boxes 
denote data within 25th and 75th percentiles, and contain median (middle line) and mean (red dot) 
value notations. Whiskers extend from the box to furthest values within 1.5x the inter-quartile 
range. Statistically significant comparisons are shown (two-sided Holm-corrected Dunn’s test). a 
pLDDT differences between HGMD GOF and LOF variants. Sample sizes represent variant number. b 
pLDDT comparison across gene-level ClinVar mechanism groups. To control for gene-level 
annotation biases and uneven variant counts across genes, the pLDDT value is presented as a per-
gene mean. Sample sizes represent gene number. 

  



 

8 
 

Supplementary Figure 8. Majority of disease variants occur in positions characterised by high 
pLDDT, independent of variant-level mechanism. The values were derived using the variant-level 
HGMD dataset. 
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Supplementary Figure 9. Independent dataset recapitulates observed non-LOF mechanism 
structural mildness. The variant-level validation dataset is based on the HGMD GOF/LOF disease 
mechanism data from Bayrak et al., 20211. AUC values calculated from ROC curves for discriminating 
between different types of pathogenic HGMD mutations, and putatively benign gnomAD variants, 
based on predicted stability change score. Only homozygous gnomAD variants were included for the 
AR analysis. Error bars denote 95% confidence intervals. 
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Supplementary Figure 10. Hybrid variant- and gene-level disease mechanism classification 
approach validates previously observed VEP performance results. The validation dataset is based 
on an external variant-level disease mechanism GOF/LOF label dataset from Bayrak et al. 20211 (see 
‘Methods’). AUC values calculated from ROC curves for discriminating between different types of 
pathogenic HGMD mutations and putatively benign gnomAD variants, using the outputs of different 
computational variant effect predictors. Only homozygous gnomAD variants were included for the 
AR analysis. Error bars denote 95% confidence intervals. 
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 Supplementary Table 1. Optimal FoldX |ΔΔG| thresholds to distinguish between pathogenic and 
putatively benign mutations for genes associated with different molecular disease mechanisms. 

Molecular disease 
mechanism group 

Predictor Optimal 
threshold 
(kcal/mol) 

Specificity 
(low est.) 

Specificity 
(median) 

Specificity 
(high est.) 

Sensitivity 
(low est.) 

Sensitivity 
(median) 

Sensitivity 
(high est.) 

DN FoldX Monomer |ΔΔG| 1.03 52.01 55.15 58.39 60.46 61.78 63.06 
GOF FoldX Monomer |ΔΔG| 0.98 56.68 58.80 60.97 57.88 58.72 59.58 
HI FoldX Monomer |ΔΔG| 1.38 62.22 64.66 66.92 72.76 73.63 74.54 
AR (homozygous 
gnomAD) 

FoldX Monomer |ΔΔG| 1.41 64.61 65.87 67.14 72.12 73.64 75.21 

DN FoldX Full |ΔΔG| 1.28 57.05 60.18 63.53 64.70 65.95 67.29 
GOF FoldX Full |ΔΔG| 1.16 55.87 57.89 60.01 61.29 62.06 62.84 
HI FoldX Full |ΔΔG| 1.59 66.03 68.30 70.50 74.81 75.65 76.52 
AR (homozygous 
gnomAD) 

FoldX Full |ΔΔG| 1.55 67.11 68.30 69.50 73.27 74.68 76.19 
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Supplementary Table 2. Variant effect predictors used in this study. 

Predictor Feature-based 
classification 

ClinVar 
disease 

dataset size 

gnomAD 
dataset size 

Source access Reference 

BayesDel Metapredictor 5017 39289  dbNSFP database (Feng, B. J., 
2017)3 

Blake-Cohen Substitution 
matrix 

13048 211134 https://www.genome.jp/entry/aaindex:BLAJ010101  (Blake & Cohen, 
2001)4 

BLOSUM62 Substitution 
matrix 

13048 211134 https://www.genome.jp/entry/aaindex:HENS920102  (Henikoff & 
Henikoff, 
1992)5 

CADD Metapredictor 12806 208522 https://cadd.gs.washington.edu/snv (Kircher et al., 
2014)6 

ClinPred Metapredictor 5017 39289 dbNSFP database (Alirezaie et al., 
2018)7 

Crooks-Brenner Substitution 
matrix 

13048 211134 https://www.genome.jp/entry/aaindex:CROG050101  (Crooks & 
Brenner, 2005)8 

DANN Metapredictor 12801 208138 dbNSFP database (Quang et al., 
2015)9 

DeepSequence Amino acid 
sequence 
conservation 

4613 19029 https://github.com/debbiemarkslab/DeepSequence (Riesselman et 
al., 2018)10 

DEOGEN2 Multi-feature 12095 202031 https://deogen2.mutaframe.com/ (Raimondi et 
al., 2017)11 

Eigen Metapredictor 12772 207420 dbNSFP database (Ionita-Laza et 
al., 2016)12 

FATHMM  Multi-feature 12113 196893 http://fathmm.biocompute.org.uk/inherited.html (Shihab et al., 
2013)13 

Fathmm-MKL Multi-feature 12801 208138 dbNSFP database (Shihab et al., 
2015)14 

FathmmXF Nucleotide-
level 
prediction 
method 

12712 207661 http://fathmm.biocompute.org.uk/fathmm-xf/ (Rogers et al., 
2018)15 

GenoCanyon Nucleotide-
level 
prediction 
method 

12801 208138 dbNSFP database (Lu et al., 
2015)16 

GERP++ Nucleotide-
level 
prediction 
method 

12801 
 

208129 dbNSFP database (Davydov et al., 
2010)17 

Grantham Substitution 
matrix 

13048 211134 https://www.genome.jp/entry/aaindex:GRAR740104  (Grantham, 
1974)18 

Lin et al. Substitution 
matrix 

13048 211134 https://www.genome.jp/entry/aaindex:LINK010101  (Lin et al., 
2001)19 

LIST-S2 Metapredictor 4407 34468 dbNSFP database (Malhis et al., 
2020)20 

LRT Nucleotide-
level 
prediction 
method 

12546 
 

201271 
 
 

dbNSFP database (Chun & Fay, 
2009)21 

M-CAP Metapredictor 12746 206078 http://bejerano.stanford.edu/mcap/ (Jagadeesh et 
al., 2016)22 

MetaLR Metapredictor 12772 207420 dbNSFP database (Dong et al., 
2015)23 

MetaRNN Metapredictor 5017 39289 dbNSFP database (Li et al., 
2021)24 

MetaSVM Metapredictor 12772 207420 dbNSFP database (Dong et al., 
2015)23 
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Miyata Substitution 
matrix 

13048 211134 https://www.genome.jp/entry/aaindex:MIYT790101  (Miyata et al., 
1979)25 

MPC Multi-feature 9088 162846 dbNSFP database (Samocha et al., 
2017)26 

MutationAssessor Amino acid 
sequence 
conservation 

11873 195899 dbNSFP database (Reva et al., 
2011)27 

MutationTaster Multi-feature 12761 206319 dbNSFP database (Schwarz et al., 
2014)28 

MutPred Multi-feature 11554 170575 dbNSFP database (Pejaver et al., 
2020)29 

MVP Metapredictor 12528 205851 dbNSFP database (Qi et al., 
2018)30 

NetDiseaseSNP Multi-feature 12789 205379 http://www.cbs.dtu.dk/services/NetDiseaseSNP/ (Johansen et 
al., 2013)31 

phastCons Nucleotide-
level 
prediction 
method 

12806 208522 dbNSFP database (Siepel et al., 
2005)32 

phyloP Nucleotide-
level 
prediction 
method 

12806 208522 http://papi.unipv.it/ (Pollard et al., 
2010)33 

PolyPhen2 
HumDiv 

Multi-feature 11771 198850 http://genetics.bwh.harvard.edu/pph2/ (Adzhubei et 
al., 2010)34 

PolyPhen2 
HumVar 

Multi-feature 11771 198850 http://genetics.bwh.harvard.edu/pph2/ (Adzhubei et 
al., 2010)34 

PonP2 Multi-feature 12134 196040 http://structure.bmc.lu.se/PON-P2/ (Niroula et al., 
2015)35 

PrimateAI Multi-feature 12638 206477 dbNSFP database (Sundaram et 
al., 2018)36 

PROVEAN Amino acid 
sequence 
conservation 

12044 197456 http://provean.jcvi.org/index.php (Choi et al., 
2012)37 

REVEL Metapredictor 12772 207420 https://sites.google.com/site/revelgenomics/ (Ioannidis et al., 
2016)38 

SIFT Amino acid 
sequence 
conservation 

12851 208985 https://sift.bii.a-star.edu.sg/www/code.html (Sim et al., 
2012)39 

SIFT4G Amino acid 
sequence 
conservation 

12418 203379 dbNSFP database (Vaser et al., 
2016)40 

SiPhy Nucleotide-
level 
prediction 
method 

12799 208117 dbNSFP (Garber et al., 
2009)41 

SNAP2 Multi-feature 13009 210582 https://www.rostlab.org/services/snap/ (Hecht et al., 
2015)42 

Sneath Substitution 
matrix 

13048 211134 (Sneath, 1966) (Sneath, 
1966)43 

SuSPect Multi-feature 13007 210532 http://www.sbg.bio.ic.ac.uk/suspect/about.html (Yates et al., 
2014)44 

VEST4 Multi-feature 12633 206645 https://www.cravat.us/CRAVAT/ (Carter et al., 
2013)45 
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