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Reviewers' Comments: 

Reviewer #1: 

Remarks to the Author: 

Nature Communications manuscript NCOMMS-21-43599-T 

The manuscript from Gerasimavicius et al. presents a data-driven, statistical analysis of "putatively 

benign" and pathogenic mutations in disease genes associated with different modes of inheritance 

(autosomal dominant/AD or autosomal recessive/AR) and disease mechanisms (gain of 

function/GOF, dominant-negative/DN, loss of function/LOF, haploinsufficiency/HI), accounting for 

the mutations' locations in 3D structures of proteins, and their effect on proteins' stability. As a 

measure of the predicted effect of mutations on proteins' stability, authors primarily used absolute 

free energy change upon mutations, calculated using FoldX v5, Additionally, authors evaluated 

protein-level clustering of mutations to investigate the difference in the clustering of mutations in 

genes associated with LOF and non-LOF disease mechanism. 

The use of proteins structures in characterizing and identifying pathogenic from benign mutations 

has become increasingly clear over the last couple of years. This study takes it one step ahead by 

analyzing mutations' effect using protein structures separately for mutations in genes associated 

with different modes of inheritance and molecular mechanisms. This article is thus timely. I find 

the result reporting on the utility of considering complete biological assembly of proteins (protein 

complex structures) in the identification of disease mutations on a large scale, as one of the most 

profound results of this study. 

However, several crucial concerns remain. I find the interpretation of results obtained from gene- 

or protein-level annotations and analysis as mutation-level results, controversial and misleading, 

especially when not validated. Please find my comments in detail below: 

1. (data/reproducibility) Result (subsection: 1) 

Were all 211,266 gnomAD and 13,050 ClinVar mutations consistently mappable to both 

monomeric and complex structures of 1,261 proteins, as reported in Figure 1? Authors should 

report the corresponding PDB identifiers for monomeric and complex structures of 1,261 proteins 

in a supplemental table. 

2. (data/reproducibility) Result (subsection: 2) 

a) Authors report that to perform the comparative analysis of the effect of recessive and dominant 

mutations on stability, they used pathogenic ClinVar mutations from 726 autosomal recessive 

genes and 535 autosomal dominant genes, excluding those with mixed inheritance. But 726 and 

535 genes sum up to 1,261 genes, which is the total genes authors have analyzed, according to 

their reporting in Results, subsection 1, page 3. Then what are the genes that were excluded? I 

invite authors to clarify. 

b) Further, a list of 1,261 genes that have been analyzed along with their classification form OMIM 

in terms of mode of inheritance: autosomal recessive (726 genes), autosomal dominant (535), 

mixed (?), and mechanisms: LOF, HI, DN, GOF, must be included as a main or supplemental table. 

These data will allow for the replication of the results. 

3. (result interpretation and reporting) Result (subsection: 2) 

a) Authors made a vast generalization in their annotations of mutations as AR and AD, which are 

basically gene-wise annotations. They have discussed the rationale and necessity behind this 

generalization in the paper. However, the way they present the results of analyzing these, if not 

critically flawed then over-generalized at best, data is misleading. 



For example, the title of the second subsection of Results: “Recessive mutations are more 

structurally perturbing than dominant mutations”, should be “Mutations in recessive disease genes 

are more structurally perturbing than those in dominant disease genes.” Similar texts throughout 

the paper, including figure captions, should be coherently corrected in this manner, to avoid any 

occurrences of misleading. 

b) (Figure S2) Authors have analyzed the predicted effect of gnomAD variants on proteins’ stability 

accounting for zygosity. Two questions/comments here: 

- Did the authors make sure all 71,022 gnomAD variants from AD genes are heterozygous? 

- The comparative effects (as well as non-significant difference) of gnomAD heterozygote variants 

from AD genes and homozygous variants from AR genes would make sense, as these are 

putatively benign variants in two different zygosity levels. Besides all variants from AR genes (as 

the authors reported in Figure S2), I am interested to see how do the gnomAD heterozygous 

variants from AR genes compare. 

c) (Figure 2) What is the zygosity state of 7,371 ClinVar pathogenic mutations in AD genes? All 

heterozygous? Similarly, what is the zygosity state of 5,679 ClinVar pathogenic mutations in AR 

genes? All homozygous? 

d) (Discussion) Authors have not delved deeper into the data/results to understand and discuss 

the driving factors behind observing the difference in the ClinVar pathogenic variants’ effects on 

protein stability from AD and AR genes. Two suggestions come to mind: 

- Is there any substitution type (polar to hydrophobic or aromatic to aliphatic) that is more (or 

less) frequent in AD versus AR genes? 

- The difference they observe is essentially protein-level difference, not mutation level. Is there 

any type/class of proteins (e.g. kinases, transporters, DNA-binding proteins) that is more (or less) 

likely to be encoded by AD versus AR genes? 

e) (last paragraph of subsection 2 of Results) Description of the results in Figure 2C is too hurried. 

Please include some quantifications in the main text to support the “remarkable improvement,” 

i.e., 0.67 vs. 0.71, 0.71 vs. 0.77, which is only apparent after careful investigation of Figure 2C? 

4. (result interpretation and reporting) Results (subsection: 3) 

a) (data) What are the AD genes associated with HI and DN/GOF? I suggest authors include this 

annotation in the recommended table in my comment 2b. 

b) (Validation required) The difference reported in the effect of mutations in genes associated with 

DN+GOF mechanism versus those associated with HI+AR (Figure 3A) is compelling. Nevertheless, 

the claim: “Gain-of-function and dominant-negative mutations have much milder effects on protein 

structure than loss-of-function mutations”, requires mutation-level validation. Multiple studies 

have been performed on single gene and groups of genes, stratifying LOG and GOF mutations in 

the same protein (four are listed below). Authors must evaluate the predicted effect of these 

validated LOF/GOF mutations in the same protein before making this claim: 

- https://pubmed.ncbi.nlm.nih.gov/32801145/ 

- https://www.biorxiv.org/content/10.1101/2021.12.02.470894v1 

- https://pubmed.ncbi.nlm.nih.gov/34633442/ 

- https://pubmed.ncbi.nlm.nih.gov/34948399/ 

c) (Page – 5) “DN mutations are far more likely to be found in complexes …”. This sounds strange. 

Did authors mean DN mutations are far more likely to be found in proteins (or a certain class of 

proteins) that form homomeric or heteromeric complexes in their true biological assembly, to 

perform the function? In that case, please rephrase. Can authors report any quantification on how 



likely it is based on their own dataset? What type or class of proteins these are? 

5. (result interpretation and reporting) Results (subsection: 4) 

a) Authors report that stabilization is more common in HI mutations. But as far as I am concerned, 

their results essentially reveal that stabilization is more common in certain proteins that are 

associated with the HI disease mechanism. It is a protein or gene-level observation, taking all 

mutations from a gene as HI. 

Authors explanation for their results is interesting and apparently lends support to my argument. 

The HI mechanism is more common in a certain class of proteins, i.e. transcription factors, which 

undergo loss of function upon stabilization, therefore, there is a tendency of observing more 

stabilization in HI. I recommend that authors must revise the interpretation of their results 

throughout the paper (also suggested in my comment 3a). 

b) In this dataset, how many proteins associated with HI are transcription factors? 

c) Connecting to my comments 3d and 4c, authors should check protein-class annotations of the 

genes studied here, which may explain why stabilization is more or less likely to be predictive of 

pathogenic variants of proteins associated with LOF (HI/AR) and non-LOF (DN and GOF). It is 

likely that stabilization is more or less likely to be important for certain classes of proteins, which 

could have preferences for different types of disease mechanisms (LOF/GOF). In fact, it has been 

previously shown that protein-class level information adds to the predictive power for the 

identification of pathogenic versus population variants 

(https://www.pnas.org/content/117/45/28201). 

d) (Figure S3C) Authors should report p-values for Fisher's test-based statistical analysis. 

e) (Page 6) “In Figure S3A, we plot the distribution for full ΔΔG values different types of 

pathogenic mutations.” 

- This sentence reads off. 

6. (result interpretation and reporting) Results (subsection: 5) 

“Moreover, the LOF mutations also tend to be better predicted than non-LOF mutations by those 

methods based on nucleotide-level sequence conservation, which utilise no information about 

amino acid substitution type.” 

Which VEPs authors are referring to by “nucleotide-level sequence conservation”, the last panel of 

Figure 4? Please clarify. And If so, then authors' interpretation does not hold. I see that by 6 out of 

7 VEPs, GOF (non-LOF) is better predicted by HI (LOF). Authors are welcome to correct me if I am 

missing something. 

7. (result interpretation and reporting) Results (subsection: 6) 

Multiple concerns: 

a) It is not clear from the Result section whether the calculation was based on monomeric 

structure or complex structure. 

b) I suggest evaluating the clustering metric for the same set of proteins but separately using 

monomeric and complex structures. Would authors expect to see any difference? 

c) The values of “n” in Figure 5 indicate the number of proteins, rightly so, and unlike all other 

figures in the paper. So it should be specifically mentioned in the Figure 5 caption that these are 

the number of genes/proteins, not mutations, given I am understanding it right. 

8. (validation and impact) No independent validation 



It is hardly surprising that the effect on proteins’ stability is predictive of the pathogenicity of 

mutations. It, however, is an interesting piece of result that the predictive power of proteins’ 

stability varies for genes associated with different disease inheritance and molecular mechanisms. 

Thinking of the impact of this result, can authors show the value of reclassifying ClinVar VUSes 

into LOF/GOF using stability measure (ddG) followed by a validation using mutagenesis readouts 

(maybe using data from MAVEdb database)? 

9. (discussion) Authors should discuss some exceptional cases and their impact on their results. 

For example, a protein/gene that they have considered to having associated with LOF or GOF but 

have both types of mutations. Similarly, a protein/gene that they have considered to having 

associated with AD or AR but have a mixed inheritance. 

10. (clarity) Introduction, Page 2 

“We find clear differences between LOF vs. non-LOF mutations in terms of their structural context, 

their predicted effects on protein stability, and their clustering in three-dimensional space.” 

It is not immediately clear what structural context authors are referring to. A wide variety of 

structure properties (secondary structure, protein-protein interaction, etc.) that define the 

structural context of a mutation have been analyzed in the literature in an effort to characterize 

variants. Two studies come to mind: https://doi.org/10.1073/pnas.1820813116; 

https://doi.org/10.1073/pnas.2002660117. Did authors refer to the mutations’ structural location: 

surface/interior/interface, by context? If so, then it should be stated in the Introduction for clarity. 

11. (writing) Results, subsection 1, Page 3 

“While we recognise that the gnomAD dataset will contain some damaging variants, e.g. those that 

are associated with late-onset disease, population-specific penetrance or are pathogenic under 

homozygous conditions.” 

The sentence is incomplete. 

12. (technical/clarity) Figures captions 

“All pairwise group comparisons are significant (…, Holm-corrected Dunn’s test)” 

This statement has been used multiple times, specifically in Figures 1, 2, 3, and associated 

supplementary figures, but was never explained. It was not immediately clear what are the groups 

and what is this test about. It is possible that I just don’t know about it, but for readers like me, I 

recommend elaborating on this test at least in one figure, Figure 1, for example. 

13. (technical) Results, subsection 2, page 4 

“The differences in perturbation magnitude across the different mutation groups can be partially 

explained by their enrichment in different spatial locations …” 

The term “enrichment” can be used when a statistical analysis is performed. The authors’ claim is 

based on the difference in relative percentage of mutations in different spatial locations, and it’s a 

correct claim. But I recommend replacing the term enrichment with “relative frequency” or 

“relative tendency” or “prevalence”. 

14. (visualization) Figure 5 and Figure S3 

It is hard to distinguish colors used for AR and DN. Please change. 



15. (typo) Results, Page - 7 

Thaty? 

Reviewer #2: 

Remarks to the Author: 

The authors have presented a nice study on the effect of different classes of disease mutations on 

protein structure using publicly available resources. Later they compare the predictive performance 

of existing variant effect predictors on these mutations. 

They raise the important issue that most VEPs perform worse on non-loss of function mutations, 

which has major implications for the identification of pathogenic variants. 

They present an evidence based suggestion on how tools could be improved. 

Hypothesis building and data analysis is well described and whenever there are limitations in their 

approach these are openly addressed. 

I think this work will be helpful for anyone working in the field of disease mutations and might 

raise awareness for the need of better prediction methods for dominant negative and gain-of-

function mutations. 

The manuscript reads very well and is clearly structured. Consecutive steps are motivated very 

well. 

Minor suggestions 

1. That said, I found the logic in the very first paragraph (“…However, missense variants that are 

known to be pathogenic represent only a tiny fraction of those that have been observed in the 

human population3,4. Thus, identifying missense changes that are likely to be clinically relevant 

remains a major challenge for diagnosis, and ultimately treatment, of human genetic disease.”) 

difficult to follow and a bit weak. Could be reworded to match the higher standard of the rest of 

the manuscript. 

2. To me, it is not stated strongly enough that mutations from disordered regions are not 

considered. This should be emphasised more clearly in the beginning of the results section. 

Additionally it could be helpful to have an initial overview figure about the procedure used (see for 

example Figure 1A in Wang et al. Three-dimensional reconstruction of protein networks provides 

insight into human genetic disease. Nat Biotechnol, 2012). 

3. It’s quite unusual to see a whole subsection of the manuscript (“stabilising mutations may be 

important for gain of function”) devoted to only supplementary figures. Maybe that could be 

reorganised. 

4. Figure 5A: Method is not intuitive to understand. It is not stated clearly enough how the ratio is 

calculated. In the text it is written that a ratio of 1 means random distribution, while >1 means 

clustering. Hence it is not clear how to interpret, for instance, values lower than 1 shown in the 

plot or how strong the clustering is for values bigger than 1. 

5. Figure S3A: it is not clear why the actual ΔΔG value is meaningful here, when before it was 

stated that stability predictors often predict the wrong sign. 

6. Figure 3B: The significance of enrichment of DN mutations in interfaces could be evaluated with 

a Fisher’s exact test of monomers vs. protein complexes. 

7. Figure S3A: regarding “there are still many stabilising mutations”. This is hard to grasp from a 

box plot. It would be helpful to have the data distributions plotted alongside. This would also help 

to better follow the rational that non-LOF mutations are of lower magnitude and hence fall into the 

wrong category due to the margin of error in prediction. 



8. Figure S3C: How big are the groups for 0-1.0 and 1.0-4.0? 

9. In context of Figure 2B, it could be interesting to look at cases of genes with mixed inheritance 

(that had been excluded from the study) (i) as a proof of principle, (i.e. do mutations with 

different inheritance fall into different regions of the same protein?) and (ii) to have some 

illustrative examples. 

10. Although I understand that this work is focusing on the effect of mutations on protein 

structure, it would be very interesting to put this into context with mutations in disordered protein 

regions. This is especially true, because the authors emphasise the importance of non-LOF 

mutations, which are less likely to disrupt protein folding. Since this might be too complex to be 

added to the analysis, it could at least find some attention in the discussion. (especially concerning 

Figure 4 “Thus, it does appear that amino acid residues associated with DN or GOF mutations 

genuinely tend to show weaker evolutionary conservation than those associated with LOF 

mutations, thus providing another factor that can explain their poor identification by VEPs.” and 

“DN mutations being more perturbative, and GOF mutations occurring at more conserved 

positions”) 

Reviewer #3: 

Remarks to the Author: 

This work, while providing a comprehensive overview of variant effect predictors, completely 

overlooks efforts dedicated to understanding different molecular effects of mutations on protein 

stability, dynamics and affinity to its partners using structural information (other proteins, small 

molecules, nucleic acids, etc). 

Results section: “FoldX, as well as other stability predictors, may be better at predicting the 

magnitude than the sign of the stability perturbation.” 

This makes no sense from a predictive method development perspective. It has been shown on 

multiple occasions that robust methods get the direction of the change right (e.g., being able to 

distinguish stabilising from destabilising mutations). The aforementioned observation, in my view, 

just indicates limitations of FoldX as a predictive model. 

Authors could have calculated molecular interactions explicitly rather than using a method to 

predict stability effects as a proxy. 

Any filtering based on review quality for ClinVar? (5 stars?) 

Could have any potential bias/contamination been introduced in the benign mutation set, given no 

frequency filter was imposed? 

Authors should have used AlphaFold2 structures instead, at least to assess mutation effects on the 

monomers, and to increase their data set size (rather than compromising in data quality, e.g., with 

the benign mutation selection). I see very little point in limiting this study to experimental 

structures given the recent advances made available by AlphaFold2. 

No description of how structures were filtered is provided? Missing atoms/residues modelled? 

Crystallographic artifacts and multiple occupancies removed? Any quality check/filter? 

This work solely relies on a single, outdated and very limited method (FoldX) to predict effects of 



mutation in terms of Gibbs free energy, which has been outperformed by a whole new generation 

of methods. Relying solely on FoldX predictions could lead to erroneous conclusions. I would advise 

the authors to include state-of-the art methods for the different molecular mechanisms (for 

stability, mCSM, Dynamut2, DeepDDG, MAESTRO, fand or oligomer affinity, there are mCSM-PPI2, 

MutaBind2 - amongst many other options). This contrasts significantly with the variant effect 

predictors used, which is quite comprehensive.
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SUMMARY OF MAJOR CHANGES: 

- We added a schematic representation of the data collection, annotation and variant effect 

evaluation process (Figure S1). 

- We expanded upon the annotation published by Iqbal et al.1 and included an exploration of 

protein functional class annotation in the context of our inheritance and molecular disease 

mechanism labels, finding that functional class association does not drive the underlying 

|ΔΔG| variance observed for the distinct molecular disease mechanisms (Figure S5). While 

the separate gene groups demonstrate distinct functional class enrichments (Figure S4), we 

show that protein functional class annotation provides an independent dimension to variant 

interpretation. 

- We included an exploration of several physicochemical property indices for disease variants 

(Figure S6). 

- We validated our results using an external dataset of variants from HGMD annotated as 

gain-of-function (GOF) vs loss-of-function (LOF), based on work recently published by Bayrak 

et al. 20212, which we then mapped to AlphaFold model structures.  We compared GOF vs 

LOF variant groups in the context of the full dataset, only OMIM ‘ADAR’ genes, and only 

genes with mixed mechanisms (both GOF and LOF in the same gene; Figure S7). We also 

annotated and analyzed the HGMD dataset analogously to our four-class classification 

approach (Figure S10, Figure S11). All analyses validate our previous results based on gene-

level classifications of ClinVar disease variants. 

- We explored the ClinVar and HGMD datasets in terms of the AlphaFold pLDDT modelling 

quality metric, which has been shown to be predictive of structural disorder3. We show that 

GOF variants are significantly more likely to occur at positions characterized by decreased 

structural order and packing (Figure S8). Nonetheless, such variants at disordered positions 

constitute the minority of both GOF and LOF disease mutations (Figure S9). 

- We clarified the methodology for deriving and interpreting our clustering metric. The figure 

has been updated to improve interpretability at a glance (Figure 6) 

- We included violin plots for stabilizing mutation ΔΔG (Figure 4A). 

- We included an exploration of functional protein class into the stabilizing variant analysis 

(Figure 4D). 

- We added detailed descriptions of the statistical tests and multiple comparison adjustment 

procedures to the method section. 

- We included results from 4 additional variant effect predictors (VEPs). 

- We made numerous text and legend clarifications to address the reviewers’ comments 

As some figure numbers have changed due to the addition of new figures, in this response we will be 

referring to them by their current labels. 

 

REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

The manuscript from Gerasimavicius et al. presents a data-driven, statistical analysis of "putatively 

benign" and pathogenic mutations in disease genes associated with different modes of inheritance 

(autosomal dominant/AD or autosomal recessive/AR) and disease mechanisms (gain of 

function/GOF, dominant-negative/DN, loss of function/LOF, haploinsufficiency/HI), accounting for 

the mutations' locations in 3D structures of proteins, and their effect on proteins' stability. As a 
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measure of the predicted effect of mutations on proteins' stability, authors primarily used absolute 

free energy change upon mutations, calculated using FoldX v5, Additionally, authors evaluated 

protein-level clustering of mutations to investigate the difference in the clustering of mutations in 

genes associated with LOF and non-LOF disease mechanism.  

 

The use of proteins structures in characterizing and identifying pathogenic from benign mutations 

has become increasingly clear over the last couple of years. This study takes it one step ahead by 

analyzing mutations' effect using protein structures separately for mutations in genes associated 

with different modes of inheritance and molecular mechanisms. This article is thus timely. I find the 

result reporting on the utility of considering complete biological assembly of proteins (protein 

complex structures) in the identification of disease mutations on a large scale, as one of the most 

profound results of this study.  

 

However, several crucial concerns remain. I find the interpretation of results obtained from gene- or 

protein-level annotations and analysis as mutation-level results, controversial and misleading, 

especially when not validated. Please find my comments in detail below: 

 

 

1. (data/reproducibility) Result (subsection: 1) 

 

Were all 211,266 gnomAD and 13,050 ClinVar mutations consistently mappable to both monomeric 

and complex structures of 1,261 proteins, as reported in Figure 1? Authors should report the 

corresponding PDB identifiers for monomeric and complex structures of 1,261 proteins in a 

supplemental table. 

 

We have now included a schematic figure more clearly explaining our data collection, annotation 

and evaluation pipeline (Figure S1), and clarified the text at several points. 

As described in the first paragraph of the ‘Results’ section, we started the data collection process by 

identifying ClinVar and gnomAD genes annotated in the OMIM database as either purely autosomal 

dominant, or autosomal recessive (‘AD’ and ‘AD’, respectively). This was done so that we had a set of 

genes in which dominant-negative, haploinsufficient and recessive disease variants could be 

separately classified with higher confidence, which would not have been possible when including 

OMIM ‘ADAR’ genes. Thereafter, the variants in the chosen genes were mapped to available PDB 

structures, which resulted in the structural dataset containing 13,050 ClinVar disease and 211,266 

gnomAD putatively benign variants, from 1,261 genes. Note that each variant was only mapped to a 

single structure: the ‘monomer’ results represent calculations performed using only the isolated 

polypeptide subunit, while the ‘full’ results use the entire biological assembly. 

Our full dataset was provided in the ‘Data Availability’ section. The current updated dataset is 

accessible at https://doi.org/10.17605/OSF.IO/H62FQ. We have now highlighted this information at 

the start of the results section to make it more accessible.  

 

2. (data/reproducibility) Result (subsection: 2) 

 

a) Authors report that to perform the comparative analysis of the effect of recessive and dominant 

mutations on stability, they used pathogenic ClinVar mutations from 726 autosomal recessive genes 

and 535 autosomal dominant genes, excluding those with mixed inheritance. But 726 and 535 genes 

https://doi.org/10.17605/OSF.IO/H62FQ
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sum up to 1,261 genes, which is the total genes authors have analyzed, according to their reporting 

in Results, subsection 1, page 3. Then what are the genes that were excluded? I invite authors to 

clarify. 

 

Please refer to our answer to your comment 1. We have now clarified the wording. OMIM ‘ADAR’ 

genes were excluded entirely from the data collection procedure, as they would have interfered with 

our mechanism annotation pipeline. 

 

b) Further, a list of 1,261 genes that have been analyzed along with their classification form OMIM in 

terms of mode of inheritance: autosomal recessive (726 genes), autosomal dominant (535), mixed 

(?), and mechanisms: LOF, HI, DN, GOF, must be included as a main or supplemental table. These 

data will allow for the replication of the results. 

We address this in our answer to comment 1. 

 

3. (result interpretation and reporting) Result (subsection: 2) 

 

a) Authors made a vast generalization in their annotations of mutations as AR and AD, which are 

basically gene-wise annotations. They have discussed the rationale and necessity behind this 

generalization in the paper. However, the way they present the results of analyzing these, if not 

critically flawed then over-generalized at best, data is misleading.  

For example, the title of the second subsection of Results: “Recessive mutations are more structurally 

perturbing than dominant mutations”, should be “Mutations in recessive disease genes are more 

structurally perturbing than those in dominant disease genes.” Similar texts throughout the paper, 

including figure captions, should be coherently corrected in this manner, to avoid any occurrences of 

misleading. 

 

We understand the Reviewer’s reservations about our approach to generalizing annotations at the 

gene level, and have now included an external variant-level GOF and LOF annotation dataset from 

Bayrak et al. 20212, based on the HGMD database. 

Comparing the HGMD dataset with our ClinVar data, we find that only 329 genes overlap (between 

1261 ClinVar and 797 HGMD genes). We consider this a suitable independent source to validate our 

results produced through a generalized gene-level classification approach. Notably, even when 

annotated at variant-level, most of the genes in the HGMD dataset maintain pure mechanism labels 

at the gene level – only 76 genes have variants from both GOF and LOF mechanisms, from a total of 

797 genes when including ‘ADAR’ inheritance genes. 

Using this dataset, we show that: 

- GOF variants are milder than LOF variants, in terms of predicted |ΔΔG| (Figure S7). This 

holds true in multiple contexts: the full dataset; considering only ‘ADAR’ genes; considering 

only mixed disease mechanism genes, containing both GOF and LOF variants. 

- Excluding ‘ADAR’ genes, we apply our original annotation strategy of using inheritance, 

GOF/LOF mechanism labels and ClinGen haploinsufficiency data to annotate the variants 

into four groups, allowing for cases where a gene has both GOF and LOF variants. The 

resulting groups are ‘HI’, ‘AR’, ‘GOF’ and ’Other LOF’ variants (LOF variants in genes without 
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additional evidence for haploinsufficiency; the variant-level dataset did not label DN variants 

separately). We find that for both FoldX and the VEP results, the four-group performance 

closely resembles what we demonstrated using our ClinVar dataset (Figure S10, Figure S11). 

We feel this validates our approach, which, compared to the Bayrak et al. publication, also 

showcases the differences between DN, HI and AR mechanism variants. However, to avoid 

misleading the reader, we have added a clarification at the start of the results section concerning 

mechanisms, that for the sake of flow and conciseness of the text we will be generally referring to 

gene-level mechanism assignments. Specifically, we state that “For the sake of flow and conciseness, 

from this point in the text we will be referring to the variants from classified genes directly by the 

associated mechanism (‘DN mechanism variants’ and not ‘variants from genes associated with DN 

disease’).” 

 

b) (Figure S2) Authors have analyzed the predicted effect of gnomAD variants on proteins’ stability 

accounting for zygosity. Two questions/comments here: 

 

- Did the authors make sure all 71,022 gnomAD variants from AD genes are heterozygous?  

- The comparative effects (as well as non-significant difference) of gnomAD heterozygote variants 

from AD genes and homozygous variants from AR genes would make sense, as these are putatively 

benign variants in two different zygosity levels. Besides all variants from AR genes (as the authors 

reported in Figure S2), I am interested to see how do the gnomAD heterozygous variants from AR 

genes compare. 

 

Figure S3 was intended as a technical figure, to show how we account for the large pool of 

potentially pathogenic recessive variants in a heterozygous state, harboured by the healthy gnomAD 

subjects. We see that the ΔΔG and structural location prevalence become very similar between the 

‘AD’ and ‘AR, Hom’ variants, after accounting for recessive variant zygosity in this dataset. While we 

cannot control for population penetrance of disease variants mixed in with the putatively benign 

ones, we can attempt to ensure the fairest comparison of disease and neutral variation in our 

analyses by controlling this aspect. 

In general, variants observed in a homozygous state provide the highest confidence that they are not 

recessive disease variants or hypomorphic variants in haploinsufficient genes. We do not see the 

reasoning behind filtering our homozygous ‘AD’ gnomAD variants. As we focus purely on ‘AD’ and 

‘AR’ disease genes, we can have more confidence that the gnomAD variants in ‘AD’ genes are not 

likely to be pathogenic, at least according to OMIM annotation. 

In regards to ‘AR, All’ vs ‘AR, Het’ variants, there are no significant differences to be observed. As you 

can imagine from the sample sizes (3,243 homozygous variants being excluded from 140,244 

variants in total), the ‘AR, Het’ vs ‘AR, All’ gnomAD variant comparison via Wilcoxon rank-sum test 

results in p-values of 0.148 and 0.170, for full and monomer |ΔΔG|, respectively. The median values 

for ‘AR, Het’ and ‘AR, All’ are 1.037 and 1.03, while the respective means are 1.887 and 1.873. 

 

c) (Figure 2) What is the zygosity state of 7,371 ClinVar pathogenic mutations in AD genes? All 

heterozygous? Similarly, what is the zygosity state of 5,679 ClinVar pathogenic mutations in AR 

genes? All homozygous? 
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Unfortunately, there is no easy way to obtain the zygosity of the disease variants, as this is not 

included in the ClinVar and HGMD databases. We can assume that for genes annotated as purely 

‘AD’ in OMIM, that the vast majority of pathogenic variants in ClinVar will be heterozygous. For ‘AR’ 

genes, there will be a mixture of homozygous and compound heterozygous variants, but there is 

currently no way of obtaining this information on a large scale without manual curation.  

 

d) (Discussion) Authors have not delved deeper into the data/results to understand and discuss the 

driving factors behind observing the difference in the ClinVar pathogenic variants’ effects on protein 

stability from AD and AR genes. Two suggestions come to mind:  

Our intention in Figure 2 was the introductory comparison of ‘AD’ and ‘AR’ disease variants as a 

lead-in to the different underlying mechanisms we have annotated (GOF vs DN vs HI), demonstrating 

that only some of the dominant mechanisms drive the observed difference. Specifically, we see that 

the perturbation, structural location and disease variant identification performance differences 

between HI and AR disease variants are insignificant, as they both in essence are simple loss-of-

function mechanisms at the molecular level, even though the former is dominant. In contrast, DN 

and GOF disease mechanisms appear to be quite complex and demonstrate unique perturbation, 

location and VEP performance properties. 

 

- Is there any substitution type (polar to hydrophobic or aromatic to aliphatic) that is more (or less) 

frequent in AD versus AR genes? 

We have now included an analysis based on a number of physicochemical property differences 

observed between the wild-type and mutant variants from different inheritance and molecular 

mechanism groups (Figure S6). While there are some significant differences, no particularly 

interesting trends are observed, with the exception of the volume change comparison between HI 

and AR mechanism mutations. While both of the mentioned mechanism variants demonstrate a 

similar degree of stability perturbation and structural location prevalence, AR mutations cause a 

significantly smaller increase in residue volume. It could be posited that recessive LOF disease genes 

are more sensitive to volume changes, leading to the same degree of structural perturbation as the 

HI variants, which actually induce a higher volume change. We feel delving deeper into this type of 

analysis, controlling the differences by structural location, could be interesting, but ultimately would 

distract from the main points of our paper. 

 

 

- The difference they observe is essentially protein-level difference, not mutation level. Is there any 

type/class of proteins (e.g. kinases, transporters, DNA-binding proteins) that is more (or less) likely to 

be encoded by AD versus AR genes? 

 

Thank you for the suggestion to add a dimension of protein functional class to our analysis; it makes 

sense that particular functions may be associated with specific disease mechanisms. To address this, 

we have taken and expanded the protein functional class annotation from the Iqbal et al.1. We 

indeed see very different functional class prevalence between our mechanism groups (Figure S4). 

Importantly, however, when we explore the predicted stability perturbation effects of variants in the 

context of associated functional classes vs our disease mechanism groups, we see that these two 

features are orthogonal. Functional protein class annotation does not explain the stability prediction 
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heterogeneity we observe between variants associated with distinct molecular mechanisms in 

majority of the functional classes (Figure S5), with the exception of transcription factors. 

We do see some interesting deviations from the general trends we observe in Figure 3A, with DN 

variants showing the strongest stability perturbation in a number of functional classes, although this 

may be influenced by the small sample sizes that arise from partitioning the data on multiple 

features. 

We think both functional class annotation and mechanism annotation demonstrate separate 

dimensions that could be useful for increasing disease variant identification performance. It would 

be very interesting in the future to see whether these features, together with others previously 

explored in literature, could increase prediction performance.  

In terms of our paper, we believe putting too much emphasis on the functional class aspect would 

detract from our intention of shining a light on current method performance issues, seemingly 

associated with the underlying molecular disease mechanisms. It would be interesting to explore 

function and disease mechanisms at the variant and domain level, but this would require a more 

specific data collection setup: separating function at domain or motif level, while having extended 

multi-class annotation (DN and GOF labels would be of particular interest) for the arising disease 

mechanisms at variant-level. We are currently unaware of extensive datasets of that kind. 

 

e) (last paragraph of subsection 2 of Results) Description of the results in Figure 2C is too hurried. 

Please include some quantifications in the main text to support the “remarkable improvement,” i.e., 

0.67 vs. 0.71, 0.71 vs. 0.77, which is only apparent after careful investigation of Figure 2C?  

 

We have added the quantitative descriptions of the AUC values into the text body. The error bars in 

Figure 2C are quite narrow and we feel the demonstrated difference is sufficiently striking. 

 

4. (result interpretation and reporting) Results (subsection: 3) 

 

a) (data) What are the AD genes associated with HI and DN/GOF? I suggest authors include this 

annotation in the recommended table in my comment 2b. 

 

We have addressed this in regard to your comment 1a. 

 

b) (Validation required) The difference reported in the effect of mutations in genes associated with 

DN+GOF mechanism versus those associated with HI+AR (Figure 3A) is compelling. Nevertheless, the 

claim: “Gain-of-function and dominant-negative mutations have much milder effects on protein 

structure than loss-of-function mutations”, requires mutation-level validation. Multiple studies have 

been performed on single gene and groups of genes, stratifying LOG and GOF mutations in the same 

protein (four are listed below). Authors must evaluate the predicted effect of these validated 

LOF/GOF mutations in the same protein before making this claim: 

 

- https://pubmed.ncbi.nlm.nih.gov/32801145/ 

- https://www.biorxiv.org/content/10.1101/2021.12.02.470894v1 

- https://pubmed.ncbi.nlm.nih.gov/34633442/ 

https://pubmed.ncbi.nlm.nih.gov/32801145/
https://www.biorxiv.org/content/10.1101/2021.12.02.470894v1
https://pubmed.ncbi.nlm.nih.gov/34633442/
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- https://pubmed.ncbi.nlm.nih.gov/34948399/ 

 

Thank you for the useful suggestion; we have addressed this in our response to your comment 3a.  

 

c) (Page – 5) “DN mutations are far more likely to be found in complexes …”. This sounds strange. Did 

authors mean DN mutations are far more likely to be found in proteins (or a certain class of proteins) 

that form homomeric or heteromeric complexes in their true biological assembly, to perform the 

function? In that case, please rephrase. Can authors report any quantification on how likely it is 

based on their own dataset? What type or class of proteins these are? 

We wanted to emphasize that intermolecular interactions are crucial for DN mechanisms, and many 

theoretical characterizations of the DN effect stem from models in protein complexes.4,5. We have 

now adjusted the wording of this and added a quantitative statistical test: “Of course, this result is 

probably influenced by the fact that DN mutations are more likely to be found in protein complexes22, 

with our dataset showing a significant enrichment of DN-associated mutations in complexes vs 

monomers (P = 1.581 x 10-10, Fisher’s exact test), compared to the complex-monomer proportion of 

all other disease variants.”  

If we look at functional class association for genes characterized by DN disorders, we find that the 

main distinction of complex forming proteins, compared to entries we have only seen as DN-

associated monomers, is that they are more often responsible for transporter function (24% vs 6%). 

This is not surprising; channel protein susceptibility to DN disease mechanisms has been 

documented in a number of examples6,7. However, our complex vs monomer classification is only 

based on the available 3D structures, which is a potential source of bias. The overall monomer vs 

complex functional profile comparison does not yield significant results (Chi-square p = 0.577), as we 

do not have a large number of DN gene examples. 

 

5. (result interpretation and reporting) Results (subsection: 4) 

 

a) Authors report that stabilization is more common in HI mutations. But as far as I am concerned, 

Their results essentially reveal that stabilization is more common in certain proteins that are 

associated with the HI disease mechanism. It is a protein or gene-level observation, taking all 

mutations from a gene as HI.  

Authors explanation for their results is interesting and apparently lends support to my argument. The 

HI mechanism is more common in a certain class of proteins, i.e. transcription factors, which undergo 

loss of function upon stabilization, therefore, there is a tendency of observing more stabilization in HI. 

I recommend that authors must revise the interpretation of their results throughout the paper (also 

suggested in my comment 3a).  

b) In this dataset, how many proteins associated with HI are transcription factors?  

 

We were quite curious about the possible HI vs transcription factor association ourselves. 

Interestingly, using the functional class annotation that we have derived per your suggestion, we 

actually see that numerically, it is driven by variants from genes in the more general nucleic acid 

binding protein class (Figure 4D). We have included a discussion of these results in the paper.  

However, as we have touched upon in our answer to point 3d, we do not see any benefit in 

reinterpreting all our results through the scope of protein functional class, when there is accuracy to 

https://pubmed.ncbi.nlm.nih.gov/34948399/
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be gained when combining multiple features to find ways to individualize variant prediction for 

distinct genes. While some specific protein functions undoubtedly make them more susceptible to 

specific molecular mechanisms, we have shown in Figure S5 that these two features represent 

separate dimensions useful in understanding and improving disease prediction, and do not have to 

be mutually exclusive. Disease of particular molecular mechanism can also arise independent of a 

protein’s underlying function, with GOF toxic aggregates, or general widespread LOF due to 

misfolding in essential proteins as just some generic possibilities. 

 

 

c) Connecting to my comments 3d and 4c, authors should check protein-class annotations of the 

genes studied here, which may explain why stabilization is more or less likely to be predictive of 

pathogenic variants of proteins associated with LOF (HI/AR) and non-LOF (DN and GOF). It is likely 

that stabilization is more or less likely to be important for certain classes of proteins, which could 

have preferences for different types of disease mechanisms (LOF/GOF). In fact, it has been previously 

shown that protein-class level information adds to the predictive power for the identification of 

pathogenic versus population variants (https://www.pnas.org/content/117/45/28201).  

 

We have touched upon this in relation to comments 3d, 4c and 5b. 

 

d) (Figure S3C) Authors should report p-values for Fisher’s test-based statistical analysis. 

 

We have now included this. 

 

e) (Page 6) “In Figure S3A, we plot the distribution for full ΔΔG values different types of pathogenic 

mutations.” 

 

- This sentence reads off. 

Thank you, this has now been corrected. 

 

6. (result interpretation and reporting) Results (subsection: 5) 

 

“Moreover, the LOF mutations also tend to be better predicted than non-LOF mutations by those 

methods based on nucleotide-level sequence conservation, which utilise no information about amino 

acid substitution type.”  

 

Which VEPs authors are referring to by “nucleotide-level sequence conservation”, the last panel of 

Figure 4? Please clarify. And If so, then authors' interpretation does not hold. I see that by 6 out of 7 

VEPs, GOF (non-LOF) is better predicted by HI (LOF). Authors are welcome to correct me if I am 

missing something. 

 

Thank you for pointing out our error, we have now fixed this and also included a re-interpretation of 

the result in light of the variant-level dataset performance. 

https://www.pnas.org/content/117/45/28201
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7. (result interpretation and reporting) Results (subsection: 6) 

 

Multiple concerns:  

 

a) It is not clear from the Result section whether the calculation was based on monomeric structure 

or complex structure.  

 

We have adjusted the text to clarify that monomeric structures were used. 

 

b) I suggest evaluating the clustering metric for the same set of proteins but separately using 

monomeric and complex structures. Would authors expect to see any difference?  

While it would be interesting to explore, especially for homomeric complexes, this approach would 

pose a number of problems with currently available data. The clustering result would be skewed in 

heteromeric complexes, where disease variant data may not available for every subunit. Exploring 

the cases where disease variant data is available for every subunit of a heteromeric complex would 

dramatically reduce our statistical power. However, this issues of variant clustering in protein 

complexes is something we intend to study carefully in the future. 

 

c) The values of “n” in Figure 5 indicate the number of proteins, rightly so, and unlike all other figures 

in the paper. So it should be specifically mentioned in the Figure 5 caption that these are the number 

of genes/proteins, not mutations, given I am understanding it right. 

 

We have now included a clarification in the figure legend. 

 

8. (validation and impact) No independent validation  

 

It is hardly surprising that the effect on proteins’ stability is predictive of the pathogenicity of 

mutations. It, however, is an interesting piece of result that the predictive power of proteins’ stability 

varies for genes associated with different disease inheritance and molecular mechanisms. Thinking of 

the impact of this result, can authors show the value of reclassifying ClinVar VUSes into LOF/GOF 

using stability measure (ddG) followed by a validation using mutagenesis readouts (maybe using 

data from MAVEdb database)? 

 

There are a number of problems with trying to do this. MAVEdb does not contain information as to 

the mechanism behind reduced fitness scores. Furthermore, while we see a tendency of GOF 

variants to be milder, there is great overlap in scores derived by our gene-level generalized approach 

for different mechanisms, as can be seen from the box and violin plots for ΔΔG.  

 

9. (discussion) Authors should discuss some exceptional cases and their impact on their results. For 

example, a protein/gene that they have considered to having associated with LOF or GOF but have 

both types of mutations. Similarly, a protein/gene that they have considered to having associated 

with AD or AR but have a mixed inheritance.  
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We took a generalised approach with a focus on exploring molecular disease mechanisms, and not 

individual genes. As such, all our hypotheses only involved groups of genes associated with distinct 

mechanisms. Having hypotheses at the gene level would mean introducing bias to the data 

collection process itself. For the reasons stated previously, we did not consider mixed inheritance 

‘ADAR’ genes, as early as the data collection stage, as they would have interfered with our 

generalized mechanism classification process. However, as we have now included a new dataset of 

LOF vs GOF variants, annotated at the variant and not gene level, this goes some way to addressing 

the issue. 

 

10. (clarity) Introduction, Page 2 

 

“We find clear differences between LOF vs. non-LOF mutations in terms of their structural context, 

their predicted effects on protein stability, and their clustering in three-dimensional space.” 

 

It is not immediately clear what structural context authors are referring to. A wide variety of 

structure properties (secondary structure, protein-protein interaction, etc.) that define the structural 

context of a mutation have been analyzed in the literature in an effort to characterize variants. Two 

studies come to mind: https://doi.org/10.1073/pnas.1820813116; 

https://doi.org/10.1073/pnas.2002660117. Did authors refer to the mutations’ structural location: 

surface/interior/interface, by context? If so, then it should be stated in the Introduction for clarity.  

 

The Reviewer is correct: by structural context we meant structural location. We have adjusted the 

wording to avoid confusion. 

 

11. (writing) Results, subsection 1, Page 3  

 

“While we recognise that the gnomAD dataset will contain some damaging variants, e.g. those that 

are associated with late-onset disease, population-specific penetrance or are pathogenic under 

homozygous conditions.” 

 

The sentence is incomplete. 

 

Thank you, we have now corrected this. 

 

12. (technical/clarity) Figures captions 

 

“All pairwise group comparisons are significant (…, Holm-corrected Dunn’s test)” 

 

This statement has been used multiple times, specifically in Figures 1, 2, 3, and associated 

supplementary figures, but was never explained. It was not immediately clear what are the groups 

and what is this test about. It is possible that I just don’t know about it, but for readers like me, I 

recommend elaborating on this test at least in one figure, Figure 1, for example.  

 

https://doi.org/10.1073/pnas.1820813116;
https://doi.org/10.1073/pnas.2002660117.
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We have clarified this in the legend of Figure 1. An explanation and references for Dunn’s test and 

the Holm multiple-testing adjustment are now included in the methods section, as well as clarified it 

in the first figure legend with a mention of the methods section.  

 

13. (technical) Results, subsection 2, page 4  

 

“The differences in perturbation magnitude across the different mutation groups can be partially 

explained by their enrichment in different spatial locations …”  

 

The term “enrichment” can be used when a statistical analysis is performed. The authors’ claim is 

based on the difference in relative percentage of mutations in different spatial locations, and it’s a 

correct claim. But I recommend replacing the term enrichment with “relative frequency” or “relative 

tendency” or “prevalence”. 

We have clarified the figure legends to state that statistical testing was performed in all the figure 

involving proportion plots. The analyses were performed by Chi-square testing and calculation of 

Cramer’s V effect size metrics. 

We have adjusted the first description of the proportion comparison to specifically mention 

prevalence, but thereafter we intermix the phrase “enrichment” for flow and variety, as the 

proportions are indeed different due to enrichments in certain categorical classes. 

 

14. (visualization) Figure 5 and Figure S3 

 

It is hard to distinguish colors used for AR and DN. Please change. 

We have adjusted the colours for DN and the new ‘Other LOF’ groups to be more distinguishable. 

 

15. (typo) Results, Page – 7 

 

Thaty? 

 

This has been fixed. 

 

Reviewer #2 (Remarks to the Author): 

 

The authors have presented a nice study on the effect of different classes of disease mutations on 

protein structure using publicly available resources. Later they compare the predictive performance 

of existing variant effect predictors on these mutations.  

They raise the important issue that most VEPs perform worse on non-loss of function mutations, 

which has major implications for the identification of pathogenic variants. 

They present an evidence based suggestion on how tools could be improved. 

 

Hypothesis building and data analysis is well described and whenever there are limitations in their 

approach these are openly addressed. 

I think this work will be helpful for anyone working in the field of disease mutations and might raise 

awareness for the need of better prediction methods for dominant negative and gain-of-function 
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mutations. 

The manuscript reads very well and is clearly structured. Consecutive steps are motivated very well. 

 

 

 

Minor suggestions 

 

1. That said, I found the logic in the very first paragraph (“…However, missense variants that are 

known to be pathogenic represent only a tiny fraction of those that have been observed in the human 

population3,4. Thus, identifying missense changes that are likely to be clinically relevant remains a 

major challenge for diagnosis, and ultimately treatment, of human genetic disease.”) difficult to 

follow and a bit weak. Could be reworded to match the higher standard of the rest of the manuscript. 

Thank you for highlighting this issue; we have now reworded the paragraph in question to hopefully 

more clearly state the current issues in variant interpretation, and opening up the reader to the idea 

that they could be tackled through computational effect prediction methods. 

 

2. To me, it is not stated strongly enough that mutations from disordered regions are not considered. 

This should be emphasised more clearly in the beginning of the results section. Additionally it could 

be helpful to have an initial overview figure about the procedure used (see for example Figure 1A in 

Wang et al. Three-dimensional reconstruction of protein networks provides insight into human 

genetic disease. Nat Biotechnol, 2012). 

 

We have clarified that disordered proteins or regions are not likely to be included in our ClinVar 

dataset. However, we have made some adjustments to our datasets and analyses to be able to 

explore mechanisms in the context of disordered regions, which we expand on in our answer to 

comment number 10. 

In line with your suggestion, we have also included a schematic representation of our data 

collection, annotation and evaluation process in Figure S1. 

 

3. It’s quite unusual to see a whole subsection of the manuscript (“stabilising mutations may be 

important for gain of function”) devoted to only supplementary figures. Maybe that could be 

reorganised. 

This analysis has now been expanded significantly, in particular to include consideration of 

functional classes, and the figure is now included in the main text (Figure 4). 

 

4. Figure 5A: Method is not intuitive to understand. It is not stated clearly enough how the ratio is 

calculated. In the text it is written that a ratio of 1 means random distribution, while >1 means 

clustering. Hence it is not clear how to interpret, for instance, values lower than 1 shown in the plot 

or how strong the clustering is for values bigger than 1. 

Thank you for pointing this out. The rare examples of proteins with clustering ratios less than one 

indicate cases where the sites of disease variants are essentially more evenly distributed throughout 

the protein than neutral ones, but these are likely to represent chance occurrences due to the 

nature of the metric rather than meaningful “anti-clustering”. We now explain this in the text. We 
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have also modified the figure to be more easily interpretable and reworded the method description. 

Finally, we now make code available to perform the clustering calculations. 

 

5. Figure S3A: it is not clear why the actual ΔΔG value is meaningful here, when before it was stated 

that stability predictors often predict the wrong sign. 

Despite some uncertainty in the prediction of stabilising vs destabilising mutations, we suspect that 

FoldX still has some overall tendency to get it correct. With panel A we wanted to give an overview 

of which mechanisms tend to show more distribution towards the stabilising end of the spectrum, 

including past the -1 – 1 kcal/mol region prone to uncertainty. We have also now replaced the 

boxplots with violins, to make it more insightful. 

 

6. Figure 3B: The significance of enrichment of DN mutations in interfaces could be evaluated with a 

Fisher’s exact test of monomers vs. protein complexes. 

With this panel we wanted to propose an explanation of why the predicted ΔΔG is milder in DN 

proteins. By definition, the DN effect in complexes requires that the mutant subunits retain the 

ability to assemble, and thus if majority of mutations occur at interfaces, they would be expected to 

be mild from a structural perturbation perspective.  

We have now clarified that all figures demonstrating proportions represent analyses that were 

statistically tested with the Chi-square test and Cramer’s V calculation. In Figure 3B all the Chi-

square pairwise comparisons are significant, and in the case of DN vs HI and DN vs GOF, Cramer’s V 

values are 0.26 and 0.2 respectively, representing the strongest observed effects overall. 

To validate the observation with a proper enrichment analysis, we carried out a Fisher’s exact test 

for DN variants association with complex membership, as we see a significant enrichment of variants 

in complexes vs monomers (p-val = 1.581e-10), compared against all other complex-monomer ratios 

of disease variants not involved in the DN mechanism.  

 

7. Figure S3A: regarding “there are still many stabilising mutations”. This is hard to grasp from a box 

plot. It would be helpful to have the data distributions plotted alongside. This would also help to 

better follow the rational that non-LOF mutations are of lower magnitude and hence fall into the 

wrong category due to the margin of error in prediction. 

We have adjusted the panel to include a violin plot, which should make this easier to visualise.  

 

8. Figure S3C: How big are the groups for 0-1.0 and 1.0-4.0? 

Bin sample sizes have been added to the figure. 

 

9. In context of Figure 2B, it could be interesting to look at cases of genes with mixed inheritance 

(that had been excluded from the study) (i) as a proof of principle, (i.e. do mutations with different 

inheritance fall into different regions of the same protein?) and (ii) to have some illustrative 

examples. 

We have clarified the wording of our data collection pipeline to emphasize we only collected data on 

‘AD’ and ‘AR’ gene variants. We excluded proteins with mixed OMIM ‘ADAR” inheritance at an early 

stage before data collection, to be able to separate the three molecular mechanism classes of DN, HI 
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and AR variants. However, with a better approach, it would definitely be interesting to explore both 

mixed inheritance and mixed mechanism genes, with variant-level assignments including DN 

mechanism variants. As all our hypotheses were generated at the level of gene groups, we feel 

specific gene discussion falls outside of the scope of this work, but we could point the reviewer to a 

review article recently published by our group that extensively discuss molecular disease mechanism 

examples in different proteins: https://www.annualreviews.org/doi/abs/10.1146/annurev-genom-

111221-103208 

 

10. Although I understand that this work is focusing on the effect of mutations on protein structure, it 

would be very interesting to put this into context with mutations in disordered protein regions. This is 

especially true, because the authors emphasise the importance of non-LOF mutations, which are less 

likely to disrupt protein folding. Since this might be too complex to be added to the analysis, it could 

at least find some attention in the discussion. (especially concerning Figure 4 “Thus, it does appear 

that amino acid residues associated with DN or GOF mutations genuinely tend to show weaker 

evolutionary conservation than those associated with LOF mutations, thus providing another factor 

that can explain their poor identification by VEPs.” and “DN mutations being more perturbative, and 

GOF mutations occurring at more conserved positions”) 

 

Thank you for the suggestion! We have carried out additional data collection to validate our gene-

level annotation results, and in the process have included AlphaFold as a structural source. 

AlphaFold models are annotated with a per-residue modelling quality metric, pLDDT, which notably 

has been shown to be very predictive of structural disorder3. We have explored our original ClinVar 

and an external variant-level HGMD GOF vs LOF datasets in terms of the predicted pLDDT vs 

mechanisms, and found that in both cases GOF variants tend to be associated with significantly 

lower values, indicating an increased prevalence in less-ordered regions (Figure S8, S9). 

We have noted this feature as a potential way to identify and GOF variants for individualized 

interpretation in the discussion section. 

 

Reviewer #3 (Remarks to the Author): 

 

This work, while providing a comprehensive overview of variant effect predictors, completely 

overlooks efforts dedicated to understanding different molecular effects of mutations on protein 

stability, dynamics and affinity to its partners using structural information (other proteins, small 

molecules, nucleic acids, etc). 

 

Results section: “FoldX, as well as other stability predictors, may be better at predicting the 

magnitude than the sign of the stability perturbation.”  

This makes no sense from a predictive method development perspective. It has been shown on 

multiple occasions that robust methods get the direction of the change right (e.g., being able to 

distinguish stabilising from destabilising mutations). The aforementioned observation, in my view, 

just indicates limitations of FoldX as a predictive model. 

A primary reason for choosing FoldX was purely practical, as we could not have carried out 

predictions for a dataset of our size on webserver-based methods. FoldX provides an accessible and 

parallelizable software solution, that allows troubleshooting by the user, which cannot be said for 
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webservers. We by no means intended to overlook the methodologically diverse selection of 

currently available stability prediction methods. In fact, we have previously evaluated 13 different 

methods, including most of the ones you suggest in your later comment, for the purpose of disease 

variant identification in the manner of variant effect predictors8. However, we did find FoldX to be 

the most competitive one in terms of performance comparisons with specialized VEPs. As we discuss 

in that paper, this does not necessarily mean it is predicting changes in stability better than the 

other methods, but it is supportive of its utility for understanding human disease mutations. 

We have now included mention of Dynamut2 in the discussion, as an alternative predictor that we 

believe could provide a unique perspective on the distinct molecular disease mechanisms.  

We did not mean to misattribute the mentioned scale of error to the whole field of stability 

prediction methods. We have clarified the text to specifically state the error is associated with 

methods like FoldX and Rosetta, as the source we are citing implies. 

 

Authors could have calculated molecular interactions explicitly rather than using a method to predict 

stability effects as a proxy. 

Our work focuses on exploring the differences between molecular disease mechanisms, some of 

which involve successful assembly, but manifest disease through poisoning of complexes. We were 

specifically interested in how the mutation affects the stability of the entire complex, and not just 

the affinity of molecules at the interface.  By involving multiple different tools with separate scoring 

functions we would not be able to evaluate the performance differences when carrying out 

predictions on monomer vs complex structures in an unbiased fashion. FoldX uniquely allowed us to 

perform these analyses consistently in the same framework, with functionality to evaluate protein-

protein, protein-ligand and protein-nucleic acid complexes. 

 

Any filtering based on review quality for ClinVar? (5 stars?) 

An overwhelming number of ClinVar variants is ranked at only 1 star (criteria provided, either by 

single submitter or with conflicting interpretation) in the 4-star annotation system, and applying 

filtering would drastically reduce the dataset and our statistical power.  

As an alternative, we have included and reproduced our analyses using an external variant-level 

annotation dataset based on work published by Bayrak et al.2. We used the HGMD variant set, which 

has separate assertion criteria from ClinVar, and minimal overlap (329 genes overlap, ClinVar and 

HGMD totals for ‘AD’ and ‘AR’ genes are 1,261 and 797, respectively). The analyses (Figure S7, S10, 

S11) validate our previous results. 

 

Could have any potential bias/contamination been introduced in the benign mutation set, given no 

frequency filter was imposed? 

Variant filtering according to the conventional clinical genetics standards (<0.1% of MAF) would 

drastically reduce the available data, as the vast majority of gnomAD variants would be considered 

rare. In fact, in light of the findings from the gnomAD data, based on generally healthy individuals, 

ClinGen have downgraded the PM2 variant interpretation criterion, based on allele frequency in 

controls, from “Moderate” evidence to “Supporting” 

(https://clinicalgenome.org/site/assets/files/5182/pm2_-_svi_recommendation_-

_approved_sept2020.pdf). 
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From a practical perspective, gnomAD variation undoubtedly contains recessive or impenetrant 

disease variants. To achieve a more realistic comparison for recessive disease genes, we compare 

recessive ClinVar disease variants against homozygous gnomAD variants from matching genes. We 

find controlling for zygosity in recessive genes brings down gnomAD ‘AR’ variant features to the 

same level as gnomad ‘AD’ (Figure S3). 

 

Authors should have used AlphaFold2 structures instead, at least to assess mutation effects on the 

monomers, and to increase their data set size (rather than compromising in data quality, e.g., with 

the benign mutation selection). I see very little point in limiting this study to experimental structures 

given the recent advances made available by AlphaFold2. 

As many of the mechanisms are particularly prevalent in complex proteins, we initially limited our 

study to targets with available complex structures. We could then more consistently compare 

predictions performed on monomers to those in the context of the entire complex assembly, thus 

controlling for the conditions of crystallographic parameters and experimental bias. With this 

approach we minimize bias and can be more certain variant identification performance was not 

caused by difference in resolution, crystal packing, etc, but by the differences in structural context 

between the monomer and the full complex. 

However, we have now made use of AlphaFold predicted models for the external HGMD dataset, as 

well as explored the relationship between pLDDT values and variant mechanisms for both ClinVar 

and HGMD mutations (Figure S8, S9). 

 

No description of how structures were filtered is provided? Missing atoms/residues modelled? 

Crystallographic artifacts and multiple occupancies removed? Any quality check/filter? 

We have now included a more detailed explanation of the pipeline in the Methods section. 

 

This work solely relies on a single, outdated and very limited method (FoldX) to predict effects of 

mutation in terms of Gibbs free energy, which has been outperformed by a whole new generation of 

methods. Relying solely on FoldX predictions could lead to erroneous conclusions. I would advise the 

authors to include state-of-the art methods for the different molecular mechanisms (for stability, 

mCSM, Dynamut2, DeepDDG, MAESTRO, fand or oligomer affinity, there are mCSM-PPI2, MutaBind2 

- amongst many other options). This contrasts significantly with the variant effect predictors used, 

which is quite comprehensive.  

 

As we have discussed above, our choice of method was primarily motivated by the scale of our 

dataset and its performance in our previous benchmarking study.  We would absolutely be 

interested in comparing the prediction results of methodologically distinct tools, like Dynamut2. 

However, from our previous experience with the mentioned webserver-based methods, evaluating 

our very large dataset using them would be untenable and troubleshooting of failed predictions 

would be impossible. 

In comparison, the majority of sequence-based variant effect predictors run quite fast, or are already 

pre-computed on the dbNSFP database for most Uniprot entries; thus we do not agree there is a 

contrast once the computational effort is taken into account. 



 xvii 

FoldX V5.0, which has received an update as recently as 20199, provides functionality which other 

methods currently lack, enabling us to compare the improvement of variant identification 

performance using monomer vs complex structures for the various molecular disease mechanism 

groups. Additionally, is able to evaluate interactions between a wide array of biomolecule types. 

On top of interpreting the predicted stability values in terms of mechanism, we also wanted to use a 

method that showed greatest capacity at actually identifying disease variants based on the produced 

score, as the most relevant comparison to the various different variant effect predictor methods. 
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Reviewers' Comments: 

Reviewer #1: 

Remarks to the Author: 

The manuscript has been significantly revised in the light of the first review, which, has enriched 

the paper. I have a few additional comments: 

Major: 

1. Results, subsection 4 

The authors performed a commendable job of adding protein functional class annotation into 

context. It is an important piece of result, shown in Figure S4, which is "there are significant 

differences in the prevalence of functional classes across inheritance and molecular mechanisms". 

Then authors argue that within functional class groups (Figure S5), the general trend of mutation 

effect on stability holds (i.e., AR > HI > GOF/DN). However, Figure S5 shows that for 4 out of 9 

groups, DN variants are most damaging, which makes the title of subsection 4 conflict with what is 

observed in Figure S5. Authors are welcome to clarify if I am missing something. The authors’ 

explanation for this observation (DN mutations being the most damaging variants for certain 

protein groups) is reasonable and it makes sense that the protein group annotation is an 

orthogonal piece of information. Nonetheless, the interpretation of results in the title of subsection 

4 and Figure S5 contradict the results per se. 

My recommendation would be to revise the title of that subsection to: "There are significant 

functional class prevalence differences across disease inheritance and molecular mechanisms", 

which is the clearest result here. And, also revise the title of Figure S5 to: "Underlying functional 

protein class does not necessarily drive the observed variance differences in distinct molecular 

mechanism perturbation magnitude". 

As far as I am concerned, the analysis of physicochemical properties is not adding any significant 

value to the manuscript. It is already incredible to see the differential pattern in the stability effect 

by mutation across different inheritance and molecular mechanisms, which also holds for most 

protein functional groups/classes. I encourage authors to focus only on this aspect in the 4th 

subsection of the result for clarity, and conciseness and keep up the focus of the overall 

manuscript. 

(PS: The current sentence stating the header of Figure S5 is incorrect) 

2. (Figure 6) One puzzling piece of result is while most of the AR (/LOF) mutations are located in 

the interior of protein structures, they are rather dispersed in 3D. In contrast, most of the AD 

(/GOF, DN) mutations are at the surface/interface of protein structures but are clustered. Authors 

have shown in Figure 3B that gnomAD variants are mostly located at the surface. Do authors 

expect to see gnomAD variants to be mostly clustered? I suggest the authors add the box plot for 

gnomAD in both Panel A and B of Figure 6 and discuss how it compares with AD/AR and 

GOF/DN/HI. 

Minor: 

My initial concerns about data/reproducibility/validation have been addressed. 

I appreciate the authors adding this clarifying statement: “For the sake of flow and conciseness, 

from this point in the text we will be referring to the variants from classified genes directly by the 

associated mechanism (‘DN mechanism variants’ and not ‘variants from genes associated with DN 

disease’).” 

Additional mutation-specific validation provides endorsement for the results to hold, at least to a 



certain extent, in a variant-specific way, not only a gene-specific manner. 

The addition of Figure S1 clarified a lot of questions – thanks to the authors. 

(technical / clarity) The rest of my comments during the initial review regarding technicality, 

clarity, and figures have been addressed. 

Reviewer #2: 

Remarks to the Author: 

The authors have addressed all my concerns. In my opinion the manuscript can now be published. 

As a side note, I would like to mention that it would have made this process much easier if the 

authors had pointed out the new numbers of changed figures and where exactly adapted 

sentences can be found in the text. 



SUMMARY OF CHANGES: 

- We adjusted naming, figure and text formatting conventions to be more closely in 
accordance with the Nature Publishing guidelines. 

- We adjusted the section and figure titles in relation to Supplementary Figure 5. 
- We removed Supplementary Figure 6 and the accompanying text covering physicochemical 

property changes between inheritance and mechanism groups from section 4, as suggested 
by Reviewer 1. The remaining figures were renumbered in accordance. 

- We named the clustering metric as EDC (‘Extent of Disease Clustering’) and better described 
its derivation in the Methods section, with addition of two equations. 

- We updated Figure 6 to also show EDC values if they were derived using not disease but 
gnomAD variants for the proteins explored in panels a and b. 

- We updated Figure 6 with an additional panel c, which demonstrates concrete structural 
examples of proteins characterized by EDC values at the opposite ends of the spectrum. We 
described the panel in a text paragraph, which showcases the utility of EDC for identifying 
putative non-LOF disease proteins. 

 
REVIEWERS' COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
The manuscript has been significantly revised in the light of the first review, which, has enriched the 
paper. I have a few additional comments: 
 
Major: 
 
1. Results, subsection 4 
 
The authors performed a commendable job of adding protein functional class annotation into 
context. It is an important piece of result, shown in Figure S4, which is "there are significant 
differences in the prevalence of functional classes across inheritance and molecular mechanisms". 
 
Then authors argue that within functional class groups (Figure S5), the general trend of mutation 
effect on stability holds (i.e., AR > HI > GOF/DN). However, Figure S5 shows that for 4 out of 9 
groups, DN variants are most damaging, which makes the title of subsection 4 conflict with what is 
observed in Figure S5. Authors are welcome to clarify if I am missing something. The authors’ 
explanation for this observation (DN mutations being the most damaging variants for certain protein 
groups) is reasonable and it makes sense that the protein group annotation is an orthogonal piece of 
information. Nonetheless, the interpretation of results in the title of subsection 4 and Figure S5 
contradict the results per se. 
 
My recommendation would be to revise the title of that subsection to: "There are significant 
functional class prevalence differences across disease inheritance and molecular mechanisms", 
which is the clearest result here. And, also revise the title of Figure S5 to: "Underlying functional 
protein class does not necessarily drive the observed variance differences in distinct molecular 
mechanism perturbation magnitude". 



We thank the reviewer for their comments. We have adjusted the titles of the section and the figure 
according to their suggestion. We indeed mainly wanted to show that functional class grouping 
serves as an additional orthogonal feature, and not necessarily as the underlying cause for the 
observed molecular mechanism group differences. 

In this and our previous works we have observed high per-protein heterogeneity in terms of the 
degree of tolerated changes to structural stability. On top of our explanation in the paper, the 
observed oddly strong perturbations in DN disease proteins could also arise due to intrinsic stability 
differences between distinct proteins. Outside the cases of full protein unfolding, some protein 
structural arrangements could be more able to ‘buffer’ or accommodate perturbations, without 
causing a full loss-of-function. While others may be more sensitive and unable to maintain function 
after rearrangement, resulting in lower perturbation values being associated with disease. We 
speculate this could be especially relevant here as the DN group shows low sample sizes and is more 
sensitive to outliers when excessively subset by all the different functional class groups. 

 
As far as I am concerned, the analysis of physicochemical properties is not adding any significant 
value to the manuscript. It is already incredible to see the differential pattern in the stability effect 
by mutation across different inheritance and molecular mechanisms, which also holds for most 
protein functional groups/classes. I encourage authors to focus only on this aspect in the 4th 
subsection of the result for clarity, and conciseness and keep up the focus of the overall manuscript.  
 
(PS: The current sentence stating the header of Figure S5 is incorrect) 

We have now removed the figure and the text describing it from the manuscript. 
 
2. (Figure 6) One puzzling piece of result is while most of the AR (/LOF) mutations are located in the 
interior of protein structures, they are rather dispersed in 3D. In contrast, most of the AD (/GOF, DN) 
mutations are at the surface/interface of protein structures but are clustered. Authors have shown 
in Figure 3B that gnomAD variants are mostly located at the surface. Do authors expect to see 
gnomAD variants to be mostly clustered? I suggest the authors add the box plot for gnomAD in both 
Panel A and B of Figure 6 and discuss how it compares with AD/AR and GOF/DN/HI. 
 
We have updated the figure to now also include the clustering metric values (which we now call 
EDC) that were derived using gnomAD variants. While you are correct in noting that gnomAD 
variants tends to occur most often at the surface, interestingly, they do not cluster as non-LOF 
disease variants do. They in fact demonstrate the most random-like distribution, with EDC values 
closest to 1. We do not think this is unexpected, as putatively benign variation should follow a more 
random pattern. The fact they occur most frequently at the surface should not limit their capacity to 
not cluster, as protein spatial shapes are irregular (unlike a sphere), especially in the case of multi-
domain structures, allowing a balanced distribution in relation to non-mutated positions. 

We have now also added a practical example showcasing fringe cases of two proteins associated 
with EDC values on the opposite ends of the spectrum.   

 
Minor:  
 
My initial concerns about data/reproducibility/validation have been addressed.  
 



I appreciate the authors adding this clarifying statement: “For the sake of flow and conciseness, from 
this point in the text we will be referring to the variants from classified genes directly by the 
associated mechanism (‘DN mechanism variants’ and not ‘variants from genes associated with DN 
disease’).” 
 
Additional mutation-specific validation provides endorsement for the results to hold, at least to a 
certain extent, in a variant-specific way, not only a gene-specific manner.  
 
The addition of Figure S1 clarified a lot of questions – thanks to the authors. 
 
(technical / clarity) The rest of my comments during the initial review regarding technicality, clarity, 
and figures have been addressed. 
 
 
Reviewer #2 (Remarks to the Author): 
 
The authors have addressed all my concerns. In my opinion the manuscript can now be published. 
 
As a side note, I would like to mention that it would have made this process much easier if the 
authors had pointed out the new numbers of changed figures and where exactly adapted sentences 
can be found in the text. 
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