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1. Economics & Production of Oil & Natural Gas

The development of the hydraulic fracturing (fracking) technique has led to a widespread
increase in the production of associated and non-associated natural gas,' as well as natural gas
liquids, or NGLs (Figure S1, left and Figure S2). NGLs are extracted with raw gas and are, just
after extraction, often separated from the stream to yield consumer-grade natural gas and the
more valuable alkane liquids.? Basins with petroleum typically have a larger composition of
ethane and propane and other NGLs, whereas “dry” basins, such as Fayetteville and Appalachian
in the U.S., tend to provide mostly dry natural gas with low fractions of NGLs.? By volume,
ethane, C2Hs, is the second most abundant component of natural gas after CHa4, while propane
(C3Hy) is the third most abundant.* The fraction of C,Hg (but not C3Hg) removed during gas
processing changes significantly over time. Over the last 10 years, the dramatic increase of CoHs
production (Figure S1, left) has exceeded domestic demand or ability to export it abroad,’
resulting in C2Hp prices generally at or below natural gas since 2012 (Figure S1, right).%” As a
result, it is often more economical to sell C2Hg as natural gas rather than separate it from the raw
stream. Producers can increase the amount of CoHp they sell as natural gas by “rejecting” it (not
recovering it). Rejection of CoHs has continued to grow almost continuously over the past decade
(Figure S1, right) resulting in increasing abundance of CoHe in the natural gas distribution
system.
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Figure S1. Economic trends of natural gas and natural gas liquids. Left: Trends in natural gas and hydrocarbon production
(EIA) and total ethane summed with rejected ethane modeled by OPIS, Point Logic, provided by IHS Markit. Right: The value
of ethane compared to natural gas represented by fractionation spread (frac spread) on the left axis. Ethane rejection in the U.S.
and major U.S. refining areas is plotted on the right axis. (Data by OPIS, Point Logic, provided by IHS Markit.)
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Figure S2. Global oil production. Data provided by IEA (https://www.iea.org/fuels-and-technologies/oil).
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oil and gas production for the top 5 natural gas producing countries that account for 50% of global natural gas production.!®!!
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Figure S4. Observed pipeline composition in Playa del Rey and ethane rejection trends. Left: The ratio of propane/methane
and ethane/methane measured in natural gas withdrawn from Playa del Rey in Southern California,'?> compared to U.S. ethane
rejection (see Figure S1 for more information on rejection; data provided by IHS Markit). Right: The ratio of U.S. propane
production and total ethane production (including rejection, ER). The production data is provided by EIA!>!4s and the rejection
data is provided by IHS Markit. The in-situ observed ratio is calculated from NOAA-ongoing observations, see Figure S9.
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2. NOAA & FRAPPE Observations

2.1. Processing and statistical methods

Ethane and propane mole fraction data from aircraft measurements, tall tower, and surface flasks
are publicly available at https://gml.noaa.gov/ccgg/arc/?id=155. Methane mole fraction data is
publicly available at https://gml.noaa.gov/ccgg/obspack/data.php?Id=obspack multi-
species_1_CCGGAircraftFlask v2.0 2021-02-09 ,
https://gml.noaa.gov/ccgg/obspack/data.php?Id=obspack multi-

species_ 1 CCGGSurfaceFlask v2.0 2021-02-09, and
https://gml.noaa.gov/ccgg/obspack/data.php?Id=obspack multi-

species_1 _CCGGTowerlInsitu v1.0 2018-02-08.

We first discuss NOAA ongoing observations. We use measurement quality flags labeled as
either preliminary or good sampling and analysis only. Some sites had an unequal number of
quality measurements between alkane species, so we match UTC time stamps that are shared
between each species to avoid sampling bias. We drop any corresponding paired measurements
of CH4, C2Hg and C3Hs that are labeled as NaN (all three pairs are dropped). Figure S5 shows the
spatial location of the NOAA ongoing observation sites used in this analysis, and Table S1 lists
the temporal and spatial coverage offered at each site. Most sites offered a few measurements
each week for the years indicated.
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Figure S5. Major Oil/Natural Gas Shale Plays in the U.S. & NOAA ongoing measurement locations. Approximate
geographical locations of NOAA ongoing measurement locations are shown in the blue stars on the map. Not
pictured is East Trout Lake (ETL) site, located in Saskatchewan, Canada (54.3541N, 104.9868W). Well and basin
layers provided by https://atlas.eia.gov/apps/all-energy-infrastructure-and-resources/explore .
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Table S1. Sites for NOAA Ongoing Observations in the U.S.

Site Site Years Measurement Processing
Location Abbreviation Method lab
Homer, IL HIL 2015 - Aircraft/Tower CCGQG,
2018 HATS
Lamont, SGP 2006 - Aircraft/Tower CCGG
OK 2017
Dahlen, ND DND 2014 - Aircraft/Tower CCGQG,
2016 HATS
East Trout ETL 2014 - Aircraft/Tower CCGQG,
Lake, 2018 HATS
Canada
Wendover, UTA 20006 - Tower CCGQG,
UT 2016 ARL
Boulder, BAO 2014 - Tower CCGQG,
CcO 2016 HATS
Moody, TX WKT 2015 - Tower CCGQG,
2018 HATS
Sinton, TX TGC 2015 - Aircraft/Tower CCGQG,
2018 HATS
Niwot NWR 2005- Tower CCGQG,
Ridge, CO 2014 ARL

For FRAPPE, we also use 1000 meters as a marker for the boundary layer, and analyze
measurements taken above it. We also drop any corresponding paired measurements of CHa,

C2Hs and CsHs that are labeled as NaN (all three pairs are dropped). Figure S6 shows the spatial

location of the FRAPPE observations (after filtering) in Colorado.
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e FRAPPE
u Fort Collins, CO
® Denver, CO

Figure S6. FRAPPE observations. The outline of Colorado state is shown in blue. We show data already pre-processed and
filtered for fresh emissions, as discussed in this section.

To better quantify geophysical variability and generate a confidence interval in the
correlation in measured mole fractions between C2Hg and C3Hg, we implement a pairs bootstrap
to generate replicates of CoHg and C3Hg observations for NOAA and FRAPPE observations. We
draw random samples of pairs of C2Hg and C3Hs, where instead of drawing two random samples
of each array, we draw the same indices from both arrays so we end up with paired samples,
since C2Hg and C3Hg were measured together and we want to compute the correlation. We draw
samples the size of the dataset, then compute the slope of the correlation. We repeat this 10,000
times. As shown for different scenarios below, we perform this bootstrap for individual sites
separately, as well as all sites combined. The confidence interval reported for correlations
between CoHs, C3Hs, and CH4 anomalies is the 95% CI of the 10,000 samples. The Cls
calculated from the bootstrapped samples are much broader than those calculated assuming the
noise in the measurements is dominated by analytical errors. This suggests that geophysical noise
induced by differences in transport and chemistry dominates the statistics.

2.2. Chemical aging approach to determining methane background

We take a chemical aging approach to defining the threshold between samples associated
with fresh emissions (unaged) and photochemically aged emissions. As in Parrish et al 2018,!> we
observe both fresh and aged regimes (Figure S7 below). We chose the 50 percentile of C3Hg as the
demarcation between these regimes (about 103 ppt) and show in Figure S10 that our analysis of the
ethane and propane ratio to methane is not terribly sensitive to the choice. This threshold will clearly
depend on the fraction of samples obtained in the two regimes.
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Figure S7. Identifying fresh emission chemical regime in NOAA and FRAPPE campaigns. Left: Varying C;Hg percentiles at
the NOAA SGP site. The inflection point between aged and fresh emission regime is visually contained within varying the C3Hg
percentile cutoff by + 10%. We chose the 50% percentile of C3Hs as the demarcation between these regimes (about 10° ppt).
Right: C3Hg vs C;Hg using FRAPPE data (already pre-processed, as described in the methods in the main text). FRAPPE

observations are quite consistent with NOAA, hence we use the same C3Hg demarcation between the aged and fresh chemical
regime.

After filtering for fresh emissions using C;H; percentile method, two NOAA observation sites
(NWR and UTA) only showed aged emissions (Figure S8). Consequently, these sites were not
used in the subsequent analysis.

1077

CH, (PPY)

o NWR

UTA

500 1000 1500 2000
CH, (pPY)

Figure S8. NOAA C:Hs vs C:Hg after filtering for fresh emissions. We used C3Hs 50" percentile as a marker for fresh
emissions (please see details in text above). Sites NWR and UTA only had C3Hg mole fractions below this demarcation and were
assumed to be affected only by aged emissions, and as such, were excluded from further analysis.

After filtering for fresh emissions using C;Hg percentile method, the cross plot of C;Hg vs C,Hg is
similar for all NOAA sites, NOAA SGP only, and FRAPPE observations (Figure S9).
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Figure S9. C;Hs vs C:Hp after filtering for fresh oil and gas emissions. Left: The filtering method is described in Section 3.1.
We show observations for all NOAA sites (2005-2018, see Table S1), NOAA for SGP site only (2006-2018 Oklahoma tower and
aircraft observations), and FRAPPE campaign (2014 aircraft observations around Colorado). Top: FRAPPE linear least squares
slope 95% Cl is [0.76, 0.87] (ppb/ppb, R? = 0.97) compared to [0.63, 0.70] (ppb/ppb, R? = 0.98) for all NOAA sites. Variability
in the slope for both FRAPPE and NOAA is given by a pairs bootstrap analysis, described in Section 2.1. Right: Slope before
2012 (2005-2011): [0.62, 0.67] (95% CI), R? = 0.98. Slope after 2012 (2012-2018): [0.63,0.71] (95% CI), R* = 0.98. We use data
from SGP, TGC, ETL, HIL, DND, BAO, and WKT sites (see Table S1) before filtering for air influenced by fresh oil/gas
emissions, which is shown here. We use both tower and aircraft data. We use pairs bootstrapping to arrive at confidence intervals,

described in detail in Section 2.1.

After identifying the fresh emissions, we defined a background for CH, observations and constructed
CH, anomalies by doing the following:

- Find corresponding co-CH, measurements in the aged air regime as identified by C;Hg
mole fraction (below 103 ppt C;Hg).

- Interpolate this CH, array to the full timeseries using time to obtain a CH4 background.

- Subtract this interpolated background from the full CH, array to obtain a CH,
anomaly. Note that because the CH, lifetime is much longer than either C,Hs or C;Hg,

the differences are much smaller.

Since we only focus on the linear part of the curve, our analysis is not terribly sensitive to how the
CH, anomaly is determined (it simply produces varying intercepts, see our quantitative analysis on
the impact on the slope in Figure S10). Again, to get C;Hg/ C,Hs, we only consider the fresh emission
regime (beyond 103 ppt C;Hg). Figure S10 shows our calculated CH4 background and CH, anomalies

for the NOAA SGP site (near Lamont, OK).
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Figure S10. Left: Background estimate for CHs at NOAA SGP site. Left: Using 50% +10% percentile cutoff of C3Hs has a
minimal effect on the background CH, estimation. Right: C3Hg vs CHs Anomaly at NOAA SGP site. A CH4 anomaly is

calculated by linearly interpolating the estimated CH4 background to the raw CH4 measurement timescale. The interpolated

background is then subtracted from the raw CHs measurements. Using 50% +10% percentile cutoff of C3Hs has a minimal effect
on CH4 anomaly cross plots. Using a pairs bootstrap approach (see Section S2.1), we generate thousands of slope replicates and

calculate the following 95% ClIs for the slope using the following C;Hs percentile cutoffs: [0.0458, 0.0526] (30™ percentile);

[0.0460, 0.0534] (40" percentile); [0.0481, 0.0563] (50" percentile).

Below in Figure S11, we show the result of our CH4 background calculations for each NOAA

site.
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Figure S11. Methane vs time for NOAA sites. The estimated background is shown in red. Raw CH, data is shown in blue. The

background was calculated using 50% CsHs percentile cutoff method.

2.3. Methane anomaly plots for NOAA and FRAPPE campaigns

Below, we show the results of our CH4 anomaly calculations for NOAA and FRAPPE

observations using the methods described in Section 2.2 (above). First, we show correlations for
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individual NOAA sites (Figures S12, S13), followed by a comparison between NOAA SGP site
(Oklahoma site) and FRAPPE observations (Figure S14).
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Figure S12. C:Hs vs CHs anomaly for NOAA sites. The data for each site were filtered using the chemical aging regime to
filter for fresh emissions and to construct CH4 anomalies (Section 2.2). See Table S1 for a description of site location/observation
type. We also ran a bootstrap for each individual site (bootstrapping methods, main text). The 95% CI slopes (ppb/ppb) are as

S13



follows: BAO: [0.0833, 0.1449], R? = 0.91; DND: [0.0289, 0.1205], R? = 0.63; ETL: [0.0030, 0.0176], R? = 0.46; HIL: [0.0116,
0.0313], R2= 0.56; TGC: [0.0400, 0.0730], R? = 0.74; WKT: [0.0324, 0.0510], R? = 0.75; SGP: [0.0645, 0.0749], R? = 0.86.
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Figure S13. C3Hs vs CHs anomaly for NOAA sites. The data for each site were filtered using the chemical aging regime to
filter for fresh emissions and to construct CH4 anomalies (Section 2.2). See Table S1 for a description of site location/observation
type. We also ran a bootstrap for each individual site (bootstrapping methods, main text). The 95% CI slopes (ppb/ppb) are as
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follows: BAO: [0.0587, 0.0922], R?=0.91; DND: [0.0221, 0.1003], R = 0.61; ETL: [0.0013, 0.0136], R?> = 0.41; HIL: [0.0078,
0.0216], R? = 0.54; TGC: [0.0228, 0.0506], R? = 0.68; WKT: [0.0195, 0.0321], R = 0.71; SGP: [0.0426, 0.0499], R? = 0.83.
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Figure S14. C:Hs vs CHs anomaly for NOAA SGP site and FRAPPE study. We use the chemical aging approach defined in Section
3.1 to identify CsHs and CH4 observations within a fresh oil and gas emissions chemical regime. We construct CH4 background-corrected
anomalies as described in SI Section S2. Results with C2Hs are similar and shown in Figure S9. NOAA observations for SGP site (Oklahoma,
Table S1) are shown here. We show correlations between 2006-2011, labeled as “NOAA SGP < 2012” (HIPPO takes place between 2009-2011),

2013-2015 (FRAPPE takes place in 2014), and 2016-2018 (ATom time period). Left: The slope of the correlation between C3Hs and CHy
anomaly for NOAA observations before 2012 is [0.031, 0.040] ppb/ppb, R* = 0.85; between 2013-2015 is [0.045, 0.084], R*= 0.82; and between
2016-2018 is [0.039, 0.059], R? = 0.86. FRAPPE is [0.063, 0.085] ppb/ppb, R? = 0.83. The slope of the correlation for all years of NOAA is
[0.043, 0.050] ppb/ppb, R? = 0.83. CsHs vs CHa. Right: C2:Hs vs CHs The FRAPPE slope (95% CI, ppb/ppb) is [0.0763,0.1047], R =
0.85. C,Hs vs CHs NOAA slope for all years is [0.0647, 0.0749], R? = 0.86. The C2Hg vs CHa slope before 2012 is [0.047,
0.060], R?>= 0.85; from 2013-2015 is [0.066, 0.143], R? = 0.85; and from 2016-2018 is [0.058, 0.084], R?> = 0.88.

2.4. Maps of FRAPPE and NOAA SGP observations compared to oil and gas sites

Below, we show the location of the NOAA samples taken at the SGP site in Oklahoma,
which include a combination of aircraft and tower measurements (Figure S15). We add the
approximate location on top of a USGS map of oil and gas sites in Oklahoma, using coordinates
for Lamont and Billings for reference (Figure S16), where we see that the SGP measurements are
taken around a mix of oil and gas sites. We include a figure of Oklahoma oil and gas production
by county (Figure S17), where we see widespread surrounding oil and gas production.
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Figure S16. Oklahoma oil and gas wells. Plot adapted from Oklahoma Geological Survey'®:

http://www.ogs.ou.edu/fossilfuels/ MAPS/GM-36.pdf.
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Below, we include a plot by Water Education Colorado showing the value of oil and gas
production value by county (Figure S18). If we compare it to Figure S6, it is evident that much
of the FRAPPE observations were taken around nearby oil-producing wells that produce
significant revenue. This is consistent with the large C2 and C3 to C1 emission ratios observed
during the FRAPPE campaign (Figure 13, main text).
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Figure S18. Oil and gas production value by county in Colorado. The plot was obtained from Water Education Colorado
(founded by Colorado State Legislature).'

2.5. Comparison to Lan et al. 2019 study

Lan et al. 2019 investigated C;Hg/CH4 and C,H¢/CH4 ratios using NOAA-ongoing
observations. Consistent with their study, we find increasing C;Hg/CH4 and C,H¢/CH4 ratios over
time with relatively similar slopes. However, we find no statistically significant temporal trend in
C;Hs/C,Hg. As shown in Figure S9 and in the additional cross plot of C;Hs and C,H colored by time
(Figure S19, left), the correlation of these gases in the ‘fresh emissions’ regime is identical within
error. Even when excluding aircraft data for SGP site, the ratio remains nearly the same (Figure S19,
right).
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Figure S19. C;Hs and C:Hs correlation at NOAA SGP site— yearly and tower observations. Left: C;Hs vs C2Hs colored by
all years for the NOAA SGP site. Slope: [0.63,0.70] (95% CI), R>=0.98. Right: Slope of C3Hs vs C.Hs for ground- and tower-
based measurements NOAA SGP site. (The highest tower sampling is 374m sampling at SGP.) The slope is [0.66, 0.70], and
R?=0.99, comparable to [0.63, 0.70] 95% CI slope of the correlation that includes both aircraft and tower observations (this
Figure, left side). We bootstrapped the samples to obtain a 95% CI (see methods, main text).

Our C;Hg anomalies are calculated in a different fashion than in Lan et al. Given the
curvature of the correlation (Figure 1, main text) and its seasonal dependence, we determine the slope
of the C;Hg and CH4 anomalies only within the fresh emission regime (C;Hg > 10° ppt, along with
co-measurements of CHy, see Section 2.2). Since we only focus on the linear part of the curve, our
analysis is not terribly sensitive to how the CH4 anomaly is determined (it simply produces varying
intercepts). To estimate C;Hg/C,Hg, we also only consider the fresh emission regime (beyond 103 ppt
C;Hg).

We replicate Figure 3a,b from Lan et al. 2019 using our methods in Figure S20. Even with
very different methodology, our results for the central value of the emissions ratio between C;Hg and
C,H and CH4 anomalies are similar, albeit Lan et al. claims a much smaller uncertainty in these
ratios (51.2 £ 0.6ppt/ppb and 80.5 £ 2.5ppt/ppb, respectively) such that the interannual variation and
the trend over the record far exceed the stated uncertainty. Our 95% CI of the slope for C;Hg/CHy is
[42.57,49.87] and for C,H¢/CHs is [64.66, 74.89] (both in ppt/ppb) where most of the CI spread
results from the temporal trend (see Figure S20).
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Figure S20. NOAA C;Hs and C:Hs vs CHs anomaly colored by year. Data is for SGP site only. CsHs/ACHa4 slope: [0.43,0.50]
ppb/ppb, R?= 0.83. C:Hs/ACHS slope: [0.65,0.75] ppb/ppb, R*= 0.86. We use data within the fresh emission regime (see Section
2.2). Our methods for determining CH4 anomalies are described in detail in section 2.3, and our methods for determining the 95%
ClI via bootstrapping is described in the methods section of the main text.

We reproduce Figure 3e from Lan et al. 2019 in Figure S21, below. In Figure S21, the variability in
ratios each year is constructed from the 95% confidence interval of the slopes from samples of a pairs
bootstrap, described in more detail in section 2.1 As in Lan et al., we find significant trends in
C;Hg/CH4 anomalies (3.12 + 0.63 ppt/ppb/year), and C,H¢/CH4 anomalies (3.89 + 0.84
ppt/ppb/year), which are comparable to their result. On the right side of Figure S21, we plot the
fractional change relative to the mean. Instead, we find that both ratios are fractionally increasing at
the same rate. The reported error in the slope is simply the standard error calculated from a linear
regression of the yearly slopes vs year (that includes the upper and lower CI points). We use the
linear trend of anomalies/year (Figure S21, left) to calculate mean anomaly ratios for SGP during
2016-2018 to be [0.060, 0.061] ppb/ppb (and C,Hs/CH, to be 0.086, 0.088]), where the interval is
determined using the standard error in the slope.
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Figure S21. Yearly correlation between NOAA hydrocarbon vs CHs anomaly. Left: Average hydrocarbon vs CHsanomaly
for each year for NOAA SGP site. CsHs/CH4 anomaly slope: 3.12 + 0.63 ppt/ppb/year (R?>=0.71), and C:H¢/CH4 anomaly trend is
3.89 + 0.84 ppt/ppb/year (R*=0.69). The variability in the trend (ppt/ppb/year) comes from the standard error of a linear
regression. The variability in the yearly slope (ppt/ppb) comes from the 95% confidence interval of a pairs bootstrap (we ran a

S19



pairs bootstrap for co-measurements of CsHs and ACHs and compute the slope of the correlation for each bootstrap sample and
repeated this for every year in the data; please see the methods section of the main text for more information about pairs
bootstrapping). Right: Same as left, but in units of percent change with respect to the mean hydrocarbon and methane anomalies.
The resulting trend for CsHs/CHa is 7.13 + 1.44 % with an R? of 0.71. The trend for C:He/CHa is 5.87 + 1.26 % with an R?=0.69.
Both trends are calculated in the same way as the left figure.

Our analysis of the NOAA data suggests that the C;Hg/C,Hg ratio is quite static in the U.S.
over this 12-year record. That the ratios C,H¢/CH4 (and C;Hg/CHa4) are increasing over time is
completely consistent with Lan et al. 2019, and as they point out, studies that assume these ratios are
invariant will overestimate the rate of oil/gas CH4 emissions. Here, we use C3Hg vs CHs and C,Hg vs
CH4 between 2012 and 2018 to estimate the CH, emissions from the US as this is the period when
most of the top-down and bottom-up estimates of CH4 have been performed. That the ratios are
getting “wetter” (higher hydrocarbon content in pre-processed gas) over time is consistent with an
increasing contribution from oil exploration. That the atmospheric C;Hg and C;Hg increase
fractionally the same, suggests that the ratio of the alkanes in the reservoirs producing these
emissions do not change significantly over the time of this record.

3. ATom & HIPPO aircraft observations

The HIPPO campaign was a sequence of five global measurement campaigns which sampled
from near the North Pole to the coastal waters of Antarctica, covering different seasons and
years: HIPPO 1: 8-30 January 2009, HIPPO 2: 31 October — 22 November 2009, HIPPO 3: 24
March — 16 April, HIPPO 4: 14 June — 11 July 2011. ATom was a sequence of four global
campaigns that took place from 29 July — 12 August 2016, 26 January — 10 February 2017, 28
September 2017- 11 October 2017, and 24 April 2018 — 6 May 2018. Flight paths of HIPPO and
ATom campaigns are illustrated in Figure S22.
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Figure S22. Truncated ATom and HIPPO flight paths. Flight paths used in this analysis are shown above (Top: ATom,
Bottom: HIPPO). We split the data into Pacific (left column) and Atlantic (right column) “curtains” shown above for
ATom, but HIPPO only offered Pacific curtains over remote ocean. The flight paths shown above do not encompass
the entire dataset due to filtering out measurements south of 20 latitude north, those obtained over land, and those
associated with very recent emissions. A summary of the filtering parameters we use in the main text are shown in
Table S2.

Table S2. Filters for Aircraft Measurements.

Parameter ATom Aircraft HIPPO Aircraft
Altitude > 1000 meters > 1000 meters
N20 >0.327 ppb >0.320 ppb
Tropopause Pressure > 100 hPa > 100 hPa

Summer season exclude exclude

HIPPO data were accessed from https://www.eol.ucar.edu/field projects/hippo on
12/18/18, using the “discrete continuous merge” file. ATom data were accessed from the WAS-
Discrete merged file from espo.nasa.gov/atom/archive/browse/atom/DC8/MER-WAS in August,
2021. Data taken over landmass for both aircraft campaigns were filtered away using global-
land-mask version 1.0.0,!” available from Python Package Index.

Here, we outline additional information on processing ATom and HIPPO aircraft
observations used to compare with the GEOS-Chem model. HIPPO measurements were filtered
for AWAS/UM instrument measurements to avoid measurement bias in C3Hg over CoHe, as the
NOAA instrument only measured one of those species. All measurement species of HIPPO and
ATom were filtered for consistent measurements of C3Hg and C2Hg within their respective
campaigns; i.e., when those constituents were either both null or non-zero. This requires filtering
data to remove plumes from highly local sources (including both energy infrastructure and
wildfires), and to exclude regions and times where the lifetime of the alkanes is very short and
thus regional / local sources dominate the variance. To reduce the influence of local sources, we
only analyze observations in the free troposphere over the ocean at altitudes above 1000 meters
(this filter excludes less than 20% of the dataset). To diagnose tropical air, we use tropopause
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pressure as a filter. We use the NASA Global Modeling and Assimilation Office GEOS FP-IT
(version 5.12.4) tropopause pressure product at 0.5 x 0.67 resolution,?® and linearly interpolate it
to the HIPPO aircraft path (for ATom, we use the product already included in the dataset). We
only analyze measurements with tropopause pressure above 100 hPa (about 5% of the data was
excluded under this constraint) for both ATom and HIPPO, which was sufficient to reduce the
influence of tropical intrusions.

Because C2Hg and C3Hg are relatively short-lived gases, their abundance in the
stratosphere is low and poorly connected to the underlying fluxes. To exclude stratospheric
observations, we use N2O which is inert and generally well-mixed in the troposphere, but is
destroyed in the stratosphere by photolysis and reaction with O'D.?! Thus, we exclude data
associated with low N2O mole fraction (Figure S23). We use nearest neighbor interpolation to
estimate missing N>O observations. In Figure S23, we compare N>O observations and GEOS-
Chem simulations of N>O and determine a common filter for both datasets. (Note that we
generate GEOS-Chem N>O simulations shown in Figure S23 by interpolating GEOS-Chem to
aircraft latitude, longitude, time and potential temperature, but for all subsequent analysis, we
filter GEOS-Chem by N>O before interpolating to the aircraft potential temperature). To account
for biomass burning, we use HCN as a tracer and did not use data with high HCN (Figure S24-
26) for ATom observations only, as HIPPO did not provide HCN observations.
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Figure S23. Stratospheric filter using N>O. Left: ATom. Right: HIPPO. In both figures, GEOS-Chem simulations
were interpolated to aircraft latitude, longitude, time, and potential temperature in order to compare N2O. However,
for all subsequent analysis, GEOS-Chem was filtered by N2O before interpolating simulations to aircraft potential
temperature. We use these figures to arbitrarily choose 0.327 and 0.320 N2O mole fractions as a filter cutoff for
ATom and HIPPO, respectively, as described in the main text.

To account for biomass burning, we use HCN as a tracer. We see elevated HCN over the
Atlantic ocean on several campaigns (Figure S21). In the cross plot of HCN and C,Hg (Figure
S23), we observe distinct plumes of elevated HCN and C,H, that suggest biomass burning, and
we de-weighted and excluded samples with high HCN (see description in Figure S23).
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Figure S24. ATom HCN Pacific transects. HCN (left column), Ethane (middle column), and tropopause height (right column).
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Figure S25. ATom HCN Atlantic transects. HCN (left column), Ethane (middle column), and tropopause height (right
column).
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Figure S26. ATom HCN vs C:Hs. This data includes all four ATom campaigns and ocean transects and has been filtered using
the specifications outlined in the methods section in the main text. The few points with very high HCN and C,Hs are associated
with biomass burning. We assigned a weak percentile score for each datapoint, and the values greater than or equal to equal to the
87th percentile are highlighted in black. Those points were replaced with NaN and then interpolated using the “backfill” method
for C3Hg and C2H6.

4. GEOS-Chem Simulations

We simulated HIPPO and ATom measurements using the GEOS-Chem “classic” global
3-D chemical transport model in v12.1.1 (doi:10.5281/zenodo.2249246). The simulations were
driven by MERRA-2 reanalysis meteorology product by the Global Modeling and Assimilation
Office (GMAO) at NASA Goddard Space Flight Center.”> MERRA-2 has a native resolution of
0.5 lat x 0.625 lon x 72 hybrid sigma/pressure levels, of which we degrade toa 4 x 5 x 72
resolution. We simulate time periods that encompass the HIPPO and ATom aircraft
measurements with a 1-year spin-up period. In all cases, we use a standard chemistry simulation
with no changes to the chemistry regimes. Simulations were collected over every hour over
every day of each campaign period (~2 months of results for each campaign time period).
Hydrocarbons were converted from units of carbon to mol,/moly i

All emissions are computed using the Harmonized Emissions Component (HEMCO)
Standalone? version 3.0.0 (DOI: 10.5281/zenodo.4429214)?* with GEOS-Chem development
version 13.0.0, cloned on 9/2020 at https://github.com/geoschem/geos-chem). This Standalone
utilizes the most up-to-date versions of emissions as of September, 2020. As such, even though
we utilize an older version of GEOS-Chem classic for the simulations, we implement up-to-date
emissions. Relevant inventories that cover the oil and natural gas sector that are used in the
default emissions configuration for GEOS-Chem v13.0.0 are Tzompa-Sosa et al. 2017 for C,Hs,
and Xiao et al. 2008 for C;Hg.**

In Figure S27, we show that GEOS-Chem “synoptic replicates” (GEOS-Chem sampled

several days before and after the aircraft in situ sampling time) show less consistency in latitude
compared to the coordinate, potential temperature.

S25



ATom Winter Pacific ATom Winter Pacific

1.2 . 1.24 s
|4 5 I“
1 " 17 ¢
R 2 ] e v . T
gosy 'y . S 081 vy ?
. a ] )
o eo ) Foy i e & .
;:':0.6 . ::' 0 <061 R s 0
© ° & $ %, T, 1 oo’ * " . o
© o043, 3’.&:" 8% o oo 0w 2 9043 445 .;:‘ ﬁ;.'.:. )
SRt L F o Ry T 1t :-'?u:%.'.\or :
0.2 Vo 2 1 B8 Bkeee st B 8 0
L / © -4 02'_ o9 o8 ’.g 5’%4 .
% 18 -@’g’-ﬁ?y& » IE -4
0 * ol? 4 .-495' “ ¥
S & & & 0 & 8O T T
£ F s §s s s & 8
0 (K) Latitude (°N)

Figure S27. GEOS-Chem simulated C:H; vs potential temperature and latitude during 2017. These data are analyzed for
Pacific and Atlantic transects during January-Feburary 2017. Aircraft observations are shown in black. GEOS-Chem
simulations are colored by the sampling time, in days beyond the flight path. (We found the median time of in-situ
sampling of the aircraft, and then sampled the GEOS-Chem model for several days before and after the median to
generate what we call “synoptic replicates” here. Each of the synoptic replicates were sampled along the flight path
latitude, longitude, time and potential temperature using nearest neighbor interpolation.) In this figure we include +
5 days to demonstrate the variance, but we use up to & 2 days of the GEOS-Chem replicates in the Bayesian model.
All remaining simulations of ATom and HIPPO C:H¢ and C3Hs are included in the SI.

As discussed in Section 3.2 in the main text, we revise C;Hg emissions using GEOS-
Chem v13.0.0 default C,H, emissions scaled by the observed C;Hg/C,Hg ratio estimated from the
NOAA data. In Figure S28, we show the default C,Hs and C;H; emissions, as well as the revised
C;H; emissions.

0 1 2 3 4 .5 6 7
Default C,Hs Emissions (kg/m?/s) 1e-11
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Figure S28. GEOS-Chem v13.0.0 default and revised emissions. Top: Default C3Hg emissions. Upper middle: Default C;Hs
emissions. Bottom middle: Revised C3Hg emissions scaled by the observed NOAA C3;Hg/C,Hg ratio (0.67 mol/mol, Figure S9).
Bottom: Difference between revised and default C3H8 emissions used by GEOS-Chem v13.0.0.

In the GEOS-Chem simulations, both ethane and propane have the most variability and
lowest mole fraction, as expected, since their oxidative chemistry is much faster. During the
summer, tropical intrusions with very low mixing ratios are prominent (see Atom summer
Pacific transect, Figure S29.).
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Figure S29. GEOS-Chem simulated C:Hs vs potential temperature during ATom campaign. Each plot is specific to the
ocean transect. GEOS-Chem simulations are colored by the sampling time, in the number of days from the day of the flight. (We
found the median time of in-situ sampling of the aircraft, and then sampled the GEOS-Chem model for several days before and
after the median to generate “synoptic replicates”. Each of the synoptic replicates were sampled along the flight path latitude,
longitude, time of day and potential temperature using nearest neighbor interpolation.)

S28



ATom Summer Pacific ATom Summer Atlantic

0.74 : I 0351 . I
2 ° 4 N 4
06 . . 031 o
053, ewec, 2 _ 0251 ! 2
Boad L is e s
st o & 03 .o
T 033 s d . o T, 0.151
($) o N (4 [$) . .
0.2 4 ;n° vl:? o e .{. -2 0148 ¢ -2
% go,% Moo %° Y.
011 - ke 4250 2 0054 "' e 2
e g ’;‘S&k:: g+ ° i §)
01 TRadle . 0d g
S ) S ) S O O 9 O L 9L
® & & X R S U S
6 (K) 6 (K)
ATom Winter Pacific ATom Winter Atlantic
124 e .
I 4 1.24 . I 4
11 e° 113 .:
. I 2 M 2
o 0.81 ' b o = 0.84
g 3. . g
~ L) ~
= %°7 €. 0 ° z°0-61 °
o « 0 [ %% ©
[$) o! 3, o
043 B8 o pe . ueth 2 9044 -2
¢ el é.:"'.,', o.tgp.'
sV Re e » ® ®
0.24 so.g'&% %i . 0.24 ; ‘%‘i .
i1 B = e o~
0 01 T
S © & & o0 & & S
CORE . S S VA ¥
0 (K) 6 (K)
ATom Fall Pacific ATom Fall Atlantic

0 (K) 6 (K)
ATom Spring Atlantic
. I .
. 2
. . 0
oo by
i .‘-.-i-'- . \" -2
& a3deiaati., od
. "R’ v :% —4
S oY s, Ei
S S N S S
® ¥ & & &
0 (K) 0 (K)

Figure S30. GEOS-Chem simulated C3;Hs vs potential temperature during ATom campaign. Each plot is specific to the
ocean transect. GEOS-Chem simulations are colored by the sampling time, in the number of days from the day of the flight. (We
found the median time of in-situ sampling of the aircraft, and then sampled the GEOS-Chem model for several days before and
after the median to generate “synoptic replicates”. Each of the synoptic replicates were sampled along the flight path latitude,
longitude, time of day and potential temperature using nearest neighbor interpolation.)
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Figure S31. GEOS-Chem simulated C.Hs vs potential temperature during HIPPO aircraft campaign. Each plot is specific
to the ocean transect. GEOS-Chem simulations are colored by the sampling time, in the number of days from the day of the
flight. (We found the median time of in-situ sampling of the aircraft, and then sampled the GEOS-Chem model for several days
before and after the median to generate “synoptic replicates”. Each of the synoptic replicates were sampled along the flight path

latitude, longitude, time of day and potential temperature using nearest neighbor interpolation.)
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Figure S32. GEOS-Chem simulated C3;Hs vs potential temperature during HIPPO aircraft campaign. Each plot is specific
to the ocean transect. GEOS-Chem simulations are colored by the sampling time, in the number of days from the day of the
flight. (We found the median time of in-situ sampling of the aircraft, and then sampled the GEOS-Chem model for several days
before and after the median to generate “synoptic replicates”. Each of the synoptic replicates were sampled along the flight path
latitude, longitude, time of day and potential temperature using nearest neighbor interpolation.)

We compare the cross plot of C3Hg to CoHg from the aircraft measurements and GEOS-
Chem simulations to the NOAA measurements. As expected, both the aircraft and GEOS-Chem
simulations fall under the photochemically aged emissions part of the NOAA curve. While the
aircraft data overlays the NOAA measurements almost perfectly (especially in the winter when
the lifetimes of both gases are longest), GEOS-Chem underestimates C3Hg, particularly over the
Atlantic curtain (Figure S33). The same conclusion is drawn for HIPPO time periods (Figure S
34).
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Figure S33. Comparison of C3Hs vs C:Hsfor NOAA, ATom aircraft, and GEOS-Chem (GC) simulations. NOAA

photochemically-aged measurements (all sites, 2005-2018), as explained in the text, are shown on the heat map
(colored by density of data). Note the distinction between winter/fall and spring/summer seasons. HIPPO is included

in the SI, Section 3.
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Figure S34. C;Hs vs C:Hs for HIPPO aircraft and GEOS-Chem simulations. Please see section 3.2 in the main text for a

discussion.
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In the main text, we show, in Figure 4, the impact of the revised C3Hg emissions on

GEOS-Chem simulations during the ATom 4 campaign time period. Below, in Figure S35, we

show the impact of the revised C;Hg emissions for all four ATom campaigns. In Figure S36, we

show the impact of the revised C;Hg emissions during all 5 HIPPO campaigns.
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Figure S35. GEOS-Chem simulations using the default and revised C3Hs emissions during all four ATom campaigns.
Please see section 3.2 in the main text for more discussion.
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Figure S36. GEOS-Chem simulations using the default and revised C;Hs emissions during all 5 HIPPO campaigns. Please
see section 3.2 in the main text for more discussion.

5. Bayesian Inference

5.1. Background and Priors

We wish to use the ATom and HIPPO aircraft observations to quantify C3Hg and C2Hs
emissions. We use hierarchical Bayesian modeling to estimate what global scalar would
minimize the difference between the simulated C3Hg and C2Hs from the updated GEOS-Chem
v13.0.0 emissions and the observations made during the ATom and HIPPO aircraft campaigns.
Using Bayesian probability, we can quantify a degree of certainty about a hypothesis or
parameter value. Using probability rules, one can derive Bayes’s Theorem:

Py 0)P(6
P 1y — (yp(y))u

likelihood X prior

osterior = -
p evidence

The likelihood tells us how likely it is to acquire the observed data, y, given the parameter, 6.
The prior is a measure of plausibility of the hypothesis 8 before the experiment was conducted.
The evidence is a marginal likelihood that is computed from the likelihood and the prior. The
posterior contains the information we want about the parameters we are after. The ambient mole
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fraction of CsHg and C,Hg is more linearly related to its underlying emissions pattern during the
winter/fall/spring when there is decreased sunlight/oxidation. As such, we assume differences
between the GEOS-Chem simulations and the aircraft observations can largely be attributed to
the underlying emissions grid, such that,

a =gcs-a

(1)
where a is the aircraft CoHs or C3Hg, gcs stands for GEOS-Chem simulation of CoHs or C3Hs,
and « is a scalar that represents the most likely mismatch between the underlying CsHs and C2Hg
emissions as transported through GEOS-Chem v13.0.0 relative to ATom and HIPPO
observations. This assumption forms the heart of our hierarchical Bayesian model.

We can reasonably approximate C2Hg and C3Hg measured by the aircraft to be
Lognormally distributed with an approximate error. Lognormal distributions have longer tails,
which is appropriate given the outliers we see in the measurements. We can model the GEOS-
Chem simulated results as follows:

gesj  ~ LogNorm(g - aj, 0)
o ~ Prior
B ~ Prior

)

Where gcs; represents GEOS-Chem simulated C3Hs and C2Hs, a; represents the jth
datum of aircraft-observed CsHg or C2He. Here, B parameter (equivalent to 1/ ) estimates error
in the default GEOS-Chem emissions, and o is the approximate uncertainty in the GEOS-Chem
simulations. In this case, we expect 5 to be less than one since the aircraft observations are
usually greater than the GEOS-Chem simulations. We organized the Bayesian model this way
because we consider the aircraft observations to be unchanging, while treating the GEOS-Chem
simulations as the experimental dataset. To obtain the GEOS-Chem missing emissions, we can
invert the § parameter.

We sampled the GEOS-Chem model several days before and after the aircraft path to
estimate uncertainty in the simulations due to meteorology, as explained in Section 2.3 in the
main text. If we were to pool all the data together, each experiment would be governed by
identical parameters. However, each replicate is subject to differences mainly due to
meteorology and we conclude that the parameters in each replicate experiment should vary from
one another, such that we have i separate models to fit, each looking like equations 2, above.
Under this scenario, we organize our model into a hierarchical structure, pictured in Figure S37.
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Level 0

Level 1

Measured Data

Figure S37. Schematic of hierarchical Bayesian model. Level 0 contains the hyperparameter 3, the parameter we ultimately
wish to get estimates for. Level 1 corresponds to the day the GEOS-Chem model was sampled (there are 5 days because we
sampled 2 days before and after the mean flight path). There will be variability from day to day, and the location and scale
parameters for a given day are conditioned on the hyperparameters.

We can consider a hierarchical model in which there is a hyperparameter, which we call
B (corresponds to level 0, Figure S32), and the values of the scaling parameters of the replicates,
which we now call 8; (corresponds to level 1, Figure S37), may vary from this § according to
some probability distribution, g(f; ;|f). We now have parameters f; 1, 51 2, ... f1; and . The
posterior can be written using Bayes’ theorem, defining f; = (f11,b1.2, - )>

f(a ges|B, f1)g (B, B1)
f(a ges)

9B, B1la ges) =
(3)

Note though that the observed values of gcs do not directly depend on £, only on £5; and as such,
the observations are only indirectly dependent on . So, we can write:

_ f(a geslB)g (B, Ba)
g(ﬁ,ﬁlla,gCS) - f(a,gCS)
4
Next, we can rewrite the prior using the definition of conditional probability:
9B, ) = g(B11B)g(B)
(5)
Substituting this back into the previous expression for the posterior, we have:
_ f(a geslB)g(BilB)g(B)
g(ﬁ,ﬁlla,gCS) - f(a,gCS)
(6)
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In the numerator, we see a chain of dependencies. The gcs simulations depend on f3;.
Parameters f8; depend on hyperparameter 5. Hyperparameter S then has some hyperprior
distribution. As such, this hierarchical model captures both the sample day-to-day variability, as
well as the hyperparameter.

We must specify a hyperprior, and a conditional prior, g(f;|f). Here, we have no reason
to believe that we can distinguish any one f3; ; from another prior to the experiment. As such, we
can assume the conditional prior to behave in an exchangeable manner, where the label i is not
dependent on the permutations of the indices. Our expression for the posterior is:

fges | B (IT7, 9(Bui 1)) 9(B)
f (@ gcs)

9By, B 1ages) =
(7)

The full hierarchical model is given by one additional level above Level 0 in Figure 37
that corresponds to individual aircraft campaign/season and ocean transect. This additional level
contains the parameter a, the overall parameter that is a result of the sampling replicates and the
season/ocean transect. It is very difficult to sample the full hierarchical model with so many
levels, and for practical reasons, we were not able to. However, given that each season/ocean
transect is assumed to be independent, we can treat each season/ocean transect with a separate
hierarchical model (that is shown in Figure 37), and then sample the posterior samples of those
separate models to define a credible interval for overall a. Our statistical model is defined for
campaign/transect, i, and the observed mole fraction, j, as follows:

7;; = 0.05|At[;; + 0.01
Bi ~ Norm(0.7,0.2)
B1ij ~ Norm(B;, ;)
a; =1/B;
o;j = 0.14 - tropht;; + 0.8
gesij ~ LogNorm(p, ;5 - a5, 0y)

(8)

The likelihood is given by gcs;j, which represents the ijth mole fraction of GEOS-Chem
simulated CsHs and C2He, and a;; represents the ijth CsHs or C2He mole fraction observed by the
aircraft. The uncertainty in gcs;; is given by g;;, which increases linearly with tropopause height,
tropht;;, since we expect more variability in C3Hg or C2He mole fraction with high tropopause
height that is often related with tropical intrusions. The conditional parameter, f; ;;, depends on a
hyperprior distribution for the emissions scalar, §; (which is equivalent to 1/a;), and 7;;, which
describes variability in the emissions scalar due to transport errors in GEOS-Chem. As such, 7;;
depends on the difference between the original aircraft sampling time and the GEOS-Chem
sampling replicate time (At;;) and increases with deviation between them. Development of this
hierarchical model and our process for selecting priors are included in the SI.
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We assume each «; parameter from individual aircraft campaign season and ocean
transect to be independent of one another. As such, to estimate a credible interval for an overall
a, we draw a random sample of the posterior of hyperparameter ; for each campaign season
and ocean transect. We take the mean of these samples and repeat this 10,000 times. (Note that
we do not use the summer estimates for this calculation, for reasons described in Section 2.2,
main text.) Details on the software used are described below.

The 7;; parameter has the effect of weighting the GEOS-Chem simulation replicate that
falls on the plane path higher than the other replicates that do not. As such, GEOS-Chem
simulation replicate that falls on the exact aircraft data collection time has more influence on the
final result of [5; parameter (the emission scalar). We would not expect meteorology to cause
more than + 0.5 variation in parameter f; ;;, as this would imply a very large variation in Tg
after scaling emissions. As such, we vary 7;; from 0.05 (the plane path day), to 0.33 for the
furthest day from the plane path (£ 2 days), (Figure S38).

037
0.25
0.2
0.15
0.1

0.05

+ days

Figure S38. Prior for 7;; parameter for the GEOS-Chem simulations in the Bayesian hierarchical model. The x-axis
corresponds to the GEOS-Chem sample replicate, in units of days above or below the aircraft path (day 0).

We define o;; parameter as a function of tropopause height. As discussed earlier, tropical
air masses are characterized by very low mole fractions of C3Hg and CoHe because in the tropics
they have short lifetimes relative to transport. We assign higher g;; (lower weight) to GEOS-
Chem simulations that have higher tropopause height, which extends the width of the lognormal
distribution likelihood for those measurements. This de-weights the samples that have more
tropical influence. (In practice, the model is quite robust against changes in g, so this
implementation has a small impact — see results of the sampling the posterior in Section 4.7). We
somewhat arbitrarily define g;; = 0.14 - tropht;; + 0.8, where tropht;; is the tropopause height
in km associated for the jth aircraft observation. This equation results in g;; typically ranging
from 1- 1.5 and implementing this range as the variance in a lognormal distribution centered at
1x1073 or 1x10~* (typical of C2Hg or C3Hg measured mole fractions in remote atmospheres)
results in a broad distribution that is consistent with mole fractions that we would expect for
short-lived gases in remote atmospheres. The 1% and 99" percentiles of the resulting C3Hg
distribution are 3x107° and 3x1073 respectively, which is two orders of magnitude below and
one order of magnitude above an average C3Hg mole fraction we would expect in the remote
atmosphere. We find similar results for CoHs, except that it is centered at a value that is one
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magnitude larger. We use the same g;; when modeling both C3Hg and CoHe. An example of the
value of g;; for ATom 2 observations over the Atlantic is shown in Figure S39.
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Figure S39. Prior for the o;; parameter for ATom 2 observations in the Bayesian hierarchical model.

We expect the f; to be less than 1 since GEOS-Chem typically underestimates the
aircraft observations. The prior for f3; is weakly informative, centered at 0.7 with the 1%
percentile at 0.23 and 99 percentile at 1.17 (Figure S40).
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Figure S40. Prior distribution for 8; parameter in the Bayesian hierarchical model.

We performed prior predictive checks?® to visualize the data our Bayesian model would
generate given our priors. This check includes drawing parameter values from the prior
distributions, plugging those parameters into the likelihood to generate pseudo data, and saving
those data. These simulations gave us insight as to whether this was an appropriate model given
our prior knowledge. The results of are satisfactory, as the empirical cumulative distribution

functions are within what we expect given our prior knowledge. The results are shown in Figure
S41.
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Figure S41. Prior predictive checks during ATom 2, Atlantic curtain. Top: Empirical cumulative distribution function of
pseudo data of GEOS-Chem simulations given our priors. Bottom: Empirical cumulative distribution function of pseudo data of
the B, ;; parameter given our priors.

We run our statistical model using Stan software?’ (version 2.26) with CmdStanPy Python
interface (version 0.9.67)*. We parse Markov chain sampling using ArviZ (version 0.11.1).2° We
validate our hierarchical model using simulation-based calibration,*® and posterior predictive
checks?¢ (described more below). We use bebil03 package (version 0.1.0)%! to execute
simulation-based calibration, prepare data for Stan sampling, parse MCMC samples, plot
posteriors and plot posterior predictive checks. We also use igplot (version 0.1.6)*? to visualize
empirical cumulative distribution functions of our priors. Finally, other software we use in our
analysis includes Holoviews version 1.14.5,%* Bokeh version 2.3.3,3 Pandas version 1.3.1,%
SciPy version 1.6.2,3 and NumPy version 1.20.3.%

5.2. Simulation based calibration

Often, the posterior distribution is impossible to calculate analytically. Markov chain
Monte Carlo (MCMC) allows us to sample out of an arbitrary probability distribution, where the
probability of choosing a given value of a parameter is proportional to the posterior probability
or probability density. Here, we use Stan to sample the posterior. Stan is a free, open source,
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state-of-the-art probabilistic programming language that has interfaces for many other
programming languages. Stan translates the model into C++, which is then compiled into
machine code. It uses Hamiltonian Monte Carlo (HMC),?® which allows for more efficient
sampling of the posterior by taking large step sizes while taking into account the shape of the
target distribution and tracing trajectories along it. We use CmdStanPy to install Stan, version
0.9.67. We use the bebil03 package’! to execute simulation-based calibration.

Simulation-based calibration®® consists of the following general steps: 1) Draw a
parameter set § out of the prior; 2) Use  to draw a data set  out of the likelihood; 3) Perform
HMC sampling of the posterior using ¥ as if it were the actual measured data set, and draw L
HMC samples of the parameters; 4) Do steps 1-3 N times, on order of N = 1000. In step 3, we are
using a data set for which we know the underlying parameters that generated it. Because the data
were generated using 0 as the parameter set, § is now the ground truth parameter set. As such,
we can check to see if we uncover the ground truth in the posterior sampling by calculating the z-
score. We can also check whether the posterior is narrower than the prior (shrinkage), indicating
that the data are informing the model. We compute a z-score for each parameter, 8;, which
measures how close the mean sampled parameter value is to the ground truth, relative to the
posterior uncertainty in the parameter value:

_ <9i>post - éi

i
Ui,post

€))
Here, (0;)p0s: is the average value of 8; over all posterior samples, and 0; ¢ is the standard

deviation of 8; over all posterior samples. The z-score should be symmetric about zero to
indicate that there is no bias in estimating the ground truth, and should have a magnitude less
than 5.3 Our z-score calculations are satisfactory, shown in Figure S42.
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Figure S42. Z-score and shrinkage. Top: C;Hg during ATom 2 Atlantic curtain. Bottom: C3Hg during ATom 4 Atlantic curtain.
Satisfactory z-score is symmetric about zero with a magnitude less than 5, while shrinkage should be around 1.

5.3. Posterior samples — ATom observations

Below are our results for our HMC sampling of the posterior (Figure S43 and S44). The
posterior of hierarchical models inherently has regions of high curvature, which can cause
difficulties for HMC sampling. If HMC trajectories veer sharply due to this curvature, the Monte
Carlo step ends in a divergence. We decreased the step size of the sampler to sample the areas of
high curvature (increased the adapt_delta parameter to 0.99 in Stan). To further reduce problems
with high curvature, we implemented a non-centered parametrization of Sy ;;. We also set the
warmup iterations to 2000 and conducted 1000 samples. Using bebil03’s
stan.check all diagnostics() function, our sampling had effective sample size for all parameters
(based on the suggestion of 50 effective samples per split chain):*° 0 out of 4000 iterations ended
with a divergence or saturated the maximum tree depth and the energy-Bayes fraction of missing
information indicated no pathological behavior. We achieved these diagnostics for all runs of
ATom and HIPPO.
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Figure S43. HMC Posterior samples for B ;; and §; parameters using C:Hs ATom 4 aircraft and GEOS-Chem
simulations. Beta 1 parameter is a vector of length 5, corresponding to the synoptic replicates of GEOS-Chem. Beta_1[0] and
beta_1[1] correspond to 2 days before the aircraft, beta 1[2] is the plane path, and beta 1[3] and beta_1[4] correspond to 2 days
after the aircraft. The hyperparameter §; is represented by beta .
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Figure S44. HMC Posterior samples for B, ;; and B; parameters using C:Hs ATom 4 aircraft and GEOS-Chem

simulations. Beta_1 parameter is a vector of length 5, corresponding to the synoptic replicates of GEOS-Chem. Beta 1[0] and

beta_1[1] correspond to 2 days before the aircraft, beta 1[2] is the plane path, and beta_1[3] and beta_1[4] correspond to 2 days
after the aircraft. The hyperparameter, £3;, is represented by beta .

In Figure S45, we show a cross plot of our hyperparameter, §; and S, ;;, in inverse form,
for a single ATom campaign, which directly corresponds to the scaling of our adjusted default
emissions under the GEOS-Chem v13.0.0 simulations. This shows an example of the variability
due to GEOS-Chem meteorology compared to the hyperparameter that we use to scale the
emissions. In Figure S46, we show the results of the Bayesian model for the a; emissions scalar
estimate for all 4 ATom campaigns and ocean transects.
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Figure S45. Posterior samples of a4 ;; vs a; during ATom 4. Top: C>Hg observations. Bottom: C;Hs observations.
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Figure S46. a; hyperparameter estimate for each season during the ATom campaign. We do not include the summer values
to calculate an overall a estimate as discussed in the methods in the main text. Top: C;Hs, Bottom: C3Hs.
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5.4. Posterior predictive check — ATom observations

Posterior predictive checks involve drawing parameter values out of the posterior, using
those parameters in the likelihood to generate a pseudo dataset, and repeat. We can see whether
our Bayesian model can produce the observed data. Below, we show all posterior predictive
checks for all ATom aircraft campaigns (Figures S47, S48). The majority of the measured data
fell into the 30th and 50th percentile of the simulated Bayesian model data. The exception to this
was the summer season, where the Bayesian model does not capture the measured aircraft data.
This is expected, since during the summer we do not observe a robust relationship between
potential temperature and C3Hg or CoHe.
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Figure S47. Posterior predictive check of C:Hs using ATom data. Posterior predictive checks are explained in the text above.
The pseudo data are shown in blue with 30, 50, 70, 99" percentiles. Please see Figure S46 for the estimated values of a; that were

used to scale the GCS data in each season/transect.
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Figure S48. Posterior predictive check of C;Hs using ATom data. (Posterior predictive checks are explained in the text
above.) The pseudo data are shown in blue with 30, 50, 70, 99 percentiles. Please see Figure S46 for the estimated values of a;
that were used to scale the GCS data in each season/transect.

Both C3Hg and C2Hs aircraft observations feature high mole fractions during ATom 2
winter measurements at low potential temperature. The largest differences between the aircraft
and GEOS-Chem simulations occur at high latitude and low altitude (Figure S49), subject to low
altitude and cold environments. GEOS-Chem does not able to capture this variability, as
discussed in Section 3.3 in the main text.
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Figure S49. Difference between aircraft and GEOS-Chem C:;Hs simulations. Simulations and aircraft observations during
ATom 2, Atlantic transect, are shown. Points are colored by altitude (left) and potential temperature (right).

5.5. Posterior samples — HIPPO observations

We show an example of our posterior sampling for our Bayesian model using HIPPO
C,H¢ and C;H; observations in Figures S50 and S51 below.
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Figure S50. HMC Posterior samples for 8, ;; and B; parameters using C:Hs HIPPO 5 aircraft and GEOS-Chem
simulations. Beta 1 parameter is a vector of length 5, corresponding to the synoptic replicates of GEOS-Chem. Beta 1[0] and
beta_1[1] correspond to 2 days before the aircraft, beta 1[2] is the plane path, and beta 1[3] and beta 1[4] correspond to 2 days
after the aircraft. The hyperparameter, £3;, is represented by beta .
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Figure S51. HMC Posterior samples for 8, ;; and B; parameters using C:Hs HIPPO 5 aircraft and GEOS-Chem
simulations. Beta_1 parameter is a vector of length 5, corresponding to the synoptic replicates of GEOS-Chem. Beta 1[0] and
beta_1[1] correspond to 2 days before the aircraft, beta 1[2] is the plane path, and beta_1[3] and beta_1[4] correspond to 2 days
after the aircraft. The hyperparameter, £3;, is represented by beta .

In Figure S52, we show a cross plot of our hyperparameter, f; ;; and f;, in inverse form,
for a single HIPPO campaign, which directly corresponds to the scaling of the GEOS-Chem
v13.0.0 emissions. This shows an example of the variability due to GEOS-Chem meteorology
compared to the hyperparameter that we use to scale the emissions. In Figure S53, we show the
results of the Bayesian model for the @; emissions scalar estimate for all 5 HIPPO campaigns.
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Figure S52. Posterior samples of a4 ;; vs ¢; during HIPPO 5. Top: C;Hg observations. Bottom: CsHs observations.
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Figure S53. a; hyperparameter estimate for each season during the HIPPO campaign. We do not include the summer
values to calculate an overall a estimate as discussed in the methods in the main text. Top: C,Hg, Bottom: C3Hs. There are many
fewer observations during HIPPO than ATom resulting in a much larger spread and bigger uncertainty in defining «;.

5.6. Posterior predictive check — HIPPO observations

Posterior predictive checks involve drawing parameter values out of the posterior, using
those parameters in the likelihood to generate a pseudo dataset, and repeat. We can see whether
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our Bayesian model can produce the observed data. Below, we show all posterior predictive
checks for all HIPPO aircraft campaigns (Figures S54, S55).
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Figure S54. Posterior predictive check of C:Hs using HIPPO data. (Posterior predictive check method is described in the text

above.) The pseudo data are shown in blue with 30, 50, 70, 99th percentiles. Please see Figure S53 for the estimated values of a;
that were used to scale the GCS data in each season/transect.
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Figure S55. Posterior predictive check of C3Hs using HIPPO data. (Posterior predictive check method is described in the text
above.) The pseudo data are shown in blue with 30, 50, 70, 99th percentiles. Please see Figure S53 for the estimated values of

«a; that were used to scale the GCS data in each season/transect.

During HIPPO 1 (winter 2009), observations are biased towards high latitudes and are
subject to arctic conditions. Furthermore, the revised emissions may be missing a high latitude
source. This, combined with a relatively lower number of HIPPO aircraft observations at lower
latitudes, results in a substantial bias on the overall Bayesian emissions scalar estimate for C3Hg
during winter 2009 (Figure S53). To illustrate sampling biases at high latitudes during the winter
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2009 campaign, we obtain two Bayesian estimates of a; during each season: one estimate using
aircraft observations restricted above 300 K (potential temperature) and those below 300 K. We
see that observations restricted to values less than 300 K result in very high «; estimates that bias
the overall a scalar estimate (Figure S56-S57).
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Figure S56. Bayesian a; hyperparameter estimate and posterior predictive checks using HIPPO aircraft observations >
300 K.
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Figure S57. Bayesian a; hyperparameter estimate and posterior predictive checks using HIPPO aircraft observations <
300 K.

5.7. Sigma parameter sensitivity analysis

We use ATom aircraft/GEOS-Chem simulations of C3Hs to observe the effect of
implementing an unchanging, large o;; parameter. (As a reminder, the g;; parameter has the
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effect of de-weighting GEOS-Chem simulations with higher tropopause height, since samples
with high tropopause height tend to originate from the tropics, which is not useful for the
purposes of our study. Please see Section 5.1 for more background on the parameters and the
selected prior.) Here, we show that in practice, our model is quite robust against changes in o;;.

Using an unchanging, relatively large o;; parameter equal to 3.5 in the lognormal
likelihood yields «; hyperparameter estimates (Figure S58, S59) that are nearly identical to our
results shown previously in which g;; varies according to tropopause height (Figure S45, S46).
Furthermore, we obtain similar posterior predictive checks (Figure S60) as our previous results
(Figure S48).
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Figure S58. Posterior samples of a ;; vs a; using a scalar g;; parameter. We use 0;; = 3.5 instead of the usual distribution in
the lognormal likelihood during ATom 4 time period.
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Figure S59. Estimate of « hyperparameter after using a scalar o;; parameter. We use g;; = 3.5 in the lognormal likelihood
during ATom 4 time period.
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Figure S60. Posterior predictive check for CsHs using a scalar o;; parameter. We use g;; = 3.5 in the lognormal likelihood.

5.8. Estimating an overall emissions scalar

To estimate a credible interval for an overall a, we draw a random sample of the posterior
of hyperparameter a; for each campaign season and ocean transect. We take the mean of these
samples and repeat this 10,000 times. (Note that we do not use the summer estimates for this
calculation, for reasons described in the main text.) For ATom, the 95% confidence interval for a
of CoHg is [1.02, 1.13] and for a of C3Hs, [1.15, 1.27]. For HIPPO, the confidence interval for
of C2Hg is [1.06, 1.28] and for @ of C3Hs, [1.45, 1.98].

5.9 Estimating C,H; and C;Hg Emissions

GEOS-Chem v13.0.0 emissions were calculated using the Harmonized Emissions
Component (HEMCO) v3.0.0, as described in section 2.3 in the main text. To estimate emissions
over the Northern Hemisphere and the U.S., we calculate a simple integration by defining a
rectangle that describes the latitude and longitude boundaries that approximately encloses the
geographical region of interest. (Table S3 shows those boundary estimates.) We approximate
latitude and longitude to meters using the Haversine formula. We then integrate the region of the
emission grid computed by HEMCO of the anthropogenic variable using trapezoidal integration
along latitude and longitude. When estimating global emissions, we do not impose any
boundaries on latitude or longitude. After integration, we simply convert the resulting units of
kg/second to Tg/year.

Table S3. Boundary estimates for emissions grid.

Region Latitude Min Latitude Max Longitude Min Longitude Max
US 20 50 -130 -60
Northern 0 80 -165 180
Hemisphere

S59



The anthropogenic variable does not include biomass burning or biofuel emissions,
according to GEOS-Chem documentation. Finally, we scale the emissions estimate for each
boundary region with an overall hyperparameter, a, estimated during ATom from section 5.8.
We report fossil emissions using 95% CI of a to define the variability. Our estimates for global
fossil fuel emissions of CoHe and C3Hsg are [12.67, 13.98] (13.3 £+ 0.7, 95% CI) and [13.89,
15.44] (14.7 £ 0.8, 95% CI) Tg/year, respectively (during the median year of 2017). Northern
hemisphere emissions of C2Hg and C3Hg from fossil fuel production to be [11.18, 12.30] and
[12.23, 13.60] Tg/year, respectively. In the U.S., we estimate C2Hs and C3Hs fossil fuel
emissions at [1.29, 1.42] and [1.41, 1.56] Tg/year. Note that the global C:Hs emissions estimated
in 2016-2018 are about 15% larger than in 2009-2011 ([10.55, 12.57] Tg/yr, Figure S61). Our
CsHg emissions are about 65% larger than in 2009-2011 ([7.31, 12.2] Tg/yr when not including
the biased winter 2009 estimate that is impacted by arctic conditions and few observations. Our
results are comparable to other studies (Figure S62).
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Figure S61. Global ethane and propane emissions during 2009-2018. “Unscaled” represent integrated default emissions from
GEOS-Chem v13.0.0. “Revised Cs” represent the revised C3Hg emissions after implementing the default v13.0.0 C;Hg proxy.
“Scaled+Revised C;” represents the revised C;Hg emissions after scaling with our mean Bayesian estimate (Section 5.8). “Scaled
C,” represent the revised emissions after scaling with our mean Bayesian estimate (Section 5.8). *: Note that our mean scaled Cs
estimate shown here are skewed, as the 2009 winter HIPPO observations are latitudinally biased. We show that C; emissions
increase by 65% from 2010 to 2017 when excluding the bias below in Figure S62.
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Figure S62. Global revised ethane and propane anthropogenic fossil emissions compared to other studies. Our emissions
estimate in 2016-2018 (during ATom) and 2009-2011 (during HIPPO) includes GEOS-Chem v13.0.0 emissions for winter, fall
and spring seasons scaled by a, that we determined with our Bayesian model during each season. As discussed in the text, fewer
samples were obtained during HIPPO, resulting in a sampling bias that we test by restricting observations and simulations to +
300K potential temperature (Figure S51-S52). This test affects the estimate about + 1 Tg during 2010-2011 but affects our
estimate by up to 12 Tg in 2009. *: This 2009 estimate is highly biased, as the latitudinal coverage of aircraft observations is not
representative of the global spatial distribution of methane emissions from oil and gas processes and the confidence interval
stretches to nearly 40 Tg (please see Section 3.3 text and Figure S51-52). We compare our revised ethane and propane emissions
to the default emissions from GEOS-Chem v13.0.0 (relevant anthropogenic inventories include Tzompa-Sosa et al. 2017% for
C>Hg, and Xiao et al. 2008* for C;Hy). #: The studies included here’**! represent anthropogenic fossil emissions, except Dalsgren
et al. 2018 which also includes biofuel, agriculture, and waste. We obtained the CEDS CMIP6 estimate from Dalseren et al.
2018. Our emissions estimates do not include biomass burning or biofuels. Please see Section 5 in the SI for more information on
estimating these emissions.

6. Oil & Gas Emission Ratios
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6.1 Hydrocarbon wellhead composition

We gathered hydrocarbon wellhead compositions reported in the literature for the top five
natural gas-producing countries in the world (Table S4 and S5).

Table S4. Statistical summaries of hydrocarbon wellhead composition for the globe. Units are in mole % for the US,**4°
Russia,>*¢ Qatar,’” Iran,*® and Canada *-%2. Top: C;; Middle: C,; Bottom: C;.

count mean std min 25% 50% 75% max

region
CANADA 22.0 74.090909 10.962747 54.00 65.2500 77.000 83.000 89.00
IRAN 45.0 89.531333 4.071936 74.16 89.2700 90.870 91.860 93.53
QATAR 1.0 89.900000 - 89.90 89.9000 89.900 89.900 89.90
RUSSIA  18.0 88.278778 12.873191 65.00 75.6875 95.685 98.500 100.00

US 63.0 85.718413 09.687639 52.67 78.3550 88.170 93.835 98.44

count mean std min 25% 50% 75% max

region
CANADA 22.0 14.909091 4.849242 7.0000 10.250 15.00 18.00 24.00
IRAN 45.0 b5.624667 1506998 4.0300 5110 532 560 11.71
QATAR 1.0 6.000000 - 6.0000 6.000 6.00 6.00 6.00
RUSSIA 18.0 7.075722 7677314 0.0000 0.750 4.50 11.95 26.00

US 63.0 7029257 5513786 0.0912 2.525 5.30 11.84 24.60

count mean std min 25% 50% 75% max

region
CANADA 22.0 11.000000 7.244045 4.00 5.0000 6.500 15.75 24.00
IRAN 45.0 2.250222 1.081225 1.37 17500 1970 212 6.78
QATAR 1.0 2.200000 - 220 22000 2200 220 220
RUSSIA 18.0 6.242111 7.98688 0.00 0.5600 1.945 11.95 26.00
US 63.0 2792530 3.044868 0.00 0.1535 1.930 4.88 12.86
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Table S5. Statistical summaries of hydrocarbon wellhead composition in the U.S. Units are in mole %.4**° Top: C;
Middle: C;; Bottom: Cs.

count mean std min 25% 50% 75% max

region
Appalachian 22.0 88.089091 7121542 76.38 825250 88.180 94.1925 98.440
Bakken 1.0 52.670000 - 5267 526700 52.670 52.6700 52.670
Barnett 5.0 84.962000 7.248256 77.81 80.3000 81.200 91.8000 93.700
Eagleford 13.0 80.726923 7.325718 66.20 77.8000 80.270 82.9900 91.790
Haynesville  15.0 94.344000 2.323018 89.40 92.5950 95.000 96.2100 97.100
Niobrara 4.0 77.447500 6.680047 68.49 74.2725 79.350 825250 82.600

Permian 3.0 70.140000 3.86114 66.26 68.2190 70.178 72.0800 73.982

count mean std min 25% 50% 75% max

region
Appalachian 22.0 6.558182 4.71379 11000 2.6325 5.235 10.6600 16.10
Bakken 1.0 24.600000 - 24.6000 24.6000 24.600 24.6000 24.60
Barnett 5.0 7.544000 3.983802 2.6000 4.4000 8.100 10.8200 11.80
Eagleford 13.0 10.045385 4.711809 0.2500 9.1900 11.880 12.6200 16.30
Haynesville 15.0 1.685613 1.568007  0.0912 0.2160 0.419 2.8800 4.10
Niobrara 4.0 10.877500 2.185869 8.5000 9.7000 10.655 11.8325 13.70

Permian 3.0 12.786333 1.172344 11.4540 12.3495 13.245 13.4525 13.66

count mean std min 25% 50% 75% max

region
Appalachian 220 2.069295 188617 0.020 0.15175 19000 3.3750 6.070
Bakken 1.0 12.860000 - 12.860 12.86000 12.8600 12.8600 12.860
Barnett 5.0 2584000 2.465011 0.000 0.40000 2.3000 5.0200 5.200
Eagleford 13.0 3.813077 2.550161 0.030 2.06000 4.0500 5.1000 8.520
Haynesville 150 0.370527 0.417251 0.000 0.00850 0.0325 0.8355 0.927
Niobrara 4.0 5.777500 3.298488 2700 4.05000 5.0000 6.7275 10.410

Permian 3.0 8.795667 1.469655 7.352 8.04850 8.7450 9.5175 10.290

Using Equation 2 (main text), we combine literature estimates of dry natural gas
production and hydrocarbon composition measurements from a variety of basins (Table S4 and
Table S5) to arrive at a global and U.S. C3/C emission ratio. We refer to this value as a
“literature” emission ratio. For our global literature emission ratio, we use hydrocarbon and dry
natural gas production data from the top 5 producing natural gas basins around the world that
made up 50% of the total natural gas production in 2019. For our U.S. emission ratio, we include
the top 7 natural gas producing basins that account for 86% of total U.S. natural gas production.
The literature emission ratio of C/C; is calculated similarly. We arrive at a single literature
emission estimate for both the US and globe (Figure 13, main text). Due to the limited published
data on hydrocarbon composition, we compile data we found for a range of years: U.S. (2003-
2020), Russia (1995-2018), Qatar (2005), Iran (2006), Canada (2004-2020). We calculate
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confidence intervals for each basin by performing a pairs bootstrap with co-measurements of
hydrocarbon composition using the same bootstrap methods used with the NOAA and FRAPPE
data as described in the methods section of the main text.

Separately, we calculate an “implied” emission ratio by taking the ratio between our
revised C3Hg emissions with several literature estimates of CH4 emissions from oil and natural
gas processes. The results are shown in Figure S63. The implied emission ratio for our revised
C>Hg is calculated similarly. For the EPA U.S. CH4 emissions estimate,%® we sum the categories
“Natural Gas Systems”, “Petroleum Systems”, and “Abandoned Oil and Gas Wells” from Table
3-1 using the 2017 estimates (to match NOAA/ATom time period during 2016-2018).
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Figure S63. Literature and Observationally-Informed Emission ratios. Top: U.S. basins; Bottom: Global basins. The
weighted raw gas ratio represents the “literature ratio” described in the main text. OIER, ratios between our revised C,Hg and
C3Hg emissions and literature CH4 emission estimates, are shown for several literature CHy estimates, including Alvarez et al.
2018 (13 Tg/yr)** and EPA 2017 estimate (7.8 Tg/yr, 2021 report)®® for U.S. basins, and IEA 2021 (76.4 Tg/yr),% Scarpelli et al.
2020 (65.7 Tg/yr),% and Global Carbon Project 2020 bottom-up estimate®” (128 Tg/yr, 2008-2017 average) for global basins. The
variability in the literature ratio is attributed to the 95% CI of pairs bootstrap samples of hydrocarbon composition measurements
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(see main text for more detail). The variability in the OIER is attributed to the 95% CI of our revised C;Hg and C,Hg emission
estimates. We also compare C3Hg/CH4 and CoHe/CHj4 correlations from in-situ observations, including NOAA observations from
Northern Oklahoma (2017 average from Figure S21, units of kg/kg) and FRAPPE observations from Northern Colorado (2014
from Figure S9, units of kg/kg). The variability in the NOAA ratio is relatively low because it is calculated from a multi-year
average slope, and the error in the slope is low (see Figure S21, left). The variability in the FRAPPE ratio is relatively high
because we use the 95% CI derived directly from our bootstrap samples described in the main text.

6.2. Impact of reallocation of CH, emissions on the transportation sector footprint

There has been much debate about the greenhouse gas mitigation impact of switching
from coal to natural gas energy in electricity production. The impact depends on how much CH4
is lost during natural gas production, processing, and transport as these losses will offset some of
the benefits of the lower CO; emissions. A study by the Environmental Defense Fund suggested
that a CHy4 leak rate greater than 3% would negate the climate benefits of switching from coal to
gas in the near term (the current leak rate is estimated at 2.3%).5® As described here and in other
studies, although CH4 emissions associated with dry natural gas production likely remain
underestimated, flared and vented associated gas from petroleum exploration contributes
significantly to the total emissions. Since global oil production has continually increased over the
past 3 decades (Figure S2), and our findings suggest that CH4 losses are at least proportional to
production (but likely greater and biased towards oil-producing sites), a significant fraction of
the estimated CH4 emissions may be misallocated to dry CH4 production and should instead be
included with the oil production sector.

Correctly attributing CH4 emissions from oil production to the transportation sector,
rather than the power sector, increases the greenhouse gas footprint of petroleum-based
transportation, while decreasing the greenhouse gas emissions ascribed to natural gas-powered
power plants. As an example, if we assume that 20% of natural gas losses are associated with
petroleum exploration (associated natural gas makes up 20% of total natural gas marketed
production in the U.S.%), the CO» equivalent footprint of the global transportation sector would
increase by roughly 5%, using IEA’s estimate of 76 Tg/year CH4 emissions from oil and natural
gas and recent transportation CO; emission estimates.”®’! Equivalently, the U.S. transportation
sector CO> footprint would increase by 2%, using the EPA’s U.S. 2017 estimate (2021 report)®?
of 7.8 Tg/year CH4 emissions and the U.S. petroleum/transportation sector CO; (equivalent)
footprint as reported by the EPA (2017 estimate, 2021 report)®. Both of our estimates are lower
bounds that will only increase when accounting for vented and flared losses of associated natural
gas that is not accounted for in marketed associated gas.

Methods:

For a global estimate, we estimate the transportation footprint from Figure 4 from Liu et
al. 20207! and multiply it by 365 to get 7,300 Mmt (million metric tones) CO, equivalents/year.
We use 76 Tg/year of CH4 from (IEA)® as a global estimate from oil and natural gas and find
that 20% of that number results in 15.2 Tg, multiplied by 25 GWP, yields 6% of the
transportation sector. Using the same process for the U.S., the EPA estimates the transportation
sector at 1,740.2 Mmt CO,/year (Table 3-5, Petroleum fuel/Transportation sector for 2017).5> We
use the EPA’s 7.8 Tg/year® of CH4 for the oil and gas estimate and find that 20% of 7.8 Tg/year
multiplied by 25 GWP results in 2.2% of the U.S. transportation sector.
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