1 Supporting information

2	
3	Enhancing phytate availability in soils and phytate-P acquisition by plants: a review
4	
5	
6	Xue Liu, [†] Ran Han, [†] Yue Cao, [‡] Benjamin L. Turner, [†] Lena Q. Ma ^{I,*}
7	
8	
9 10	[†] Institute of Environment Remediation and Human Health, and College of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
11 12	¹ Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
13 14	[‡] School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
15	
16	
17	*Corresponding author: Lena Q. Ma, lqma@zju.edu.cn.
18	
19	
20	Number of pages: 12
21	Number of tables: 3
22	Number of references: 37

23 **Table S1** Table 1 continued. (A) P_o fractions (labile, microbial, chemisorbed, internal, occluded; mg kg⁻¹) in cultivated (+P) and uncultivated (-P)

24 two volcanic soils (Vilcun and Osorno) and two forest watershed soils (broadleaf and coniferous) determined by sequential extraction. (B)

25	EDTA-extractable	phytase-hydrolyzable	P (EDTA-P _{Phy})) in different soil aggregates	s and animal wastes.
----	------------------	----------------------	----------------------------	--------------------------------	----------------------

(A) Soil series	Soil description	Labile P (NaHCO	90 3)	Microbial Po (NaHCO3/CHCl3)	Chemisorbed P ₀ (NaOH)	Internal (Ultrason NaOH)	P ₀ O	cluded P₀ (HCl)	Pt	Acid P _o (%P _t)	Reference
Wilson Chile	cultivated (+P)	19		25	1436	703		217	_	—	
viicun, Chile	uncultivated (-P)	13		21	943	673		172	_	_	Hedley et
	cultivated (+P)	85		59	2161	588		41	_	_	al. ¹
Osorno, Chile	uncultivated (-P)	34		32	110	548		26	_	_	
Chiloé, Chile	broadleaf forest watershed	69.2±6.2	2	_	121±23.1	_		_	413±33	34.8±5.3 (54)	Thomas et
	coniferous forest watershed	46.3±4.4	1	_	89.7±7.4	_		_	357±25	56.5±8.0 (54)	al. ²
(B) Soil series	Soil description	on	hydro	EDTA-extractable olyzable P (EDTA-P	phytase P _{Phy} ; mg kg ⁻¹)	Aggre	gate size (n	nm) and % of concentratio	bulk soil P- n	fraction	Reference
				Bulk soil		>2.00	0.50-2.00	0.21-0.50	0.053-0.2	1 <0.053	
no-till (NT)	lower nutrient er	osion		96.1		101	109	104	98	73	
chisel-till	mineral fertiliz	ed		81.1		92	105	101	86	78	Green ³
organic (ORG)	moldboard plow s receiving animal m	ystem anures		72.6		101	113	108	86	84	
Animal wa	stos D.	Q	/. D	0/ D		Experime	ental condit	tions		Dofor	n 00
Ammai wa	stes I phy		/01 t	/01 0	Extraction reagents		Enzyme		Kelerence		
	169		9.4		Sequential I	I ₂ O, NaHCO	3, NaOH	é	a—d**	He and Ho	neycutt ⁴
	698					H_2O			а	Dac	5
	281		5.2	25	Sequential I	I ₂ O, NaHCO	3, NaOH	i	a–d	He et	al. ⁶
Cattle man	ure 140		2.6	8.7				ii			
	185	2	23.5	60	Sequential I	I ₂ O, NaHCO	3, NaOH		b, e	He et	al. ⁷
	3811	3	32.2			EDTA			а	Dao et	al. ⁸
	1286	1	8.8	75	Na	aOH-EDTA		iv	a–d	He et	al. ⁹

	472	6.7	95		v		
	417	9.7		H_2O		a, e	
	1311	19.7		100 mM NaOAc pH 5.0			
	708	10.9		100 mM NaOAc, 50 mM EDTA			
	1436	27.3		1 M HCl			He et al. ¹⁰
	1245	18.6		0.25 M NaOH, 50 mM EDTA			
	1629	25.8		0.5 M NaOH, 50 mM EDTA			
Mean	1047	16.7	53				
	705	33.6	38			a–d	He and Honeycutt ⁴
Suring manung	486	10.1	76	Sequential H.O. NaHCO NOOH	:::	a–d	He et al. ⁶
Swine manure	277	5.8	20	Sequential H_2O , NaHCO ₃ , NaOH	111		
	360	13.2	23			b, e	He et al. ¹¹
Mean	457	15.7	39				
	2198	16.3	84	NaOH-EDTA	iv	a–d	He et al. ⁹
	2171	17.5	83		v		
	218	4.5		H_2O		a, e	He et al. ¹⁰
Daviltary an anyon	573	7.5		100 mM NaOAc pH 5.0			
Poultry manure	2153	16.2		100 mM NaOAc, 50 mM EDTA			
	4209	29.0		1 M HCl			
	2970	22.1		0.25 M NaOH, 50 mM EDTA			
	3727	26.0		0.5 M NaOH, 50 mM EDTA			
Mean	2277	17.4	84				
	170	5.3		H ₂ O		a, e	He et al. ¹⁰
	8258	63.3		100 mM NaOAc pH 5.0			
Doultmy litton	10140	65.5		100 mM NaOAc, 50 mM EDTA			
routiry inter	9710	64.2		1 M HCl			
	11085	70.7		0.25 M NaOH, 50 mM EDTA			
	11091	70.7		0.5 M NaOH, 50 mM EDTA			
Mean	8409	56.6					

26 ** (a) Aspergillus ficuum phytase, (b) wheat phytase, (c) wheat germ acid phosphatase, (d) Bovine intestinal mucosa alkaline phosphatase and (e) Potato acid

27 phosphatase, (i) Fresh, (ii) after one year storage 22°C, (iii) after one year storage 4°C (iv) wet and (v) dry.¹²

Plant family/species		Location and soil P (mg kg ⁻¹)		-1)	Total carboxyla (μmol g ⁻¹ root d	ntes H lw) a	Root organio and %Total	c acid species carboxylates	Reference
	Location	\mathbf{P}_{t}	bicarbextr. P	P retention index*			citric	malic	
·	Bindoon	133	5	33.8	1.5–5		74–98		-
field pea (Pisum	Mingenew	119	9	58.1	12.5-15		98	_	
sativum)	Nyabing	70	6.5	7.2	25-50		97–99		
	Bindoon				15-18.8	(62.5-87.5	18.8-43.8	
white lupin (<i>Lupinus</i>	Mingenew				18.8–25		50	56.3	
uious)	Nyabing				37.5-50	(68.8–74.4	37.5	Nuruzzaman et
	Bindoon				2–5				al. ¹²
faba bean (Vicia faba)	Mingenew	_	—	—	2.75-9.75		-	_	
	Nyabing				6.25–14.5				
wheat (Triticum	Bindoon				0-2.25				
aestivum)	Mingenew				5-12.5		-	—	
aestivamj	Nyabing				7.5–10				
Plant family/spacios	Root organic	organic species Organic acid concentration		ion	P-mobilizing capacity				
T fant fanny/species	acid species			Soil initial	P Soi	Soil mobilized P (µmol g ⁻¹)			
Fabaceae		mmol g ⁻¹ r	oot µmol g⁻	⁻¹ soil	H ₂ O-extr. ^b	CAL ^e	Olsen	Soil solution $(mg L^{-1})$	
	-	0.24 fw	47.	7			>5.5		Dinkelaker et al. ¹³
Lupinus albus L.		8.8-22.1	fw 47.7±	7.2	61±7	581±76	484±68	12.5	Neumann et al. ¹⁴
Lupinus angustifolius	citric	60 dw		_					
Lupinus consentinii		85 dw	_				_		White and
pea (Pisum sativum)		90 dw							Kobson ¹⁵
pigeon pea (<i>Cajanus</i> <i>cajan</i> L. Millsp.)	piscidic			Fe-bound l	0				Dao ¹⁶

Table S2 Table 3A continued. Summary of known plant secreted organic acids to mobilize soil P.

29

Plant family/species	Root organic acid species	Or	Organic acid efflux		
		nmol g^{-1} fw h^{-1}		units shown	
	malic	200	0.4	3 nmol cm ⁻¹ root h ⁻¹	
Brassica napus	citric	70		0.14	Hoffland et al. "
rice	citric	337			Kirk et al. ¹⁸
T	citric	570, 1160, 2380			Johnson et al., ¹⁹ Neumann et
Lupinus albus	malic	510, 130			al., ¹⁴ Keerthisinghe et al. ²⁰
Alfalfa	citric	3.5			Lipton et al. ²¹
maize	malic citric	430 90			Jones and Darrah ²²
wheat	malic	4000		$2 \text{ nmol apex}^{-1} \text{ h}^{-1}$	Ryan et al. ²³
maize		55		0.25	Pellet et al. ²⁴
tobacco	citric	240		0.18	Delhaize et al. ²⁵
	malonic			2 nmol plant ⁻¹ h ⁻¹	
chickpea	tartaric			0.4	Ohwaki and Sugahara ²⁶
	citric			0.4	
	fumaric	1 10 1		0.4	
	malic	mmol g^{-1} fw s^{-1}			
	citric	0.05-0.34			
Harsh hakea (<i>Hakea prostrata</i> R.Br.)	cis-aconitic	0.01-0.04			Shane et al. ²⁷
	trans-aconitic	0-0.04			
	lactic	0-0.13			
Plant species		P-mobilizing capaci	P-mobilizing capacity (mg kg ⁻¹)		Reference
	Al-P	Fe-P	Ca-P	labile-P	
Buckwheat (Fagopyrum esculentum)			121-126		Teboh and Franzen ²⁸
spring wheat (Triticum aestivum)		• (• • • •	127-135		
ruzigrass (Urochloa ruziziensis)	0.00–0.05 0.05–0.10	363-484 385-465	anion excha NaH	ange resin (AER) [CO ₃ -extr.	Almeida and Rosolem ²⁹

- ^{*} Phosphorus retention index, was estimated as the ratio between sorbed P and solution P after equilibration of 2.5 g soil with 50 mL of 0.02 M KCl containing 10 mg 31 $L^{-1} P.^{13}$
- 32 ^b bicarb.-extr. = bicarbonate-extractable; extr. = extractable. Bicarbonate-extractable P is extracted with 0.5 M sodium bicarbonate at pH 8.5.¹³
- 33 ^e CAL–0.13 mmol calcium acetate lactate extractable P kg⁻¹ soil.³¹

	Phytase gene	C.	Spe acti	cific ivity	рН	Temp.	. K _m (μM)	Catalytic	ic Thermal		D. 6	
I ransgenic plant	source	Gene sequence	U mg ⁻¹	µKat mg⁻¹	optim.	optim. (°C)	K _m (μΝΙ)	K _{cat} (s ⁻¹)	stability	M _w (KDa)	Reference	
Potato (Solonum tuberosum)	Aspergillus ficuum (niger)		180	3	5.0	58	124			67.5–81.6	Ullah et al. ³⁰	
		initiation codon: 5'- GCGTCTAGATGCTGG CAGTCCCCGCCTC-3										
Soybean (<i>Glycine max</i>)	cine Aspergillus niger	Upstream oligonucleotide: 5'- GCGTCTAGACTGGCA GTCCCCGCCTCG-3'	55.2	5 55.2 0.92		3.0, 5.5), oH 5.0), oH 4.5),				69–71	Li et al. ³¹	
		downstream oligonucleotide: 5'- TGCTCTAGACTAAGC AAAACACTCCG-3			63°C an	d pH 5.0						
Tobacco (<i>Nicotiana</i> <i>tabacum</i> L. cv.) NC89	Agrobacterium tumefaciens LBA4404	The gene sequence <i>phy</i> AI was shown on the record as GenBank Accession: AY013315.			2.0, 5.5	50	730 (Na- phytate), 1300 (Ca- phytate)	1.2×10^{4} (Na- phytate), 5.1×10^{3} (Ca-phytate)	25.1% residual activity at 80°C for 15 min	76	Zhang et al. ³²	
Alfalfa (Medicago sativa)	Aspergillus ficuum		226	3.76	5.0	58	50		Inactivated completely at 68°C	73–100	Ullah et al. ³³	
Transgenic plant or yeast	Phytase gene source	Gene sequence	Specif	ïc activity	y pH	optim.	Temp. opt (°C)	tim. Thern	nal stability	M _w (kDa)	Reference	
Rice (Oryza	Yeast (Schwanniomy	full-length codon-modified phytase	4.6 U	^{Ja} g ⁻¹ fw ^b	p deter	H 4.5 mined at 37°C	70°C determined pH 5.5	lost 32 d at activity	% and 92% at 80°C and 90°C	70	Hamada et	
sativa)	ces occidentalis)	sativa) ces occidentalis) truncated codon-modif phytase		10.6	U g ⁻¹ fw	p deter	H 5.0 mined at 37°C	50–60°C determined pH 5.5	C lost 87 d at activity	% and 94% at 70°C and 80°C	70	al. ³⁴

34 **Table S3** Transgenic plant or yeast, phytase genes source and the expressed phytase activity and properties.

	Peniophora lycii		1080±110 U mg ⁻¹ protein	4.0-4.5	50–55	62% ^c	72	
	Agrocybe pediades	http://www.expasy.ch/cgi	400	5.0-6.0	50	47%	59	
Yeast (Aspergillus	<i>Ceriporia</i> sp. 1 <i>Ceriporia</i> sp. 2 <i>Trametes</i> <i>pubescens</i> <i>Aspergillus</i> <i>niger</i>	-bin/get-prodoc- entry?PDOC00538	700±80	5.5-6.0	55-60	38%	59	Lassen et
oryzae) A1560		grouped as 6-phytases	1040±310	5.0-6.0	40–45	22%	54	al. ³⁵
		(EC 3.1.3.26)	1210±30	5.0-5.5	50	15%	62	
			100	2.5-5.5	50	52%	_	
Saccharomyces cerevisiae	Aspergillus niger	_	$4.0~\mathrm{U}~\mathrm{mg}^{-1}$	2–2.5, 5–5.5	55–60	_	120	
Methylotrophic yeast (<i>Pichia</i> <i>pastoris</i>)	Aspergillus niger	_	$25-65 \text{ U mL}^{-1}$	2.5, 5.5	60	_	95	Han et al. ³⁶

Tra	Transgania plant	Phytase gene	Cono soguenzo	Transgania linas	Phytase expression (FTU g ⁻¹)		M (kDa)	Reference
	Transgenic plant	source	Gene sequence	Transgenic miles	Average	Highest	M _W (KDa)	Kelefence
			two oligos: 5'AGGATCCATGGACTTGAAATCTTTCC	Native phytase without KDEL ^d (n ^e =8)	7.6	15		
	Canola (<i>Brassica</i>	Aspergillus	CATTC3'; 5'ACGAGCTCTTAAGCAAAGCATTCAGC CCAATCA CCAC3'	Codon-modified phytase without KDEL (K0) (n=32)	8.8	21	70	0 Peng et al. ³⁷
	napus)	niger	the upper strand primer:	Native phytase with KDEL (n=26)	10.3	24		8
		5'AGGATCCATGGACTTGAAATCTTTCC CATTCTATGCTTTCTTGTGTTTCGGTCA ATATTTCGTTGCTGTTACTCATGGACTG GCAGTCCCCGCCTCGAG3'	Codon-modified phytase with KDEL (MPHY2) (n=103)	15.6	41			

^a One unit (U, µmol mg⁻¹) of phytase activity was defined as the amount of phytase required to hydrolyze sodium phytate to produce 1 µmol P per min at 37°C and

36 pH 5.5.^{34,36}

37 ^b fw = fresh weight.

38 ^c Residual activities were measured after preincubation of the enzymes for 60 min at 80°C in 0.1 M sodium acetate, pH 5.5 (Lassen et al., 2001).

- 39 ^d KDEL=Lys-Asp-Glu-Leu.
- 40 $^{\rm e}$ n = number of transgenic tested.
- 41 ^f KDEL=Lys-Asp-Glu-Leu.
- 42 g n = number of transgenic tested.

43 **References**

- (1) Hedley, M. J.; Stewart, J. W. B.; Chauhan, B. S. Changes in inorganic and organic soil
 phosphorus fractions induced by cultivation practices and by laboratory incubations. *Soil Sci. Soc. Am. J.* 1982, *46*, 970–976.
- (2) Thomas, S. M.; Johnson, A. H.; Frizano, J.; Vann, D. R.; Zarin, D. J.; Joshi, A.
 Phosphorus fractions in montane forest soils of the Cordillera de Piuchué, Chile:
 biogeochemical implications. *Plant Soil* 1999, *211*, 139–148.
- (3) Steven Green, V.; Dao, T. H.; Cavigelli, M. A.; Flanagan, D. C. Phosphorus fractions and
 dynamics among soil aggregate size classes of organic and conventional cropping
 systems. *Soil Sci.* 2006, *171*, 874–885.
- (4) He, Z.; Honeycutt, C. W. Enzymatic characterization of organic phosphorus in animal
 manure. *J. Environ. Qual.* 2001, *30*, 1685–1692.
- (5) Dao, T. H. Polyvalent cation effects on myo-inositol hexakis dihydrogenphosphate
 enzymatic dephosphorylation in dairy wastewater. *J. Environ. Qual.* 2003, *32*, 694–701.
- (6) He, Z.; Honeycutt, C. W.; Griffin, T. S. Enzymatic hydrolysis of organic phosphorus in
 extracts and resuspensions of swine manure and cattle manure. *Biol. Fertil. Soils* 2003,
 38, 78–83.
- (7) He, Z.; Toor, G. S.; Honeycutt, C. W.; Sims, J. T. An enzymatic hydrolysis approach for
 characterizing labile phosphorus forms in dairy manure under mild assay conditions.
 Bioresour. Technol. 2006, 97, 1660–1668.
- (8) Dao, T. H.; Lugo-Ospina, A.; Reeves, J.; Zhang, H. Wastewater chemistry and
 fractionation of bioactive phosphorus in dairy manure. *Commun. Soil Sci. Plant Anal.*2006, *37*, 907–924.
- (9) He, Z.; Cade-Menun, B. J.; Toor, G. S.; Fortuna, A. M.; Honeycutt, C. W.; Sims, J. T.
 Comparison of phosphorus forms in wet and dried animal manures by solution
 phosphorus-31 nuclear magnetic resonance spectroscopy and enzymatic hydrolysis. *J. Environ. Qual.* 2007, *36*, 1086.
- (10)He, Z. Q.; Waldrip, H. W.; Honeycutt, C. W.; Erich, M. S.; Senwo, Z. N. Enzymatic
 quantification of phytate in animal manure. *Commu. Soil Sci. Plant Ana.* 2009, *40*, 566–
 575.
- (11)He, Z.; Griffin, T. S.; Honeycutt, C. W. Evaluation of soil phosphorus transformations by
 sequential fractionation and phosphatase hydrolysis. *Soil Sci.* 2004, *169*, 515–527.
- (12)Nuruzzaman, M.; Lambers, H.; Bolland, M. D. A.; Veneklaas, E. J. Phosphorus benefits
 of different legume crops to subsequent wheat grown in different soils of Western
- 77 Australia. *Plant Soil* **2005**, *271*, 175–187.
- 78 (13)B., D.; C., H.; H., M. Distribution and function of proteoid roots and other root clusters.

- 79 Bot. Acta **1995**, 108, 183–200.
- (14)Neumann, G.; Massonneau, A.; Martinoia, E.; Rmheld, V. Physiological adaptations to
 phosphorus deficiency during proteoid root development in white lupin. *Planta* 1999,
 208, 373–382.

(15) White, P. F.; Robson, A. D. Rhizosphere acidification and Fe³⁺ reduction in lupins and
peas: Iron deficiency in lupins is not due to a poor ability to reduce Fe³⁺. *Plant Soil* 1989, *119*, 163–175.

- (16)Dao, T. Ligand effects on inositol phosphate solubility and bioavailability in animal
 manures. In B. L. Turner, A. E. Richardson, and E. J. Mullaney (Eds.), Inositol
 phosphates: Linking agriculture and the environment. CABI, Cambridge, MA, USA 2007,
- 89 169–185.

90 (17)Hoffland, E.; Findenegg, G. R.; Nelemans, J. A. Solubilization of rock phosphate by rape.
91 *Plant Soil* 1989, *113*, 161–165.

- (18)Kirk, G. J. D.; Santos, E. E.; Findenegg, G. R. Phosphate solubilization by organic anion
 excretion from rice (*Oryza sativa* L.) growing in aerobic soil. *Plant Soil* 1999, 211, 11–
 18.
- (19) Johnson, J. F. Root carbon dioxide fixation by phosphorus-deficient *Lupinus albus*. *Plant Physiol.* **1996**, *112*, 19–30.
- (20)Keerthisinghe, G.; Hocking, P. J.; Ryan, P. R.; Delhaize, E. Effect of phosphorus supply
 on the formation and function of proteoid roots of white lupin (*Lupinus albus* L.). *Plant Cell Environ.* 1998, 21, 467–478.
- (21)Lipton, D. S.; Blevins, B. D. G. Citrate, malate, and succinate concentration in exudates
 from P-sufficient and P-stressed Medicago sativa L. seedlings. *Plant Physiol.* 1987, *85*,
 315–317.
- (22) Jones, D. L.; Darrah, P. R. Influx and efflux of organic acids across the soil-root
 interface of *Zea mays* L. and its implications in rhizosphere C flow. *Plant Soil* 1995, *173*,
 103–109.
- (23) Ryan, P. R.; Delhaize, E.; Randall, P. J. Characterisation of Al-stimulated efflux of
 malate from the apices of Al-tolerant wheat roots. *Planta* 1995, *196*, 103–110.
- (24)Pellet, D. M.; Grunes, D. L.; Kochian, L. V. Organic acid exudation as an aluminumtolerance mechanism in maize (*Zea mays L.*). *Planta* 1995, *196*, 788–795.
- (25) Delhaize, E.; Hebb, D. M.; Ryan, P. R. Expression of a *Pseudomonas aeruginosa* citrate
 synthase gene in tobacco is not associated with either enhanced citrate accumulation or
 efflux. *Plant Physiol.* 2001, *125*, 2059–2067.
- 113 (26)Ohwaki, Y.; Sugahara, K. Active extrusion of protons and exudation of carboxylic acids
- in response to iron deficiency by roots of chickpea (*Cicer arietinum* L.). *Plant Soil* **1997**,

- *115 189*, 49–55.
- 116 (27) Shane, M. W.; Cramer, M. D.; Funayama–Noguchi, S.; Cawthray, G.; Millar, A. H.; Day,
- 117 D. A.; Lambers, H. Developmental physiology of cluster–root carboxylate synthesis and
- exudation in harsh hakea. Expression of phosphoenolpyruvate carboxylase and the

- (28) Teboh, J. M.; Franzen, D. W. Buckwheat (*Fagopyrum esculentum* Moench) potential to
 contribute solubilized soil phosphorus to subsequent crops. *Commun. Soil Sci. Plant Anal.* **2011**, *42*, 1544–1550.
- (29) Almeida, D. S.; Rosolem, C. A. Ruzigrass grown in rotation with soybean increases soil
 labile phosphorus. *Agron. J.* 2016, *108*, 2444–2452.
- (30)Ullah, A. H. J.; Sethumadhavan, K. PhyA gene product of *Aspergillus ficuum* and
 Peniophora lycii produces dissimilar phytases. *Biochem. Biophys. Res. Commun.* 2003,
 303, 463–468.
- (31)Li, M.; Osaki, M.; Honma, M.; Tadano, T. Purification and characterization of phytase
 induced in tomato roots under phosphorus-deficient conditions. *Soil Sci. Plant Nut.* 1997,
 43, 179–190.
- (32)Zhang, L. H.; An, L. J.; Gao, X. R.; Wang, Y. J. Properties of *A. ficuum* AS3.324 phytase
 expressed in tobacco. *Process Biochem.* 2005, *40*, 213–216.
- (33)Ullah, A. H. J.; Sethumadhavan, K.; Mullaney, E. J.; Ziegelhoffer, T.; Austin–Phillips, S.
 Cloned and expressed fungal *phyA* gene in alfalfa produces a stable phytase. *Biochem. Bioph. Res. Commu.* 2002, *290*, 1343–1348.
- 136 (34) Hamada, A.; Yamaguchi, K.; Ohnishi, N.; Harada, M.; Nikumaru, S.; Honda, H. High-
- level production of yeast (*Schwanniomyces occidentalis*) phytase in transgenic rice plants
 by a combination of signal sequence and codon modification of the phytase gene. *Plant*
- 139 *Biotechnol. J.* **2005,** *3*, 43–55.
- 140 (35)Lassen, S. F.; Breinholt, J.; Ostergaard, P. R.; Brugger, R.; Bischoff, A.; Wyss, M.;
- 141 Fuglsang, C. C. Expression, gene cloning, and characterization of five novel phytases
- 142 fromfour basidiomycete fungi: *Peniophora lycii*, *Agrocybe pediades*, a *Ceriporia* sp., and
- 143 *Trametes pubescens. Appl. Environ. Microb.* **2001,** *67*, 4701–4107.
- (36)Han, Y.; Xin, G. L. Role of glycosylation in the functional expression of an *Aspergillus niger* phytase (*phyA*) in *Pichia pastoris*. *Arch. Biochem. Biophys.* 1999, *364*, 83–90.

(37)Peng, R. H.; Yao, Q. H.; Xiong, A. S.; Cheng, Z. M.; Li, Y. Codon-modifications and an endoplasmic reticulum-targeting sequence additively enhance expression of an

148 Aspergillus phytase gene in transgenic canola. Plant Cell Rep. 2006, 25, 124–132.

alternative oxidase. *Plant Physiol.* **2004**, *135*, 549–560.