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Figure S1. Chemical classes of 1076 compounds in [M+H]+ (A) and 645 compounds 
in [M+Na]+ (B).
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Figure S2. Relative standard deviation (RSD) of collision cross section (CCS) values of 
identical molecules obtained from different instrument platforms and different 
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laboratories, (A) [M+H]+ and (B) [M+Na]+.
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Figure S3. The number of molecular descriptors retained after each step of variable 
selection.
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Figure S4. Optimization of descriptors from alvaDesc (A), CDK (B) and RDKit (C).
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Figure S6. Violin-plot and bar-plot showing the comparison of the CCS predictions of 

the SVM model to other CCS prediction tools: (A) [M+H]+; (B) [M+Na]+.
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Figure S7. Heat-map displaying median relative errors (MRE) of different chemical 
super classes obtained from the model presented here and other CCS prediction tools.
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Figure S10. Relative importance of the 20 most influential CDK descriptors for the 
prediction of CCS vlaues of [M+H]+ adducts in XGBoost model.
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Figure S12. Comparison of CCS prediction accuracy between before and after 
excluding highly correlated descriptors, (A) [M+H]+, CDK_84, CDK_33 and CDK_24 
represent models based on 84, 33 (VIF<50) and 24 (VIF<20) CDK descriptors; (B) 
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Figure S13. Comparison of the chemical space of FCCdb, CPPdb and our collected 
CCS records.
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Table S1. Experimental CCS values retrieved from scientific literatures.
Compound type Technology [M+H]+ [M+Na]+ Reference
Chemicals in food plastic packaging, 
including antioxidant, plasticizers, UV 
absorbers, lubricants, and NIAS

TWCCSN2 401 272 1

Pesticides TWCCSN2 205 0 2

Organic environmental pollutants, including 
illicit drugs, hormones, mycotoxins, new 
psychoactive substances, pesticides, and 
pharmaceuticals

TWCCSN2 460 243 3

Pesticides TWCCSN2 177 34 4

Pesticides and pharmaceuticals TWCCSN2 91 88 5

Contaminants of emerging concern in 
human matrix, including bisphenols, 
plasticizers, organophosphate flame 
retardants and triazoles

DTCCSN2 55 81 6

Pollutants in indoor dust: flame retardants, 
pesticides

TWCCSN2 36 2 7
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Table S2. Compounds for which the relative standard deviation (RSD) of the CCS 
values of the [M+H]+ adduct is higher than 2%.

CID Name CCS_1 CCS_2 CCS_3 Mean RSD (%)
31357 Tributyl phosphate 171.531 166.736 - 169.13 2.01
5329 Sulfamethoxazole 151.71 146.32 152.613 150.2 2.27
86222 Carfentrazone-Ethyl 179.543 185.84 - 182.67 2.42
2783 Clenbuterol 159.202 164.813 - 162.01 2.45
86369 Sulfentrazone 173.632 180.14 - 176.87 2.59
56208 Sarafloxacin 192.32 202.02 194.53 196.28 2.59
2206 Phenazone 135.593 140.75 - 138.15 2.62
5094 Ronidazole 131.62 136.633 - 134.12 2.65
26879 Levamisole 138.22 143.513 - 140.86 2.67
3778 Propyphenazone 150.02 155.95 - 152.95 2.73
5280440 Tylosine 332.42 319.793 - 326.10 2.73
121858 Hydroxymetronidazole 128.22 133.513 - 130.86 2.87
3352 Fipronil 180.772 181.453 1914 184.41 3.10
4539 Norfloxacine 1712 179.743 - 175.37 3.52
9576412 Fenpyroximate 215.892 205.34 - 210.60 3.56
3343 Fenoterol 180.42 171.063 - 175.73 3.76
4173 Metronidazole 124.22 131.043 - 127.62 3.79
26951 Ipronidazole 126.12 133.473 - 129.79 4.02
46783606 Clencyclohexerol 164.72 175.283 - 169.99 4.40
60651 Marbofloxacin 179.62 191.213 - 185.41 4.43
3090 Dimetridazole 116.42 124.773 - 120.59 4.91
5336 Sulfapyridine 142.32 152.73 - 147.5 4.99

108192
Epitestosterone 
glucuronide

204.73 221.53 213.09 5.57

11285653 Picoxystrobin 177.52 194.54 - 186.00 6.46
6077 Acetopromazine 160.52 176.223 - 168.36 6.60
73665 Prochloraz 161.682 182.483 183.34 175.82 6.97
53735 Oxadixyl 158.813 178.34 - 168.56 8.18

Table S3. Compounds for which the relative standard deviation (RSD) of the CCS 
values of the [M+Na]+ adduct is higher than 2%.

CID Name CCS_1 CCS_2 Mean RSD (%)
20342 2-Ethylhexyl adipate 169.831 177.326 173.58 3.05
39042 Bezafibrate 198.513 187.905 193.21 3.88
45358380 lambda-Cyhalothrin 208.663 190.043 199.35 6.60
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Table S4. Comparison between DTCCSN2 and TWCCSN2 for [M+H]+ adducts.
No. Name CID DTCCSN2

6 TWCCSN2
1 Differences 

(%)

Remarks

1 3,5-ditert-butyl-4-hydroxybenzaldehyde 73219 165.21 164.86 0.21 Degradation 

product of BHT

2 Atrazine 2256 149.53 149.70 0.11 Herbicide

3 Diazinon 3017 173.15 173.38 0.13 Insecticide

4 Benzotriazole 7220 122.42 123.49 0.87 UV absorbent

5 Di(2-ethylhexyl) phthalate 8343 211.00 213.33 1.10 Plasticizer

6 Diisononyl phthalate 590836 220.60 226.37 2.62 Plasticizer

7 Isodecyl diphenyl phosphate 34697 200.20 202.40 1.10 Plasticizer

8 Tributyl acetyl citrate 6505 199.82 195.99 1.92 Plasticizer

9 Antiblaze V6 92310 211.37 212.10 0.35 Flame retardant

10 Tri-n-butyl phosphate 31357 166.73 171.53 2.88 Flame retardant

11 Triphenyl phosphate 8289 174.74 170.00 2.71 Flame retardant

12 Tri-p-tolyl phosphate 6529 190.02 187.00 1.59 Flame retardant

13 Tris(1,3-dichloro-2-propyl) phosphate 26177 178.56 176.50 1.15 Flame retardant

14 Tris(2-butoxyethyl) phosphate 6540 196.44 198.30 0.95 Flame retardant

15 Tris(2-chloroethyl) phosphate 8295 151.31 150.40 0.60 Flame retardant

16 Tris(2-chloroisopropyl) phosphate 26176 161.66 161.87 0.13 Flame retardant

Table S5. Comparison between DTCCSN2 and TWCCSN2 for [M+Na]+ adducts.
No. Name CID DTCCSN2

6 TWCCSN2
1 Differences 

(%)

Remarks

1 Di(2-ethylhexyl) adipate 7641 218.46 218.84 0.18 Plasticizer

2 Di(2-ethylhexyl) phthalate 8343 215.33 217.47 0.99 Plasticizer

3 Di(2-ethylhexyl) terephthalate 22932 215.81 217.69 0.87 Plasticizer

4 Dibutyl sebacate 7986 193.48 191.61 0.97 Plasticizer

5 Diisodecyl phthalate 33599 226.42 232.18 2.54 Plasticizer

6 Diisononyl phthalate 590836 220.94 225.45 2.04 Plasticizer

7 Dimethyl sebacate 7829 159.71 160.41 0.44 Plasticizer

8 Mono(2-ethylhexyl) adipate 20342 177.32 169.83 4.23 Plasticizer

9 Mono(2-ethylhexyl) phthalate 20393 182.27 181.25 0.56 Plasticizer

10 Tributyl acetyl citrate 6505 205.77 205.28 0.24 Plasticizer

11 Diphenyl phthalate 6778 181.27 178.28 1.65 Plasticizer

12 2-Ethylhexyl diphenyl phosphate 14716 202.70 198.80 1.92 Flame retardant

13 Di-n-butyl phosphate 7881 167.54 167.79 0.15 Flame retardant

14 Tri-n-butyl phosphate 31357 184.54 184.16 0.21 Flame retardant

15 Tris(2-chloroethyl) phosphate 8295 161.39 157.89 2.17 Flame retardant

16 Tri-p-tolyl phosphate 6529 200.02 196.04 1.99 Flame retardant
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Table S6. Optimization of alvaDesc descriptors.

Adducts Descriptor Algorithm R2
P RMSEP <2% <3% <5% MRE

[M+H]+ alva_1528 SVM 0.9802 4.71 65.3 81.2 94.8 1.50

XGBoost 0.9724 5.56 60.5 76.3 90.6 1.48

alva_316 SVM 0.9779 5.00 62.3 79.3 93.6 1.54

XGBoost 0.9734 5.46 63.2 79.6 92.4 1.46

alva_72 SVM 0.9737 5.43 61.7 79.0 91.8 1.52

XGBoost 0.9727 5.53 61.4 75.7 90.6 1.44

[M+Na]+ alva_1361 SVM 0.9629 5.44 53.0 72.9 92.8 1.86

XGBoost 0.9511 6.20 51.4 67.4 86.2 1.95

alva_376 SVM 0.9589 5.70 50.3 70.2 91.7 1.94

XGBoost 0.9611 5.57 54.1 71.8 90.1 1.75

alva_193 SVM 0.9570 5.73 54.1 67.4 90.1 1.81

XGBoost 0.9593 5.76 52.5 72.9 89.0 1.88

Table S7. Optimization of CDK descriptors.

Adducts Descriptor Algorithm R2
P RMSEP <2% <3% <5% MRE

[M+H]+ CDK_206 SVM 0.9778 4.99 60.5 78.1 92.7 1.56

XGBoost 0.9775 5.02 64.4 77.2 93.6 1.46

CDK_84 SVM 0.9786 4.90 64.7 82.7 93.3 1.42

XGBoost 0.9765 5.14 59.6 78.7 94.2 1.61

[M+Na]+ CDK_207 SVM 0.9618 5.53 58.0 74.6 95.0 1.76

XGBoost 0.9555 5.95 53.0 68.5 90.1 1.81

CDK_65 SVM 0.9484 6.35 47.5 63.0 88.4 2.21

XGBoost 0.9481 6.45 46.4 63.0 85.6 2.22

Table S8. Optimization of RDKit descriptors.

Adducts Descriptor Algorithm R2
P RMSEP <2% <3% <5% MRE

[M+H]+ RDKit_123 SVM 0.9787 4.90 62.0 78.7 94.5 1.44

XGBoost 0.9744 5.36 59.9 74.5 92.4 1.61

RDKit_33 SVM 0.9772 5.09 63.8 79.6 93.0 1.46

XGBoost 0.9700 5.80 58.1 74.2 90.3 1.58

[M+Na]+ RDKit_125 SVM 0.9511 6.18 49.2 72.9 90.1 2.01

XGBoost 0.9577 5.82 53.6 69.1 87.8 1.81

RDKit_27 SVM 0.9389 6.96 43.1 61.9 85.1 2.35
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XGBoost 0.9564 5.89 51.4 66.3 89.0 1.97

Table S9. Comparison of the prediction results obtained from SVM models using 84 
and 207 descriptors in our study, SVM models using 15 selected descriptors in AllCCS, 
and AllCCS.

Adducts Models R2
P RMSEP <2% <3% <5% MRE (%)

[M+H]+ SVM_84 0.9786 4.90 64.7 82.7 93.3 1.42
SVM_15 0.9763 5.17 61.4 76.3 92.7 1.57
AllCCS 0.9609 6.92 47.0 64.9 83.5 2.16

[M+Na]+ SVM_207 0.9618 5.53 58.0 74.6 95.0 1.76
SVM_15 0.9430 6.68 49.2 64.6 82.9 2.10
AllCCS 0.9185 9.21 36.5 46.4 71.3 3.29

Table S10. Comparison of SVM models before and after excluding 27 and 51 DTCCSN2 
values from the training set of [M+H]+ and [M+Na]+.

Adducts Training 
set

R2
P RMSEP <2% <3% <5% MRE (%)

[M+H]+ 747 0.9786 4.90 64.7 82.7 93.3 1.42
720 0.9785 4.91 64.1 82.1 93.3 1.40

[M+Na]+ 464 0.9617 5.53 58.0 74.6 95.0 1.77
413 0.9572 5.80 55.8 72.9 91.7 1.78

Table S11. Definition of 20 important CDK molecular descriptors.
Descriptor name Descriptor class Definition
VABC Geometrical Descriptor Calculates van der Waals volume of 

molecules
VP.0, VP.1, SP.1, SP.2 Topological Descriptor Evaluates the Kier & Hall Chi path 

indices of orders 0,1,2
AMR Constitutional Descriptor Calculates atom additive molar 

refractivity values as described by Ghose 
and Crippen

WPATH Topological Descriptor Calculates Wiener path number
apol Electronic Descriptor Calculates the sum of the atomic 

polarizabilities (including implicit 
hydrogens)

bpol Electronic Descriptor Descriptor that calculates the sum of the 
absolute value of the difference between 
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atomic polarizabilities of all bonded 
atoms in the molecule (including implicit 
hydrogens)

ECCEN Topological Descriptor A topological descriptor combining 
distance and adjacency information

Kier1 Topological Descriptor Calculates Kier and Hall kappa 
molecular shape indices

nAtom Constitutional Descriptor Descriptor based on the number of atoms 
of a certain element type

MOMI.R, MOMI.X 
MOMI.Y

Geometrical Descriptor Descriptor that calculates the principal 
moments of inertia and ratios of the 
principal moments. Als calculates the 
radius of gyration

MW Constitutional Descriptor Descriptor based on the weight of atoms 
of a certain element type

WV.unity Hybrid Descriptor Holistic descriptors described by 
Todeschini et al.

LipinskiFailures Constitutional Descriptor Contains a method that returns the 
number failures of the Lipinski's Rule Of 
Five.

PPSA.1 Electronic Descriptor 
Geometrical Descriptor

A descriptor combining surface area and 
partial charge information

ATSp5 Topological Descriptor The Moreau-Broto autocorrelation 
descriptors using polarizability

Note: information is from OCHEM (http://forum.ochem.eu/x/GgJr.html)

Table S12. The fifty molecules in CPPdb and FCCdb that are not covered by the 
chemical space of the collected CCS records.

Name
PubChem 

CID

Monoisotopic 

Mass
InChIKey

Polyoxyethylene (23) lauryl ether 2724258 1198.8013 IEQAICDLOKRSRL-UHFFFAOYSA-N

Pentaerythritol tetraoleate 6436503 1193.0548 QTIMEBJTEBWHOB-PMDAXIHYSA-N

Cetyl poly(oxyethylene) ether 2724259 1122.7853 NLMKTBGFQGKQEV-UHFFFAOYSA-N

2,2-bis[[3-(dodecylthio)-1-

oxopropoxy]methyl]propane-1,3-

diyl bis[3-(dodecylthio)propionate] 122423 1160.8179 VSVVZZQIUJXYQA-UHFFFAOYSA-N

Glyceryl tribehenate 62726 1059.0180 DMBUODUULYCPAK-UHFFFAOYSA-N

Homopolymer of glyceryl triester 

with 12-glycidyl-9-octadecenoic 

acid 58604493 1100.8467 ZFJYZDDXGKWNCH-UHFFFAOYSA-N

Glyceryl tri(12-acetoxystearate) 6451270 1064.8467 FNOXLRARSOMOQK-UHFFFAOYSA-N

Tris(dinonylphenyl) phosphite 74003 1066.9210 WRSPWQHUHVRNFV-UHFFFAOYSA-N

http://forum.ochem.eu/x/GgJr.html
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Pentaerythritol tetrakis(3-(3,5-di-

tert-butyl-4-

hydroxyphenyl)propionate) 64819 1176.7841 BGYHLZZASRKEJE-UHFFFAOYSA-N

Starch, hydrogen phosphate, 2-

hydroxypropyl ether 24847848 1198.4140 DVROLKBAWTYHHD-UHFFFAOYSA-N

Octadecanoic acid, 12-hydroxy-, 

polymer with alpha-hydro-omega-

hydroxypoly(oxy-1,2-ethanediyl) 121596032 948.6233 GJHBWXDMLVECGP-UHFFFAOYSA-N

Sorbitol trioleate 129772621 1022.7997 IEFFZOKIZPKMOG-RJUOWQTLSA-N

2-Heptadecyl-4,4'-bis(methylene 

stearate)-1,3-oxazoline 95104 901.8462 BPUYDDKNZNJELI-UHFFFAOYSA-N

Sorbitan tristearate 15181202 962.8514 IJCWFDPJFXGQBN-RYNSOKOISA-N

Tristearyl citrate 24493 948.8721 UKBHVNMEMHTWQO-UHFFFAOYSA-N

Castor oil, hydrogenated 25100 938.8150 WCOXQTXVACYMLM-UHFFFAOYSA-N

Pentaerythritol tristearate 14252002 934.8565 FWCDLNRNBHJDQB-UHFFFAOYSA-N

Sorbitan triisostearate 171343 962.8514 QWSHIYVIOOXKLL-LLPUSWRMSA-N

Sorbitan trioleate 9920343 956.8044 PRXRUNOAOLTIEF-ADSICKODSA-N

Trimethylolpropane trioleate 6436686 926.8302 BTGGRPUPMPLZNT-PGEUSFDPSA-N

Distarch glycerol 24832114 1176.4895 IQZVGYOIHLNAKB-UHFFFAOYSA-N

dioctyldodecyl adipate 3020369 706.6839 WLFITRMCTPBSQS-UHFFFAOYSA-N

Sorbitan dioleate 22833309 692.5591 TTZKGYULRVDFJJ-GIVMLJSASA-N

Distearyl citrate 11643318 696.5904 PGGUBOZIFQYBOV-UHFFFAOYSA-N

Glycerol trimyristate 11148 722.6424 DUXYWXYOBMKGIN-UHFFFAOYSA-N

Glycerol dibehenate 9831860 736.6945 GNWCZBXSKIIURR-UHFFFAOYSA-N

Tetrakis(2,4-di-tert-butyl-5-

methylphenyl) [1,1'-biphenyl]-2,3-

diylbis(phosphonite)

22672285 1090.7097 XMKVUPOWKZQBDQ-UHFFFAOYSA-N

Hexanoic acid, 3,5,5-trimethyl-, 1,1-

[oxybis[2,2-bis[[(3,5,5-trimethyl-1-

oxohexyl)oxy]methyl]-3,1-

propanediyl]] ester

90684455 1094.8572 GJIDQGCYINNRBJ-UHFFFAOYSA-N

Hydroxylated lecithin 57508518 821.6146 XSEOYPMPHHCUBN-FGYWBSQSSA-N

alpha-D-Glucopyranoside, beta-D-

fructofuranosyl, dioctadecanoate

5360827 874.6381 MZNXRHOLDWQYRX-CBKJUIDTSA-N

diester of 3-(laurylthio)propionic 

acid with 4,4'-[thiobis(2-tert-butyl-

5-methylphenol)]

105368 870.5688 MILWQXYAFKWZBP-UHFFFAOYSA-N

Glycerol tripalmitate 11147 806.7363 PVNIQBQSYATKKL-UHFFFAOYSA-N

1-Octadecanaminium, N-ethyl-N,N-

dioctadecyl-, ethyl sulfate

106121 927.9016 MGUHJFIMPPINPG-UHFFFAOYSA-M

N,N'-

[ethylenebis(iminoethylene)]bisbeh

enamide

44151217 790.8003 SFBNWBOCWQUMEJ-UHFFFAOYSA-N
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Glycerol trioleate 5497163 884.7833 PHYFQTYBJUILEZ-IUPFWZBJSA-N

Tristearyl phosphate 74962 854.8220 FDGZUBKNYGBWHI-UHFFFAOYSA-N

1-(Hexadecanoyloxy)-3-

(octadecanoyloxy)propan-2-yl 

octadec-9-enoate

53422263 860.7833 QXPXMOHHFYONAC-UHFFFAOYSA-N

Sorbitan, trihexadecanoate 171319 878.7575 NVANJYGRGNEULT-BDZGGURLSA-N

Trioctadecyl phosphite 248442 838.8271 CNUJLMSKURPSHE-UHFFFAOYSA-N

Pyrrolo[3,4-c]pyrrole-1,4-dione, 

2,5-dihydro-3,6-bis[4-

(octadecylthio)phenyl]-1

135565960 856.5974 OECIMFUOKDGJQO-UHFFFAOYSA-N

Fatty acids, C18-unsatd., trimers 6437702 800.4077 CFQZKFWQLAHGSL-FNTYJUCDSA-N

Sucrose octabenzoate 25113553 1174.3259 AKIVKIDZMLQJCH-KWOGCLBWSA-N

beta-Cyclodextrin 444041 1134.3698 WHGYBXFWUBPSRW-FOUAGVGXSA-N

2,2-Bis(((2-cyano-3,3-

diphenylacryloyl)oxy)methyl)propa

ne-1,3-diyl bis(2-cyano-3,3-

diphenylacrylate)

16134382 1060.3472 CVSXFBFIOUYODT-UHFFFAOYSA-N

Distearyl thiodipropionate 12738 682.5934 PWWSSIYVTQUJQQ-UHFFFAOYSA-N

Glycerol tristearate 11146 890.8302 DCXXMTOCNZCJGO-UHFFFAOYSA-N

Triisodecyl tridecyl trimellitic ester 3085422 672.5329 YNKHAYUWCVQHBA-UHFFFAOYSA-N

1,2,3-Propanetriol, homopolymer, 

(Z)-9-octadecenoate

9963243 1022.6237 NPTLAYTZMHJJDP-KTKRTIGZSA-N

Distearyl adipate 70706 650.6213 GYFBKUFUJKHFLZ-UHFFFAOYSA-N

Pentaerythritol decanoate, Decanoic 

acid, 2,2-bis[[(1-

oxodecyl)oxy]methyl]-1,3-

propanediylester

83733 752.6166 MXNODNKXIIQMMI-UHFFFAOYSA-N
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Supplemental Materials and Methods.
Calculation of Molecular Descriptors. The first descriptor dataset was calculated using 

alvaDesc v.2.0.4 within OCHEM, which contains 5666 descriptors including constitutional, 
topological, charge, and geometrical descriptors. The second descriptor dataset was calculated using 
CDK v2.3 from OCHEM, which contains 256 constitutional, topological, geometric, electronic and 
hybrid descriptors (the CDK descriptors were used for the prediction of CCS values in the AllCCS 
webserver8). The third descriptor dataset contains 196 RDKit descriptors calculated using ChemDes 
(RDKit descriptors were used in the development of the CCSondemand prediction tool9).

River Water Treatment. All the water sample was filtered by 0.7 glass fiber filter, 100 mL 
of aliquots were passed through the solid phase extraction (SPE) (Oasis HLB cartridge, 6cc/200mg, 
Waters Corp.), previously conditioned with 10 mL of methanol and 10 mL of water. The SPE 
cartridge dried for 10 mins and was eluted with 12 mL of methanol, the filtrate was evaporated to 
dryness at 45 ºC under a gentle stream of N2, the residue was redissolved in 1.5 mL of methanol and 
analyzed by Vion IMS-QTof (Waters, Manchester, UK), this treatment was performed in triplicates.

Conditions of Vion IMS-QTOF. The chromatographic separation was performed using a 
CORTECS C18 column (2.1 × 100 mm, 1.6 μm particle size, 90 Å pore size) at a flow rate of 0.3 
mL min-1. Mobile phases were water (A) and methanol (B), both acidified with 0.1% of formic acid 
(v/v). The initial proportion of B was 5%, increased to 100% over 7 minutes, kept at 100% from 7 
to 11 minutes, decreased to 5% over 0.1 minutes and re-conditioned until 13 minutes. 

Data were acquired on the mass spectrometer in positive mode over the mass range of 50-1000 
m/z with a scan time of 0.2 s. Electrospray ionization (ESI) conditions were as follows: capillary 
voltage, 1 kV; cone voltage, 30 V; source temperature, 120 ºC; desolvation temperature, 500 ºC; 
cone gas flow, 50 L h-1; desolvation gas flow, 800 L h-1. Data were acquired in high definition MSE 
mode, with the instrument was switching between two collision energy states (low energy: 6 eV, 
high energy ramp: 20-40 eV) in order to obtain precursor and fragment ions within a single 
acquisition. Leucine-Enkephalin ([M+H]+, m/z 556.2766) at a concentration of 100 ng/mL was 
infused at a rate of 15 μL/min for real-time mass correction. IM separations were performed with a 
travelling wave velocity of 250 m/s and IMS pulse height of 45 V, N2 was used as the drift gas at a 
flow of 25 mL/min. The Vion platform works at a room temperature of 25 ºC.

Supplemental Results and Discussion
Three possible sources of CCS deviations. (1) Studies have shown that while the deviations 

of CCS values measured on traveling wave (TWIMS) devices from different laboratories are 
generally less than 2%, in some cases the deviations can be at either extreme of the acceptable range 
leading to a higher RSD value.

(2) Presence of protomers. Isobaric protomers have been identified for some compounds due to 
molecules having multiple protonation sites.5, 10 If a charged isomer pair is sufficiently resolved by 
IMS, different CCS values will be assigned to each isomer. Most pesticides contain multiple 
protonation sites in their structure, the presence of amine and carbonyl oxygen groups, for example. 
Two CCS values, 179.6 Å2 and 191.21 Å2, have been reported for marbofloxacin,2, 3 both protomers 
were detected by a cyclic ion mobility systems in McCullagh et al. (2018).10 Warnke et al. (2015)11 
have shown that the use of methanol can favor the protonation of carbonyl oxygen while acetonitrile 
can favor the protonation of the amine. In their work Regueiro et al. (2016)4 used acetonitrile and 
water as the mobile phase, which might explain the different CCS values of fenpyroximate (205.3 
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Å2 versus 215.9 Å2), picoxystrobin (194.5 Å2 versus 177.5 Å2) and oxadixyl (178.3 Å2 versus 158.8 
Å2).

(3) Inconsistent CCS calibration across different instrument systems. The CCS values of 16 
compounds measured by Bijlsma et al. (2017)2 were lower than those measured by Celma et al. 
(2020)3 and Regueiro et al. (2016),4 (see Table S2). This consistent difference might imply that the 
TWIMS was calibrated using a different set of standards or by considering a different set of 
reference points.

Partially orthogonal molecular information provided by CCS. As CCS is related to the 
size, shape, and charge of gas-phase ions, it is understandable that CCS is highly correlated to m/z 
values. However, distinct correlations between CCS and m/z have been observed for the compounds 
that possess different structural characteristics.6, 12 Belova et al. showed that the plasticizers, 
organophosphate flame retardants and per- and polyfluoroalkyl substances (PFAS) present different 
CCS versus m/z trendlines.6 PFAS contain carbon-fluorine bonds, and their CCS values are much 
lower in general than other compounds of similar m/z values. Hines et al. present that most 1440 
CCS values of drugs and drug-like compounds fall within ±10% threshold, the compounds with m/z 
300-350 possess CCS values ranging from 150 to 210 Å2.12 These studies proved that besides the 
mass of molecules, the molecular shape and compactness can also affect the CCS values. The 
different CCS values of molecules at a given m/z value indicate that CCS can provide partially 
orthogonal molecular information for features in targeted and untargeted screening analysis.

Reasons leading to high prediction errors. Among the 22 protonated molecules for which 
the errors in the predicted values were more than 5%, there were some pesticide and drug 
compounds that had structures which exhibited multiple possible protonation sites. For example, 
two different CCS values (160.5 Å2 and 176.2 Å2) have been reported for acetopromazine in 
previous studies,2, 3 and protonation can occur on the carbonyl oxygen or the aminic group for this 
molecule. The high prediction error (8.9%) for glycocholic acid (measured 187.6 Å2/predicted 207.8 
Å2) may also be due to the presence of multiple protomers. A TWCCSN2 value of 205.2 Å2 for 
protonated glycocholic acid, was obtained in Hines et al.,12 which matched well with our predicted 
CCS value. A predicted CCS value of 179.89 Å2 was obtained for this compound, which matched 
well with the CCS value of the more extended protomer. The high prediction error (8.9%) for 
glycocholic acid (measured 187.6 Å2/predicted 207.8 Å2) may also be due to the presence of 
multiple protomers. A TWCCSN2 value of 205.2 Å2 for protonated glycocholic acid, was obtained in 
Hines et al.,12 which matched well with our predicted CCS value.

Similar behavior was also observed in the work of Zhou et al.,13 in which the predicted CCS value 
(172.3 Å2) for S-methyl-5'-thioadenosine matched well with CCS of the more extended protomer 
(170.9 Å2) compared to the CCS of the more compact protomer (162.5 Å2). One possible 
explanation for this phenomenon is that for the compact protomers, the protons are trapped in the 
core of the molecules and do not increase the overall size of the molecule. Thus, slightly lower 
experimental CCS values are obtained which can lead to relatively higher prediction errors. The less 
accurate CCS prediction for doramectin (measured 308.7 Å2/predicted 284.7 Å2), N,N'-
Ethylenebis(stearamide) (measured 280.5 Å2/predicted 296.6 Å2), may be attributed to the low 
number of similar chemical structures in the training set.

Comparison Between the SVM Model and Public CCS Prediction Tools. The comparison 
between the SVM model and public CCS prediction tools is shown in Figure S6. Although 
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CCSondemand provides more accurate predicted CCS values, currently, it cannot accurately predict 
the CCS of silicon-containing molecules, such as (3-aminopropyl) triethoxysilane (measured 153.7 
Å2/predicted 121.1 Å2) and flusilazole (measured 174.3 Å2/predicted 107.4 Å2). In CCSondemand 
such molecules cleave at the site of silicon and only a part of structure is considered, thus introducing 
a bias towards the prediction of lower-than-expected CCS values.

The heat-map in Figure S7 shows that SVM provides more accurate CCS predictions for the 
[M+H]+ adduct of lipid and lipid-like molecules, organic nitrogen compounds and organic oxygen 
compounds, when compared against the other models. The prediction of CCS values by the SVM 
model for benzenoids, which are common class of molecules found in plastics, is also acceptable, 
with a MRE of 1.6%. The SVM also outperforms the other tools in the prediction of CCS values for 
the [M+Na]+ adduct for benzenoids, organic acids and derivatives and organoheterocyclic 
compounds, all of which have an MRE of less than 2%. The relatively high prediction errors for 
[M+Na]+ adducts of organic nitrogen compounds and organic oxygen compounds may be due to 
the low numbers of experimental CCS values available in these two super classes. Organic nitrogen 
compounds account for only 1.2% (8/645) of the CCS values available for [M+Na]+ adducts and 
organic oxygen compounds for 3.6% (23/645). The same reason can be used to explain the high 
MRE values for [M+H]+ adducts of organic nitrogen compounds and organosulfur compounds, 
which only account for 2.9% and 0.5% of the experimental CCS value available for [M+H]+ adducts. 
This highlights the need for collecting more experimental CCS values from a range of compound 
classes.

Weighting of CDK descriptors. The 20 most important CDK descriptors for the prediction 
of the CCS value of the [M+H]+ adducts in XGBoost model, are shown in Figure S10, a brief 
introduction of these descriptors is given in Table S11. The Atomic and Bond Contributions of Van 
der Waals volume (VABC) was found to be the most important CDK descriptor for the prediction 
of CCS values. CCS was strongly correlated with VABC, as shown in Figure S11, with the linear 
regression line having an R2 value of 0.9533. VABC is a molecular volume property, which is 
estimated by the atomic contributions and the number of atoms, bonds, and rings.14 Molecular 
connectivity chi indices: VP.0, VP.1, SP.1 and SP.2 were also found to be influential CDK 
descriptors, each chi index is a sum of weighted subgraphs in which the weights are functions of the 
molecular connectivity delta values.15 Molecular connectivity chi indices is one type of topological 
indices, which were previously used to predict the retention time of small molecules.16 Atom molar 
refractivity (AMR) is a constitutive-additive property, as described by Ghose and Crippen,17 it 
represents the volume of molecules.18 Atomic polarizability (apol) calculates the sum of the atomic 
polarizabilities (including implicit hydrogens) and bpol calculates the sum of the absolute value of 
the difference between atomic polarizabilities of all bonded atoms in the molecule. AMR and apol 
were used to predict CCS values by Zhou et al. (2016).13 The Weiner path number (WPATH) is a 
topological descriptor, which is calculated as the sum of the lengths of the shortest paths between 
all pairs of vertices in the chemical graphs.19 Eccentric connectivity index (ECCEN) is a topological 
descriptor, it considers the eccentricity and valency of each vertex involved in a molecular graph. 
Its calculation can be performed from the distance matrix of a hydrogen-suppressed molecular graph 
after the vertices have been numbered arbitrarily.20 The first kappa shape index (Kier1) is a also a 
topological property, it characterize the molecular shape,21 kappa index was used for predicting the 
CCS values in AllCCS.8 The nAtom and MW are constitutional descriptors, which measure the total 
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number of atoms and molecular weight of molecules. Other important descriptors are provided in 
Table S11. The analysis of MDs weights substantiates the correlation of the CCS of a molecule to 
the size and shape of that ionized molecule.

Applicability of our CCS prediction model. In order to evaluate whether out models can be 
used to predict the CCS values of molecules in CPPdb and FCCdb, we compared the chemical space 
covered by our collected CCS records to that of CPPdb and FCCdb, the results are shown in Figure 
S13. A large proportion of molecules in CPPdb and FCCdb was covered by the chemical space of 
our collected CCS records. However, there are still many molecules which are out of this chemical 
space, we carefully examined these kinds of molecules in order to find their structural characteristics. 
Table S12 presents 50 compounds that locate far from the group center, generally, many of these 
molecules have relatively high molecular weights (MW), their MW range from 650 to 1200 Da. 
However, most compounds in our CCS dataset have MW ranging from 150 to 600 Da (see Figure 
1). 

In addition to their high MW, these compounds appear to have linear-chain molecular 
structures, such as polyoxyethylene (23) lauryl ether and cetyl poly(oxyethylene) ether, these 
compounds are alkyl PEG ethers, which are normally used as non-ionic surfactants in plastics.22 
Alkyl glycerol esters, such as glyceryl tribehenate, glyceryl tri(12-acetoxystearate), glycerol 
trimyristate and glycerol dibehenate, were also included, these compounds are normally used as 
antistatic agents.23 Other compounds include emulsifier in plastics, such as sorbitan trioleate, 
sorbitan dioleate and sorbitan trihexadecanoate; plasticizers: tristearyl citrate, distearyl citrate, 
dioctyldodecyl adipate; antioxidant: distearyl thiodipropionate, trioctadecyl phosphite; 
organophosphate flame retardant: tristearyl phosphate. These compounds contain long alkyl chains 
in their structures and can undergo more collisions with drift gas when passing through the drift 
cell. The comparison of the chemical space between our collected CCS dataset and CPPdb, FCCdb 
highlights that more compounds with high molecular mass and linear-chain structure should be 
incorporated into CCS dataset.
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