
Supplement: Cleaning sequence data  

 

Introduction  

Since we analyzed antigen-specific subsets of the T-cell repertoire, the samples consisted of relatively 

small numbers of T cells. This may cause problems when applying standard methods for sequencing 

and analyzing T-cell repertoire diversity. To overcome these issues, we applied various filtering steps 

to minimize the potential impact of unavoidable experimental errors on the results presented in the 

main text. 

An important step in many TCR-analysis protocols is the use of unique molecular identifiers (UMIs). 

These are introduced before extensive multiplication by PCR and hence allow to map PCR-products to 

their ancestral cDNA-molecule. This way, one can correct for biases by uneven PCR amplification and 

other errors that are likely to arise in some of the sequences. While removing biases, the results may 

still be affected by two other factors. The first is that if a sample contains a very abundant UMI-TCR 

pair (which originated from just one cDNA molecule), even the smallest contamination between 

samples may cause this UMI-TCR pair to also occur in another sample. This shared TCR sequence would 

then be interpreted as a clonotype present in multiple individuals. The other problem is that during 

PCR and sequencing of the product, errors may be introduced in the UMI sequence. This will lead to 

an inflated number of distinct UMI sequences that are observed with a given TCR, and hence to an 

overestimation of the abundance of individual TCR sequences in a sample.   

 

When analyzing samples containing millions of unsorted T cells one may accept these factors to play 

a role, as their relative impact is expected to be small. However, since the number of sequences in our 

samples is limited, small biases could have a major impact on the results. Therefore, we performed 

additional filtering steps to make sure that our results are not affected by these confounding factors. 

We did this in a step-wise approach by using the abundance, sharing and nucleotide sequence of the 

UMIs. 

 

A) Pairing, UMI-identification and V/J-alignment  

Demultiplexed samples were first merged using tool Paired-End reAd mergeR (PEAR, Zhang 

Bioinformatics 2014). Since assembly efficiency was variable between different samples, we decided 

to also include the non-assembled reverse read in the analysis. The 12nt UMI sequences in the reads 

were identified using the ‘Checkout’ algorithm in Recover T Cell Receptor (RTCR, Gerritsen 

Bioinformatics 2016). For all samples together, 1.06 million UMI sequences could be found in a total 

of 34.3 million reads. Within each sample, the reads were then collapsed by their UMI into consensus 

sequences using the ‘umi_group_ec’ method of RTCR. We then used the ‘run’ function of RTCR to align 

the sequences to the reference TRBV and TRBJ genes. Only the alignment information was used, 

ignoring the further clustering steps that RTCR performs by default. We proceeded with the ~ 34% 

UMI-based consensus sequences in which the V as well as the J gene could be identified.  

 

B) Within-sample cleaning  

Since we separately took the merged and non-assembled reverse reads into account, individual UMIs 

could generate two consensus sequences. We confirmed that in the vast majority of such cases, where 

both V and J genes could be identified, these were identical. We selected the consensus sequence 

with highest support, i.e., based on the highest number of reads in such cases. Next, we removed all 

UMIs that were observed in just a single read, because they are most likely erroneous, leaving 6.6*10⁴ 

consensus sequences for all samples together. We then analyzed Hamming Distances between UMI 

sequences observed within and between samples. This showed that there were about 50 times more 



similar (measured as Hamming Distance ≤ 3) UMI pairs within than between samples. We noticed that 

consensus sequences of similar UMIs within a sample had identical V and/or J genes in most cases. 

This indicates mutation of UMI sequences, which would lead to an inflated abundance estimation of 

the corresponding TCR sequences. We corrected for this by clustering pairs of UMIs within a Hamming 

Distance of 3, and subsequently removing the UMIs with the lowest read counts. This approach 

excluded many likely UMI-mutants that were supported by a much lower number of reads (mean 19) 

than the remaining sequences (2.0*10³). RTCR was run individually on each of the remaining 7.1*10³ 

UMI-based consensus sequences to identify their CDR3 sequence while also retaining the UMI 

sequence.  

 

C) Cross-sample cleaning  

A substantial fraction of the UMIs (21%) was observed in more than one sample. Although overlap of 

UMIs between samples is theoretically possible, this was observed much more often than expected 

by chance, suggesting cross-sample contamination. Indeed, 93% of the UMIs that were shared 

between at least two samples showed identical CDR3 amino acid sequences in the corresponding 

TCRB sequences. We reasoned that contamination by abundant UMI-TCR pairs is expected to be 

represented by the same UMI-TCR pair at a much lower frequency in other samples. For less abundant 

UMI-TCR pairs, the frequency differences between samples are smaller, making it often impossible to 

tell which sample contained the genuine UMI-TCR pair and which the contamination. Hence, we only 

accepted overlapping UMIs between samples if 1) the frequency of the UMI in one of the samples was 

more than 1000 reads and 2) the frequency of the UMI in the other sample was more than 10% of the 

maximum frequency. The few overlapping UMIs that hence remained, all had different CDR3 

sequences in both samples, suggesting that they were not due to contamination. We proceeded with 

these remaining overlapping UMI-TCR pairs and all others that were not shared between samples. 

 

 

 

 

 

 

 

 

 

Figure SA: Read counts of UMI sequences that are shared between samples. Red dots indicate pairs with identical UMI and 

CDR3 sequence in two samples (indicating contamination), green dots represent pairs with identical UMI but different CDR3 

sequence. The vertical black dashed line represents the read count threshold of 1000, below which all sequences with the 

corresponding UMI are deleted. The diagonal blue line indicates the 10% of maximum frequency threshold. UMI duplicates 

above this threshold are both kept (upper right quadrant), below the threshold only the UMI with maximum number of reads 

is accepted (lower right quadrant).  

 

D) Read count threshold  

Although we applied within-sample UMI-clustering and between-sample cleaning of UMI-overlap, still 

erroneous sequences could have remained, for example by mutation of UMI sequences that arose by 

contamination. Indeed, there were multiple samples containing abundant UMI-CDR3 pairs and also 

many identical CDR3 sequences with different UMIs. Most of these other UMIs were supported by 



only few reads. By inspecting individual samples as well as all samples together, we often observed a 

bimodal distribution of read counts. Assuming that the UMIs supported by fewer reads are enriched 

for erroneous sequences, we only used UMI-CDR3 pairs above a read count threshold. We decided to 

only keep UMI-CDR3 pairs supported by at least 40 reads to further exclude confounding effects in 

our data. Note that we also tested the effect of an even stricter threshold of 600 reads, but this did 

not change our results qualitatively. The distributions of UMI distances within and between samples 

indicates that our cleaning procedure was successful. 

 

 

 

 

 

 

 

 
Figure SB: Histogram of all UMI read counts in each sample. The minimum read count threshold (40) is indicated with the 

horizontal red line. 

 

 

 

 

 

 

 

 

Figure SC: Distributions of UMI distances after data cleaning. Pairwise comparison between sets of UMI sequences using 

Levenshtein Distance. Blue: all UMIs are compared to all other UMIs in the same sample. Orange: UMIs are compared to all 

within-sample UMIs corresponding to identical CDR3 amino acid sequence. Green: similar, but comparing to UMIs in 

another sample with identical CDR3. Red: pairwise comparison of randomly chosen UMI sequences from all samples. The 

similarity of all distributions indicates that the cleaning method removed erroneous sequences from our data. Note that 

there were only a limited number of CDR3s shared between samples, which may explain the visible difference to the other 

distributions. 


