Supplemental Material

Dominant negative effects of SCN5A missense variants

Matthew J. O'Neill¹, Ayesha Muhammad¹, Bian Li², Yuko Wada², Lynn Hall², Joseph F. Solus², Laura Short²,

Dan M. Roden^{3†}, Andrew M. Glazer^{2*†}

Supplemental Methods.

 Table S1.
 Variant currents and case-control counts.

Table S2. Primers used in this study.

 Table S3. Case-control analysis.

Figure S1. Stable cell lines used in this study and flow cytometry expression reporters.

Figure S2. Western blot of selected variants.

Figure S3. Sensitivity Analysis of DN Threshold.

Figure S4. Odds Ratio by variant class in Non-Finnish European-ancestry individuals.

Figure S5. Odds ratios among functionally characterized dominant negative and non-dominant negative variants.

Supplemental References.

Supplemental Data. Variant-level data from automated patch clamp.

Supplemental Methods

Western Blot: Cells either stably expressing an Na_V1.5 or an empty plasmid were homogenized in modified RIPA buffer (25 mM Tris-HCl, 150 mM NaCl, 5% glycerol, 1 mM EDTA, and 1% NP-40) supplemented with a protease inhibitor cocktail (cOmplete Mini, Roche) on ice. After centrifuge at 13000 rpm for 20 minutes at 4oC followed by colorimetric protein quantitation (Pierce 660 nm Protein Assay, #22660, #22662), the sample equivalent to 5 μ g protein was denatured in LDS sample buffer (NuPAGE) with 1 mM DTT for 20 minutes at 70oC and separated in a 10% gel (Mini-PROTEAN TGX gel, BIO-RAD) by SDS-PAGE. After transferred to a PVDF membrane (0.45 μ m, GE Healthcare) in Tris-Glycine buffer with 20% methanol followed by blocking with 5% skim milk for an hour at RT, the blot was incubated overnight at 4oC with anti-NaV1.5 antibody (1:1,000, Cell Signaling Technology, #14421), anti-mCherry antibody (1:1,000, Cell Signaling Technology, #43590), or anti- β -actin antibody (1:4,000, Cell Signaling Technology, #3700) in 0.1% TBST. After secondary antibody treatment (Promega, #W4011, #W4021), protein signal was detected by chemiluminescence (Clarity ECL Western Blotting Substrates, BIO-RAD).

Structural Analysis: Na_V1.5 variant locations were determined from UniProt¹. The structural model of human SCN5A (UniProtKB: Q14524-1, modeled residues: 30–440, 685–957, 1174–1887) was generated by homology modeling using the protein structure prediction software Rosetta (v.3.10)². The cryo-EM structure of human SCN9A bound with SCN1B and the Ig domain of SCN2B resolved to 3.2 Å (PDB: 6J8H)³ were used as the primary templates while the cryo-EM structure of NavPaS from American Cockroach resolved to 2.6 Å (PDB: 6A95)⁴ was used as a secondary template. The percent identity between the aligned positions of SCN9A and SCN5A sequences is 76.7%. While the percent identity between NavPaS and SCN5A was only moderate (45.6%), the N-terminal and C-terminal domains in the NavPaS structure were partially resolved, providing coordinates for modeling the corresponding domains of SCN5A. For further details, see our previous report⁵. Recently, an experimental structure of SCN5A was determined using cryo-EM technique at a resolution of 3.3 Å⁶. We note that the root-mean-square distance between our model and the experimental structure over all backbone atoms is 2.3 Å (Figure S1), suggesting that our model is accurate while covering more residues than the experimental structure.

2

Supplemental Case-Control Analyses: We performed an additional analysis restricting the controls to individuals of Non-Finnish European ancestry (NFE) in gnomAD and restricting the cases from the BrS consortium to Europeans. We performed the analysis with the same variant frequency thresholds, same calculation of odds ratios, and same allele number calculations after filtering for NFE. To perform a sensitivity analysis, we recalculated odds ratios at various threshold of the dominant negative effect spanning 0.50 to 0.80 by increments of 0.05.

Table S1. Variant currents and case-control counts.

Peak Peak Peak gnormAD gnormAD gnormAD Count gnormAD Count gnormAD Count State Cells Count gnormAD gnormAD Count Count MAF Count WT 10 1.3 1950 100 1.3 246 -		Homozygous								
Variant Density S.E. Cells Density S.E. Cells Count MAR Count WT 100 1.3 1950 100 1.3 246 - - - p.Gly746Ly 46.5 15.5 10 231.6 10.8 47 8 2.83E-05 3 p.Gly746Ly 46.1 11.8 9 213.3 9.5 45 6 2.14E-05 5 p.Glu742Lys 40.6 7 19 170.8 12 43 1 4.02E-06 0 2 p.Jaly1406Arg 33.6 3.7 18 145.6 1.5 5 0 0 3 3 P.7 14 0 0 0 0 10 1445.6 12.2 7.8 53 0 0 0 3 3 0 0 1 3 3 1.4 145.6 12.7 7.8 53 0 0 1 3 3 <td></td> <td>Peak</td> <td></td> <td></td> <td>Heterozygous</td> <td></td> <td></td> <td></td> <td></td> <td></td>		Peak			Heterozygous					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Current			Peak Current			gnomAD	gnomAD	Walsh
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Variant	Density	S.E.	Cells	Density	S.E.	Cells	Count	MAF	Count
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	WT	100	1.3	1950	100	1.3	246	-	-	-
$ \begin{array}{c} p, G y 76 262Ser \\ p, Ser1216 e \\ p, G y 76 40, s \\ q, f, f$	WT+WT	-	-	-	218.4	7.7	199	-	-	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	p.Gly1262Ser	46.5	15.5	10	231.6	10.8	47	8	2.83E-05	3
	p.Glu746Lys	46.1	11.8	9	213.3	9.5	45	6	2.14E-05	5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	p.Ser1218lle	13.9	2.4	19	176.6	9.8	47	1	4.02E-06	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	p.Glu1225Lvs	40.6	7	19	170.8	12	43	1	4.01E-06	5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	p.Leu136Pro	34.7	6.3	16	167.8	9.7	41	0	0	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	p.Glv1406Arg	33.6	3.7	18	145.6	12.5	35	Ō	0	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	p.Pro1730His	45.1	5.1	31	139.5	9	47	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	p.Trp822Ter	4.7	0.9	16	134.2	5.2	164	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	p.Val1405Leu	18.6	3.7	15	121.2	7.8	53	0 0	Õ	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	p Glu1574l vs	38.7	12.8	8	119.9	7.6	46	0 0	0	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	p.Glv1661Arg	5.6	1.5	19	112	9.4	44	Ő	Õ	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	p.Ser1672Tvr	1	0.6	18	100.8	8.7	47	0 0	0	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	n Arg893Cvs	82	0.9	48	76.8	10.8	52	3	1 06E-05	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	n Asn1722Asn	39.2	4.3	26	74.4	54	43	0	0	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	n Thr187lle	0.2	0.1	42	73.5	10.7	39	0 0	Õ	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	n Ser910I eu	1.2	0.1	19	71.8	13.9	35	1	3 99E-06	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	p Met369Lvs	3.7	0.2	22	69.8	10.0	51	0	0.002 00	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	n Ara104Trn	0.5	0.0	24	69.6	73	43	1	4 01 E-06	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	n Ara104Gln	0.0	0.2	27	68.3	61	34	Ó	4.012.00	3
p.Leu839Pro 3.1 2.2 20 63.5 10.5 53 0 0 1 p.Leu846Arg 0.3 0.2 43 63.5 7.9 35 0 0 0 p.Arg282His 20.2 3 16 63.4 6.6 44 4 1.60E-05 8 p.Leu325Arg 20.7 2.3 36 63.3 7.3 49 0 0 0 p.Phe892lle 0.9 0.7 23 60.4 6.5 51 0 0 1 p.Arg367Cys 0.6 0.3 25 59.3 11.2 54 3 1.07E-05 3 p.Phe93Ser 0.2 0.2 15 58.8 7.7 53 0 0 1 p.Gly897Glu 0.8 0.3 16 58.1 9.9 38 0 0 1 p.Leu346Pro 2.1 0.9 15 57.9 8.4 53 0 0 1 p.Arg121Trp 0.7 0.3 40 52.7 8.4 <td>n Leu928Pro</td> <td>0.4 1 <i>4</i></td> <td>0.2</td> <td>27</td> <td>66.3</td> <td>6.8</td> <td>47</td> <td>0</td> <td>0</td> <td>1</td>	n Leu928Pro	0.4 1 <i>4</i>	0.2	27	66.3	6.8	47	0	0	1
p.Leu346Arg0.30.24363.57.935000p.Arg282His20.72.33663.46.64441.60E-058p.Leu325Arg20.72.33663.37.349000p.Phe892le0.90.72.360.46.551001p.Gly1420Val001159.5852001p.Gly897Clu0.60.32559.311.25431.07E-053p.Phe93Ser0.20.21558.87.753001p.Gly897Glu0.80.31658.19.938000p.Leu276Gin1.10.91557.98.453001p.Arg121Trp0.70.34052.78.436003p.Leu276Gin1.10.81450.810.153002p.Ser1382lle4.512949.18.947001p.Arg278His0.20.13810.546002p.Glu901Lys3.30.61648.310.546002p.Valt405Met305.91435.74.238005p.Arg878His0.20.138.97530	p.Leu320110	3.1	22	20	63.5	10.5	53	0	0	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	p.Leu000110	0.1	0.2	/3	63.5	7 0	35	0	0	0
p.Leu325Arg20.72.33663.46.57.441.00-000p.Phe892lle0.90.72.360.46.551001p.Gly1420Val0001159.5852001p.Arg367Cys0.60.32559.311.25431.07E-053p.Phe93Ser0.20.21558.87.753001p.Gly897Glu0.80.31658.19.938000p.Leu346Pro2.10.91557.98.453001p.Gly1740Arg29.82.82053.6827001p.Arg12Trp0.70.34052.78.436003p.Leu276Gin1.10.81450.810.153002p.Ser1382lle4.512949.18.947001p.Arg2873His0.20.136748.61055002p.Glu901Lys3.30.61648.310.546006p.Arg2878His0.20.130.32438.9753001p.Gly1420Arg2.51.21636.19.950002p.Valt405Met30 <td>n Ara282His</td> <td>20.2</td> <td>3</td> <td>16</td> <td>63.4</td> <td>6.6</td> <td>11</td> <td>4</td> <td>1 60E-05</td> <td>8</td>	n Ara282His	20.2	3	16	63.4	6.6	11	4	1 60E-05	8
p.Phe832lle0.90.72.33060.37.345000p.Phe832lle0.90.72360.46.551001p.Gly1420Val0011159.5852001p.Gly897Glu0.80.32559.311.25431.07E-053p.Gly897Glu0.80.31658.87.753001p.Gly897Glu0.80.31658.87.753001p.Gly1740Arg29.82.82053.6827001p.Arg121Trp0.70.34052.78.436002p.Ser1382lle4.512949.18.947001p.Arg282Cys1.40.36748.61055002p.Glu901Lys3.30.61648.310.546000p.Arg878His0.20.13844.99.139003p.Ala1428Val0.30.32.91435.74.238001p.Arg878His0.20.1330.91246.47.939000p.Arg878His0.20.1330.5460012p.Asp1420Arg2.5 <t< td=""><td>p.Aig2021113</td><td>20.2</td><td>23</td><td>36</td><td>63.3</td><td>73</td><td>44 /0</td><td>4</td><td>1.002-03</td><td>0</td></t<>	p.Aig2021113	20.2	23	36	63.3	73	44 /0	4	1.002-03	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	n Phe892lle	0.9	0.7	23	60.4	65		0	0	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	p.i 110002110	0.0	0.7	11	50.4 50.5	8	52	0	0	1
p.Phe93Ser0.00.00.02.02.03.01.20.401.01-000p.Gly897Glu0.80.31658.19.938000p.Leu1346Pro2.10.91557.98.453001p.Gly1740Arg29.82.82053.682.7001p.Arg121Trp0.70.34052.78.436002p.Ser1382lle4.512949.18.947001p.Arg282Cys1.40.36748.61055002p.Glu901Lys3.30.61648.310.546000p.Arg2878His0.20.13844.99.1390000p.Kag7878His0.20.13844.99.139001p.Kag7430Arg2.51.21636.19.950002p.Val1405Met305.91435.74.2380001p.Gly346Arg1.50.91129.27.2520001p.Gly367Leu003930.39.6460011p.Gly366Arg1.50.91129.27.2520011 <td< td=""><td>p.Oly1420Val</td><td>06</td><td>03</td><td>25</td><td>50.3</td><td>11.2</td><td>54</td><td>3</td><td>1 07E-05</td><td>3</td></td<>	p.Oly1420Val	06	03	25	50.3	11.2	54	3	1 07E-05	3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	n Phe03Ser	0.0	0.3	15	58.8	77	53	0	0	1
p.Leu1346Pro2.10.91557.98.453001p.Gly1740Arg29.82.82053.6827001p.Arg121Trp0.70.34052.78.436003p.Leu276Gln1.10.81450.810.153002p.Ser1382lle4.512949.18.947001p.Arg282Cys1.40.36748.61055002p.Glu901Lys3.30.61648.310.546006p.Ala735Glu1.30.91246.47.939000p.Arg878His0.20.13844.99.139003p.Ala1428Val0.30.32438.9753001p.Gly1420Arg2.51.21636.19.950002p.Val1405Met305.91435.74.238005p.Arg367Leu003930.39.646001p.Gly386Arg1.50.91129.27.252001p.Gly386Arg002426.58.427001p.Asp356Asn36.96.727.724.75.633<	n Gly897Glu	0.2	0.2	16	58.1	9.7	38	0	0	0
p.Gly1740Arg29.82.82053.6827001p.Arg121Trp0.70.34052.78.436002p.Leu276Gln1.10.81450.810.153002p.Ser1382lle4.512949.18.947001p.Arg282Cys1.40.36748.61055002p.Glu901Lys3.30.61648.310.546006p.Ala735Glu1.30.91246.47.939000p.Arg878His0.20.13844.99.139003p.Ala1428Val0.30.32438.9753001p.Gly1420Arg2.51.21636.19.950002p.Val1405Met305.91435.74.238000p.Asp1430Asn0.40.15734.59.628000p.Arg367Leu003930.39.646001p.Gly386Arg1.50.91129.27.252001p.Gly386Arg1.50.91129.27.252001p.Asp356Asn36.96.72724.75633	n Lou 13/6Pro	2.1	0.5	15	57.9	8.4	53	0	0	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	p.2001040110	20.8	2.8	20	53.6	0.4 8	27	0	0	1
p.h.g12111p0.10.34050.10.450003p.Leu276Gin1.10.81450.810.153002p.Ser1382lle4.512949.18.947001p.Arg282Cys1.40.36748.61055002p.Glu901Lys3.30.61648.310.546006p.Ala735Glu1.30.91246.47.939000p.Arg878His0.20.13844.99.139003p.Ala1428Val0.30.32438.9753001p.Gly1420Arg2.51.21636.19.950002p.Val1405Met305.91435.74.238005p.Asp1430Asn0.40.15734.59.628000p.Arg367Leu003930.39.646001p.Gly386Arg1.50.91129.27.252001p.Gly386Arg1.50.91129.27.252001p.Gly1743Glu10.41127.57.137005p.Asp356Asn36.96.72724.75.633	n Ara121Trn	0.7	0.3	20 40	52.7	81	36	0	0	3
p.Ser1382lle4.512949.18.947001p.Arg282Cys1.40.36748.61055002p.Glu901Lys3.30.61648.310.546006p.Ala735Glu1.30.91246.47.939000p.Arg878His0.20.13844.99.139003p.Ala1428Val0.30.32438.9753001p.Gly1420Arg2.51.21636.19.950002p.Val1405Met305.91435.74.238005p.Asp1430Asn0.40.15734.59.628000p.Arg367Leu003930.39.646001p.Gly386Arg1.50.91129.27.252000p.Asp1380Lys0.10.12527.86.442001p.Gly1743Glu10.41127.57.137005p.Cys335Arg002426.58.427001p.Asp356Asn1.40.31619.33.64514.02E-065p.Asp356Asn1.40.31619.33.6	p.Aigizinp nLeu276Cln	0.7	0.5	40 17	50.8	10.4	53	0	0	2
p.Arg282Cys 1.4 0.3 67 48.6 10 55 0 0 2 p.Glu901Lys 3.3 0.6 16 48.3 10.5 46 0 0 6 p.Ala735Glu 1.3 0.9 12 46.4 7.9 39 0 0 0 p.Ala735Glu 1.3 0.9 12 46.4 7.9 39 0 0 3 p.Ala735Glu 0.3 0.3 24 38.9 7 53 0 0 1 p.Gly1420Arg 2.5 1.2 16 36.1 9.9 50 0 0 2 p.Val1405Met 30 5.9 14 35.7 4.2 38 0 0 5 p.Asp1430Asn 0.4 0.1 57 34.5 9.6 28 0 0 0 p.Arg367Leu 0 0 39 30.3 9.6 46 0 0 1 p.Gly386Arg 1.5 0.9 11 29.2 7.2 52	p.2eu2700311	1.1	1	20	/0.0	80	17 17	0	0	1
p.Alg2020y3 1.4 0.3 07 40.0 10 35 0 0 2 p.Glu901Lys 3.3 0.6 16 48.3 10.5 46 0 0 6 p.Ala735Glu 1.3 0.9 12 46.4 7.9 39 0 0 0 p.Arg878His 0.2 0.1 38 44.9 9.1 39 0 0 3 p.Ala1428Val 0.3 0.3 2.4 38.9 7 53 0 0 1 p.Gly1420Arg 2.5 1.2 16 36.1 9.9 50 0 0 2 p.Val1405Met 30 5.9 14 35.7 4.2 38 0 0 5 p.Asp1430Asn 0.4 0.1 57 34.5 9.6 28 0 0 0 p.Gly386Arg 1.5 0.9 11 29.2 7.2 52 0 0 1 p.Gly386Arg 1.5 0.9 11 29.2 7.2 5	p.0err002rre	+.J	03	67	48.6	10	55	0	0	2
p.Ala735Glu 1.3 0.9 12 46.4 7.9 39 0 0 0 p.Ala735Glu 1.3 0.9 12 46.4 7.9 39 0 0 0 p.Arg878His 0.2 0.1 38 44.9 9.1 39 0 0 3 p.Ala1428Val 0.3 0.3 24 38.9 7 53 0 0 1 p.Gly1420Arg 2.5 1.2 16 36.1 9.9 50 0 0 2 p.Val1405Met 30 5.9 14 35.7 4.2 38 0 0 5 p.Asp1430Asn 0.4 0.1 57 34.5 9.6 28 0 0 0 p.Arg367Leu 0 0 39 30.3 9.6 46 0 0 1 p.Gly386Arg 1.5 0.9 11 29.2 7.2 52 0 0 1 p.Gly386Arg 1.5 0.9 11 29.2 7.2 52 <td>n Glugott ve</td> <td>33</td> <td>0.5</td> <td>16</td> <td>-0.0 /8 3</td> <td>10 5</td> <td>46</td> <td>0</td> <td>0</td> <td>6</td>	n Glugott ve	33	0.5	16	-0.0 /8 3	10 5	46	0	0	6
p.Arg878His 0.2 0.1 38 44.9 9.1 39 0 0 3 p.Arg878His 0.2 0.1 38 44.9 9.1 39 0 0 3 p.Ala1428Val 0.3 0.3 24 38.9 7 53 0 0 1 p.Gly1420Arg 2.5 1.2 16 36.1 9.9 50 0 0 2 p.Val1405Met 30 5.9 14 35.7 4.2 38 0 0 5 p.Asp1430Asn 0.4 0.1 57 34.5 9.6 28 0 0 0 p.Trp879Arg 0 0 43 30.9 6.5 46 0 0 1 p.Gly386Arg 1.5 0.9 11 29.2 7.2 52 0 0 1 p.Gly1743Glu 1 0.4 11 27.5 7.1 37 0 0 1 p.Cys335Arg 0 0 24 26.5 8.4 27 0 0 1 p.Asp785Asn 36.9 6.7 27 24.7 5.6 33 0 0 0 p.Asp356Asn 1.4 0.3 16 19.3 3.6 45 1 $4.02E-06$ 5 p.Gly1712Cvs 8.3 2.4 17 13.9 3.3 38 0 0 0	p.GlugoTLys	1.3	0.0	12	40.3	7 0	30	0	0	0
p.Alg07011s 0.2 0.1 30 44.5 3.1 35 0 0 0 p.Ala1428Val 0.3 0.3 24 38.9 7 53 0 0 1 p.Gly1420Arg 2.5 1.2 16 36.1 9.9 50 0 0 2 p.Val1405Met 30 5.9 14 35.7 4.2 38 0 0 2 p.Val1405Met 30 5.9 14 35.7 4.2 38 0 0 5 p.Asp1430Asn 0.4 0.1 57 34.5 9.6 28 0 0 0 p.Trp879Arg 0 0 43 30.9 6.5 46 0 0 1 p.Gly386Arg 1.5 0.9 11 29.2 7.2 52 0 0 0 p.Asn1380Lys 0.1 0.1 25 27.8 6.4 42 0 0 1 p.Gly1743Glu 1 0.4 11 27.5 7.1 37 0 0 1 p.Asp785Asn 36.9 6.7 27 24.7 5.6 33 0 0 0 p.Asp356Asn 1.4 0.3 16 19.3 3.6 45 1 $4.02E-06$ 5 p.Gly1712Cys 8.3 2.4 17 13.9 3.3 38 0 0 0	p.Aia/33Giu	0.2	0.9	38	40.4	0.1	30	0	0	3
p.Gly1420Arg2.51.21636.19.950002p.Val1405Met305.91435.74.238005p.Asp1430Asn0.40.15734.59.628000p.Trp879Arg004330.96.546000p.Arg367Leu003930.39.646001p.Gly386Arg1.50.91129.27.252000p.Asn1380Lys0.10.12527.86.442001p.Gly1743Glu10.41127.57.137005p.Asp785Asn36.96.72724.75.633000p.Asp356Asn1.40.31619.33.64514.02E-065p.Gly1712Cvs8.32.41713.93.338000	p.Aigo70113	0.2	0.1	24	38.0	3.1 7	53	0	0	1
p.Val1405Met305.91435.74.238005p.Val1405Met305.91435.74.238005p.Asp1430Asn0.40.15734.59.628000p.Trp879Arg004330.96.546000p.Arg367Leu003930.39.646001p.Gly386Arg1.50.91129.27.252000p.Asn1380Lys0.10.12527.86.442001p.Gly1743Glu10.41127.57.137005p.Cys335Arg002426.58.427001p.Asp785Asn36.96.72724.75.633000p.Asp356Asn1.40.31619.33.64514.02E-065p.Gly1712Cys8.32.41713.93.338000	$p G \sqrt{1/20}$	2.5	1.2	16	36.1	àà	50	0	0	2
p.Var1400Met30 3.5 14 33.7 4.2 36 0 0 0 p.Asp1430Asn 0.4 0.1 57 34.5 9.6 28 0 0 0 p.Trp879Arg 0 0 43 30.9 6.5 46 0 0 0 p.Arg367Leu 0 0 39 30.3 9.6 46 0 0 1 p.Gly386Arg 1.5 0.9 11 29.2 7.2 52 0 0 0 p.Asn1380Lys 0.1 0.1 25 27.8 6.4 42 0 0 1 p.Gly1743Glu 1 0.4 11 27.5 7.1 37 0 0 5 p.Cys335Arg 0 0 24 26.5 8.4 27 0 0 1 p.Asp785Asn 36.9 6.7 27 24.7 5.6 33 0 0 0 p.Asp356Asn 1.4 0.3 16 19.3 3.6 45 1 $4.02E-06$ 5 p.Gly1712Cys 8.3 2.4 17 13.9 3.3 38 0 0 0	p.Oly1420Alg	2.0	5.0	1/	35.7	12	38	0	0	5
p.Trp879Arg 0 0 43 30.9 6.5 46 0 0 0 p.Trp879Arg 0 0 43 30.9 6.5 46 0 0 0 p.Arg367Leu 0 0 39 30.3 9.6 46 0 0 1 p.Gly386Arg 1.5 0.9 11 29.2 7.2 52 0 0 0 p.Asn1380Lys 0.1 0.1 25 27.8 6.4 42 0 0 1 p.Gly1743Glu 1 0.4 11 27.5 7.1 37 0 0 5 p.Cys335Arg 0 0 24 26.5 8.4 27 0 0 1 p.Asp785Asn 36.9 6.7 27 24.7 5.6 33 0 0 0 p.Asp356Asn 1.4 0.3 16 19.3 3.6 45 1 4.02E-06 5 p.Gly1712Cys 8.3 2.4 17 13.9 3.3 38	p.var1400iviet	0.4	0.1	57	34.5	4.Z	20	0	0	0
p.Arg367Leu 0 0 39 30.3 9.6 46 0 0 1 p.Arg367Leu 0 0 39 30.3 9.6 46 0 0 1 p.Gly386Arg 1.5 0.9 11 29.2 7.2 52 0 0 0 p.Asn1380Lys 0.1 0.1 25 27.8 6.4 42 0 0 1 p.Gly1743Glu 1 0.4 11 27.5 7.1 37 0 0 5 p.Cys335Arg 0 0 24 26.5 8.4 27 0 0 1 p.Asp785Asn 36.9 6.7 27 24.7 5.6 33 0 0 0 p.Asp356Asn 1.4 0.3 16 19.3 3.6 45 1 4.02E-06 5 p.Gly1712Cys 8.3 2.4 17 13.9 3.3 38 0 0 0	p.ASp1430ASh	0.4	0.1	12	34.5	9.0	20	0	0	0
p.Arg307Led 0 0 35 30.3 9.0 40 0 0 1 p.Gly386Arg 1.5 0.9 11 29.2 7.2 52 0 0 0 p.Asn1380Lys 0.1 0.1 25 27.8 6.4 42 0 0 1 p.Gly1743Glu 1 0.4 11 27.5 7.1 37 0 0 5 p.Cys335Arg 0 0 24 26.5 8.4 27 0 0 1 p.Asp785Asn 36.9 6.7 27 24.7 5.6 33 0 0 0 p.Asp356Asn 1.4 0.3 16 19.3 3.6 45 1 4.02E-06 5 p.Gly1712Cys 8.3 2.4 17 13.9 3.3 38 0 0 0	p. hpor arrig	0	0	20	30.9	0.5	40	0	0	1
p.Gly300 rig 1.0 0.3 11 23.2 7.2 32 0 0 0 p.Asn1380Lys 0.1 0.1 25 27.8 6.4 42 0 0 1 p.Gly1743Glu 1 0.4 11 27.5 7.1 37 0 0 5 p.Cys335Arg 0 0 24 26.5 8.4 27 0 0 1 p.Asp785Asn 36.9 6.7 27 24.7 5.6 33 0 0 0 p.Asp356Asn 1.4 0.3 16 19.3 3.6 45 1 4.02E-06 5 p.Gly1712Cys 8.3 2.4 17 13.9 3.3 38 0 0 0	p.Aly386Ara	15	0	11	20.0	3.0 7.0	-+0 50	0	0	0
p.Giri 300Lys 0.1 2.1 2.1 2.1.0 0.4 4.2 0 0 1 p.Gly1743Glu 1 0.4 11 27.5 7.1 37 0 0 5 p.Cys335Arg 0 0 24 26.5 8.4 27 0 0 1 p.Asp785Asn 36.9 6.7 27 24.7 5.6 33 0 0 0 p.Asp356Asn 1.4 0.3 16 19.3 3.6 45 1 4.02E-06 5 p.Gly1712Cys 8.3 2.4 17 13.9 3.3 38 0 0 0	p.GiyoodAiy	1.5	0.9	25	23.2 27.9	6.4	0∠ ∕\2	0	0	1
p.Gy 1745Gid 1 0.4 11 27.5 7.1 37 0 0 5 p.Cys335Arg 0 0 24 26.5 8.4 27 0 0 1 p.Asp785Asn 36.9 6.7 27 24.7 5.6 33 0 0 0 p.Asp356Asn 1.4 0.3 16 19.3 3.6 45 1 4.02E-06 5 p.Glv1712Cvs 8.3 2.4 17 13.9 3.3 38 0 0 0	p.ASITISOULYS	0.1	0.1	∠0 11	21.0 27 5	0.4	4Z 27	0	0	I F
p.Sys353rig 0 0 24 26.5 6.4 27 0 0 1 p.Asp785Asn 36.9 6.7 27 24.7 5.6 33 0<	p.Giy 1743Giu	1 0	0.4	11 24	21.0	7.I Q /	37 27	0	0	1
p.Asp356Asn 1.4 0.3 16 19.3 3.6 45 1 4.02E-06 5	p.0ysosoAig	36.0	67	∠4 27	20.0	0.4 5.6	22	0	0	0
n Glv1712Cvs 8.3 2.4 17 13.9 3.3 38 0 0 0	p.Asp/00ASI	1 /	0.7	21 16	∠ 4 ./ 10.2	3.0	55 15	1		5
	n Glv1712Cve	1.4 8 3	21	17	13.0	3.0 3.2	-+0 28	0	+.∪∠⊑-00 ∩	0

Table S2 – Primers used in this Study.

Name	Sequence
aq738	CTATAGCACCCAAAAGACTTCCATCGTACTGAATAAAGGCA
ag1122	GGCAAGACCATCTTCCAGTTCAGTGCCACCAAC
ag885	GGCAAGACCATCTTCTGGTTCAGTGCCACCA
ag655	CTTCCACCCCATCTGGAGAGCGGCTGT
ag740	CTCGCTCTTCAACATGCCCATCATGTGCACCATCC
ag1123	CCTGCACGCATTCATTTCCTTCGGGACC
ag742	CTCTTCATGGGCAACCAAAGGCACAAGTGCGTG
ag729	GGCACAAGTGCGTGTGCAACTTCACAGCG
ag1124	GCACAAGTGCGTGCACAACTTCACAGCGC
ag884	CACCTCTGATGTGTTACGGTGTGGGGAACAGCTCTG
ag785	GACGCTGGGACACGTCCGGAGGGCT
ag1125	GGCTACACCAGCTTCAATTCCTTTGCCTGGG
ag778	TTTCTTGCACTCTTCCTCCTGATGACGCAGGAC
ag665	CTTTCTTGCACTCTTCTGCCTGATGACGCAGGA
ag743	CTCTTCCGCCTGAAGACGCAGGACTGC
ag745	AGACCCTCAGGTCCGCAAGGAAGATCTACATG
ag746	CAACACACTCTTCATGGAGCTGGAGCACTACAACA
ag669	GCGGCCGCGAATTCAAGGAGATGCTGCA
ag748	AGGGCTGGAACATCTTCAACAGCATCATCGTCATC
ag68	GCTGGCCAAATCATGACCCACCCTGAACACA
ag749	CAGTGGGGGGCACCGGGGGAACCTGAC
ag1126	AACCTGACACTGGTGCGTGCCATCATCGTGTTC
ag1120	GGCCTGCTGCCTCACTGGCACATGATG
ag798	CCTGCTGCCTCGCAGGCACATGATGGA
ag750	GCCTTCCTCATCATCCGCATCCTCTGTG
ag1128	CTTCCTCATCATCTTCCACATCCTCTGTGGAGAGT
ag1129	TCCGCATCCTCTGTGAAGAGTGGATCGAGAC
ag678	CTGTGGAGAGTGGATCAAGACCATGTGGGACTG
ag1130	GGACTGCATGGAGGTGTTGGGGCAGTC
ag782	TATGGTCATTGGCAACCCTGTGGTCCTGAATCTCT
ag1131	TCATGATCCTACTCATCAGTGGAGCGCTGGC
ag687	GGAGCGCTGGCCTTCAAGGACATCTACCTAG
ag690	TCAAGTGGGTGGCCTACAGCTTCAAGAAGTACTTC
ag754	CTGCCTCATCTTCTGGCCCCATCTTCAGCATCATGG
ag755	TTTGAACTACACCATCGTGAACAAAAAGAGCCAGTGTG
ag795	CTACACCATCGTGAACAACAAGATCCAGTGTGAGTC
ag756	AGTCAACTTTGACAACCTGGGGGGCCGGGTA
ag757	AAAGTCAACTTTGACAACATGGGGGGCCGGGTAC
ag1132	CTTTGACAACGTGCGGGGCCGGGTACCT
ag1133	ACGTGGGGGCCAGGTACCTGGCC
ag760	GCAGGTGGCAACATTTAAAGTCTGGATGGACATTATGTATG
ag759	GTCCATCCAGCGTTTAAATGTTGCCACCTGCAG
ag761	GGACATTATGTATGCAGTTGTGGACTCCAGGGGGG
ag1134	TTATGTATGCAGCTGTGAACTCCAGGGGGGTATGAA
ag645	GCCCTCTTCAACATCAGGCTGCTGCTCTTCC
ag766	CGTCATGTTCATCTACTACATCTTTGGCATGGCCA
ag791	AGCCCCATCCTCGACACTGGGGCCGC
ag793	CCCTACTGCGACCACACTCTGCCCAAC
ag036	TCTCGGGGGGGACTGCAGGAGCCCAGCCGTGG
	Name ag738 ag1122 ag885 ag655 ag740 ag1123 ag742 ag729 ag1124 ag884 ag785 ag1125 ag778 ag665 ag743 ag746 ag669 ag748 ag669 ag748 ag669 ag748 ag669 ag748 ag740 ag1127 ag798 ag750 ag1128 ag1129 ag678 ag1129 ag678 ag750 ag1128 ag750 ag1131 ag687 ag755 ag755 ag755 ag755 ag755 ag756 ag757 ag1132 ag759 ag760 ag759 ag761 ag1134 ag645 ag793 ag036

Table S3. Case-control analysis.

Class	# of variants	BrS cohort count	gnomAD count	gnomAD AF	BrS : gnomAD ratio	Odds Ratio
All missense	300	411	1483	5.9e-3	0.28	11.0
In-frame indel	19	15	22	8.7e-5	0.68	24.2
Frameshift+splice	127	153	48	4.2e-4	3.19	118
Missense LoF + Dom. Neg.	32	54	6	2.3e-5	9.0	323

Figure S1. Stable cell lines used in this study and flow cytometry expression reporters. 1 or 2 copies of *SCN5A* were inserted into engineered HEK293 LP cells. The Landing Pad (LP) comprises an AttP and BFP locus, and allows insertion of a single insert per cell. A second Sleeping Beauty (SB) transposon system was used to introduce a second copy of the gene for heterozygous experiments.

a Design of homozygous LP-SCN5A cell line with LP integration.

b Analytical flow cytometry after incorporation of plasmid into the LP. Cells that do not have BFP expression and highly express mCherry (P4 gate) have a successful integration and serve as a marker of channel expression.

c For heterozygous experiments, we used a combination of LP and SB systems. First, a SB plasmid bearing a WT copy of *SCN5A* was randomly inserted into the genome. A clone of these cells was identified that has an equal level of $Na_V 1.5$ in patch clamp experiments to typical LP expression (Figure 2). Next, a second copy of *SCN5A* bearing WT or variant was incorporated through the LP system.

d Results of flow cytometry after SP and LP integration. Cells express GFP associated with SB integration, and mCherry after LP integration (P5 gate) as a marker of Na_V1.5 expression.

e Percentage of mCherry positive cells after analytical flow cytometry. Homozygous and heterozygous cell lines were analyzed less than 24 hours before every SyncroPatch experiment.

Figure S2. Western blot of selected variants. Expression of variants was assessed by Western blot for both Na_V1.5 and the mCherry reporter. We studied variants with no homozygous current and no dominant negative effect (p.Ser1672Tyr, p.Gly1661Arg, and p.Ser1218I), variants with no homozygous current and a weak dominant negative effect (p.Arg893Cys, p.Thr187IIe, and p.Ser910Leu) and variants with no homozygous current and a strong dominant negative effect (p.Asn1380Lys, p.Gly1743Glu). Predicted positions of bands are shown with red triangles.

Figure S3. Sensitivity Analysis of DN Threshold. We determined the odds ratio at various heterozygous peak current thresholds among our LoF variants. We observe a consistent odds ratio between a threshold of 0.60 to 0.80, with a steep incline at cutoffs less than 0.60.

Figure S4. Odds Ratio by variant class in Non-Finnish European-ancestry individuals. Odds ratios are plotted similarly to Figure 3B restricting to NFE in gnomAD and European in the BrS consortium⁷. In this cohort, LoF DN variants have a higher enrichment compared to haploinsufficient variants (3.1 vs 2.7) but do not meet statistical significant due to lower heterozygote numbers (p = 0.0907).

Figure S5. Odds ratios among functionally characterized dominant negative (DN) and non-dominant negative variants. Odds ratios for variants found to be non-dominant negative (N=12) vs. those found to be dominant negative (N=38) in our study.

Figure S6. Structural distribution of dominant negative variants.

a Locations of dominant negative variants throughout Na_V1.5 in 2D channel rendering. Red indicated LoF dominant negative, orange partial LoF dominant negative, and green non-dominant negative missense variants. Extra: extracellular, intra: intracellular.

b Side view of $Na_V 1.5$ protein with overlaid variant distribution.

c Top view of Na $_{\vee}$ 1.5 protein with overlaid variant distribution.

Figure S7. Structural Model and Experimental Structure. Overlay of our Nav1.5 structural model (light orange) with a recently determined cryo-EM structure of Nav1.5 (marine blue), demonstrating that our model is accurate while covering more intracellular residues than the experimental structure.

Supplemental References

- 1 UniProt: the universal protein knowledgebase in 2021. *Nucleic Acids Res* **49**, D480-d489, doi:10.1093/nar/gkaa1100 (2021).
- 2 Leaver-Fay, A. *et al.* ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. *Methods Enzymol* **487**, 545-574, doi:10.1016/b978-0-12-381270-4.00019-6 (2011).
- 3 Shen, H., Liu, D., Wu, K., Lei, J. & Yan, N. Structures of human Na(v)1.7 channel in complex with auxiliary subunits and animal toxins. *Science* **363**, 1303-1308, doi:10.1126/science.aaw2493 (2019).
- 4 Shen, H. *et al.* Structural basis for the modulation of voltage-gated sodium channels by animal toxins. *Science* **362**, doi:10.1126/science.aau2596 (2018).
- 5 Glazer, A. M. *et al.* High-Throughput Reclassification of SCN5A Variants. *Am J Hum Genet* **107**, 111-123, doi:10.1016/j.ajhg.2020.05.015 (2020).
- 6 Li, Z. *et al.* Structural Basis for Pore Blockade of the Human Cardiac Sodium Channel Na(v) 1.5 by the Antiarrhythmic Drug Quinidine*. *Angew Chem Int Ed Engl* **60**, 11474-11480, doi:10.1002/anie.202102196 (2021).
- 7 Walsh, R. *et al.* Enhancing rare variant interpretation in inherited arrhythmias through quantitative analysis of consortium disease cohorts and population controls. *Genet Med* **23**, 47-58, doi:10.1038/s41436-020-00946-5 (2021).