Supporting Information

From Bench to Bedside: Improving the Clinical Safety of GalNAc-siRNA Conjugates Using Seed-Pairing Destabilization

Mark K. Schlegel¹[†], Maja M. Janas¹[†], Yongfeng Jiang¹, Joseph D. Barry¹, Wendell Davis¹, Saket Agarwal¹, Daniel Berman¹, Christopher R. Brown¹, Adam Castoreno¹, Sarah LeBlanc¹, Abigail Liebow¹, Tara Mayo¹, Stuart Milstein¹, Tuyen Nguyen¹, Svetlana Shulga-Morskaya¹, Sarah Hyde¹, Sally Schofield¹, John Szeto¹, Lauren Blair Woods¹, Vedat O. Yilmaz¹, Muthiah Manoharan¹, Martin Egli², Klaus Charissé¹, Laura Sepp-Lorenzino¹, Patrick Haslett¹, Kevin Fitzgerald¹, Vasant Jadhav¹, Martin A. Maier^{1*}

¹ Alnylam Pharmaceuticals, 300 Third Street, Cambridge, Massachusetts 02142
 ² Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA

*Corresponding author: mmaier@alnylam.com

Table of Contents

1.	Sequences of siRNAs	S2
2.	Dose response of selected siRNAs in rats	S3
3.	Metabolism identification and test article quantification in mouse liver	S4
4.	In vitro off-target silencing of DNA-modified siRNAs	S5
5.	Additional single-dose knockdown data in mice	S6
6.	Clinical pathology graphs and tables	S7
7.	Microscopic liver findings in rats	S12
8.	Therapeutic index calculation	S14
9.	In vivo RNAseq MA plots, CDF plots, and DEG counts	S15
10.	. Pharmacodynamics of GalNAc-siRNAs containing 2'-5'-RNA linkages	S21
11.	. In vitro off-target silencing of 2'-5'-RNA modified siRNAs	S22
12.	. In vitro CDF plots after treatment with 2'-5'-RNA modified siRNAs	S23
13.	. Additional PD and RNAseq data with HBV-targeting GalNAc-siRNAs	S24
14.	. Overview of published hAgo2 structural data	S26
15.	References	S28

Schlegel et al

Sequences of siRNAs

Duplex	mRNA Target	Passenger	Sequence (5' to 3')	Guide	Sequence (5' to 3')
D1	Ttr	P1	a●a●caguGuUCUugcucuauaaL	G1	u●U●auaGagcaagaAcAcuguu●u●u
D2	Ttr	P1	a●a●caguGuUCUugcucuauaaL	G2	u●U●au <u>A</u> GagcaagaAcAcuguu●u●u
D3	Ttr	P1	a●a●caguGuUCUugcucuauaaL	G3	u●U●aua <u>G</u> agcaagaAcAcuguu●u●u
D4	Ttr	P1	a●a●caguGuUCUugcucuauaaL	G4	u●U●auaG <u>A</u> gcaagaAcAcuguu●u●u
D5	Ttr	P1	a●a●caguGuUCUugcucuauaaL	G5	u●U●auaGa <u>G</u> caagaAcAcuguu●u●u
D6	Haol	P2	g●a●auguGaaAGucaucgacaaL	G7	$u \bullet U \bullet gucGaUGacuuUcAcauuc \bullet u \bullet g$
D7	Haol	P2	g●a●auguGaaAGucaucgacaaL	G8	u●U●gu <u>C</u> GaUGacuuUcAcauuc●u●g
D8	Hao1	P2	g●a●auguGaaAGucaucgacaaL	G9	u●U●guc <u>G</u> aUGacuuUcAcauuc●u●g
D9	Hao l	P2	g●a●auguGaaAGucaucgacaaL	G10	u●U●gucG <u>A</u> UGacuuUcAcauuc●u●g
D10	Hao1	P2	g●a●auguGaaAGucaucgacaaL	G11	u● <i>U</i> ●guc <i>G</i> a <u>T</u> <i>G</i> acuu <i>U</i> c <i>A</i> cauuc●u●g
D11	Ttr	P1	a●a●caguGuUCUugcucuauaaL	G6	u●U●a <u>t</u> agagcaagaAcAcuguu●u●u
D12	Haol	P2	g●a●auguGaaAGucaucgacaaL	G12	u● <i>U</i> ●g <u>t</u> cgatGacuuUcAcauuc●u●g
ALN-HBV	HBV	P3	g●u●guGcACUucgcuucacaL	G13	u●G●ugaAgCGaaguGcAcac●u●u
ALN-HBV02	HBV	P3	g●u●guGcACUucgcuucacaL	G14	u●G●uga <u>A</u> gCGaaguGcAcac●u●u
D13	HBV	P3	g●u●guGcACUucgcuucacaL	G14	u●G●ugaA <u>G</u> CGaaguGcAcac●u●u
D14	Ttr	P1	a●a●caguGuUCUugcucuauaaL	G15	u●U●au(A)GagcaagaAcAcuguu●u●u
D15	Ttr	P1	a●a●caguGuUCUugcucuauaaL	G16	u●U●aua(G)agcaagaAcAcuguu●u●u
D16	Ttr	P1	a●a●caguGuUCUugcucuauaaL	G17	u●U●auaG(A)gcaagaAcAcuguu●u●u
D17	Ttr	P1	a●a●caguGuUCUugcucuauaaL	G18	u●U●auaGa(G)caagaAcAcuguu●u●u
D18	Hao1	P2	g●a●auguGaaAGucaucgacaaL	G19	u●U●gu(C)GaUGacuuUcAcauuc●u●g
D19	Hao l	P2	g●a●auguGaaAGucaucgacaaL	G20	u●U●guc(G)aUGacuuUcAcauuc●u●g
D20	Haol	P2	g●a●auguGaaAGucaucgacaaL	G21	u●U●gucG(A)UGacuuUcAcauuc●u●g
D21	Hao1	P2	g●a●auguGaaAGucaucgacaaL	G22	u● <i>U</i> ●guc <i>G</i> a(U) <i>G</i> acuu <i>U</i> c <i>A</i> cauuc●u●g

Table S1. siRNA duplexes used in these studies

Italicized uppercase, lowercase, uppercase bold underlined, lowercase bold underlined, and uppercase letters in parentheses represent 2'-F, 2'-OMe, (S)-GNA, 2'-deoxy, and 2'-5'-linked ribose sugar modifications, respectively, to Adenosine, Cytosine, Guanosine, Uridine, and Thymidine. "L" represents the tri-N-acetylgalactosamine ligand. Phosphorothioate linkages are indicated by the "•" symbol.

Dose response of selected siRNAs in rats

Figure S1. Knockdown of serum TTR protein in rats (n=3) with parent and GNA-modified siRNAs across the specified doses.

Figure S2. Knockdown of liver *Hao1* mRNA in rats (n=3) with parent and GNA-modified siRNAs across the specified doses.

Metabolism identification and test article quantification in mouse liver

siRNA	Observed MW	Identified Fragment (5' to 3')	Nucleotides in Fragment (5' to 3')	% of Total Strand
D1	7652.163	u●U●auaGagcaagaAcAcuguu●u●u	1-23	55
DI	7316.153	u●U●auaGagcaagaAcAcuguu●u	1-22ª	45
	7580.144	u● <i>U</i> ●aua <i>G<u>A</u>gcaagaAcAcuguu●u●u</i>	1-23	47
D4	7244.128	u●U●auaG <u>A</u> gcaagaAcAcuguu●u	1-22ª	41
D4	5566.906	<u>A</u> gcaagaAcAcuguu●u●u	7-23	6
	5230.896	<u>A</u> gcaagaAcAcuguu●u	7-22	6
D11	7588.166	u●U●a <u>t</u> agagcaagaAcAcuguu●u●u	1-23	57
DII	7252.151	u●U●a <u>t</u> agagcaagaAcAcuguu●u	1-22	43
D	7534.054	u● <i>U</i> ●guc <i>G</i> a <i>UG</i> acuu <i>U</i> c <i>A</i> cauuc●u●g	1-23	47
Do	7159.012	u●U●gucGaUGacuuUcAcauuc●u	1-22	53
	7462.034	u● <i>U</i> ●guc <i>G<u>A</u>UGacuuUcAcauuc●u●g</i>	1-23	35
D0	7086.991	u●U●gucG <u>A</u> UGacuuUcAcauuc●u	1-22	57
D9	5456.814	<u>A</u> UGacuuUcAcauuc●u●g	7-23	4
	5081.774	<u>A</u> UGacuuUcAcauuc●u	7-22	4
D13	7508.112	u● <i>U</i> ●g <u>t</u> cga <u>t</u> GacuuUcAcauuc●u●g	1-23	45
D12	7133.069	u● <i>U</i> ●g <u>t</u> cga <u>t</u> GacuuUcAcauuc●u	1-22	55

Table S2. Identification of Guide Strand Metabolites from Selected siRNAs in Mouse Liver (n=1)

Italicized uppercase, lowercase, uppercase bold underlined, and lowercase bold underlined represent 2'-F, 2'-OMe, (S)-GNA, and 2'-deoxy modifications, respectively, to Adenosine, Cytosine, Guanosine, Uridine, and Thymidine. Phosphorothioate linkages are indicated by the "•" symbol. Percent of strand is calculated based on TIC intensity summed for all metabolites of a given strand. ^a Metabolite is isobaric with the 2-23 fragment, but the proposed 3'-metabolite is more likely.

Figure S3. Level of guide strand detected in liver via RT-qPCR from various GalNAc-siRNAs seven days post a single dose of 10 mg/kg in mice (n=1).

In vitro off-target silencing of DNA-modified siRNAs

Figure S4. Activity of siRNAs targeting *Ttr* in the off-target reporter assay (n=4).

Figure S5. Activity of siRNAs targeting *Hao1* in the off-target reporter assay (n=4).

Additional single-dose knockdown data in mice

Figure S6. Knockdown of serum TTR protein in mice (n=3) with parent and modified siRNAs administered subcutaneously at 1 mg/kg.

Figure S7. Knockdown of liver *Hao1* mRNA in mice (n=3) with parent and modified siRNAs administered subcutaneously at 1 mg/kg.

Clinical pathology graphs and tables

Results were generated for animals in four different rat toxicology studies (siRNAs dosed 3x weekly at specified dose):

- 1. **D1**, **D4**, **D6**, and **D9** @ 3, 10, and 30 mg/kg; 0.9% NaCl (#1) (n=4)
- 2. D1 and D4 @ 30, 60, and 120 mg/kg; 0.9% NaCl (#2) (n=4-5)
- 3. **D1**, **D4**, and **D11** @ 30 mg/kg; 0.9% NaCl (n=4)
- 4. **D6**, **D9**, and **D12** @ 30 mg/kg; **D6** and **D9** @ 60 and 120 mg/kg; 0.9% NaCl (#2) (n=4); Note that no animals from the 120 mg/kg cohort for **D6** successfully completed the study and the data is representative from those animals found moribund or sacrificed early.

Figure S8. Alanine transaminase (ALT) levels in rats of *Ttr*- or *Hao1*-targeting siRNAs **D1**, **D4**, **D11**, **D6**, **D9**, and **D12** dosed 3x weekly at 3, 10, 30, 60, or 120 mg/kg (n=4-5). Levels for **D6** at 120 mg/kg were not able to be determined from animals that died prematurely.

Figure S9. Glutamate dehydrogenase (GLDH) levels in rats of *Ttr*- or *Hao1*-targeting siRNAs **D1**, **D4**, **D11**, **D6**, **D9**, and **D12** dosed 3x weekly at 3, 10, 30, 60, or 120 mg/kg (n=4-5). Data for **D6** at 120 mg/kg was not collected from animals that died prematurely.

Figure S10. Aspartate aminotransferase (AST) levels in rats of *Ttr-* or *Hao1*-targeting siRNAs **D1**, **D4**, **D11**, **D6**, **D9**, and **D12** dosed 3x weekly at 3, 10, 30, 60, or 120 mg/kg (n=4-5). Data for **D6** at 120 mg/kg was not collected from animals that died prematurely.

Figure S11. Alkaline phosphatase (ALP) levels in rats of *Ttr*- or *Hao1*-targeting siRNAs **D1**, **D4**, **D11**, **D6**, **D9**, and **D12** dosed 3x weekly at 3, 10, 30, 60, or 120 mg/kg (n=4-5). Data for **D6** at 120 mg/kg was not collected from animals that died prematurely.

Figure S12. Albumin (ALB) levels in rats of *Ttr*- or *Hao1*-targeting siRNAs **D1**, **D4**, **D11**, **D6**, **D9**, and **D12** dosed 3x weekly at 3, 10, 30, 60, or 120 mg/kg (n=4-5). Data for **D6** at 120 mg/kg was not collected from animals that died prematurely.

Figure S13. Total protein (TP) levels in rats of *Ttr-* or *Hao1*-targeting siRNAs **D1**, **D4**, **D11**, **D6**, **D9**, and **D12** dosed 3x weekly at 3, 10, 30, 60, or 120 mg/kg (n=4-5). Data for **D6** at 120 mg/kg was not collected from animals that died prematurely.

			-			U	0		,							
		D1								D4						
		0.9% NaCl	0.9% NaCl	3 mg/kg	10 mg/kg	30 mg/kg	30 mg/kg	60 mg/kg	120 mg/kg	3 mg/kg	10 mg/kg	30 mg/kg	30 mg/kg	60 mg/kg	120 mg/kg	
	ALT	37 ± 5	43 ± 7	39 ± 5	43 ± 10	70 ± 29	66 ± 4	76 ± 36	71 ± 18	41 ± 9	42 ± 6	38 ± 2	51 ± 4	51 ± 8	51 ± 9	
ы	GLDH	8 ± 2	7 ± 1	7 ± 2	11 ± 4	87 ± 71	56 ± 17	55 ± 61	86 ± 88	7 ± 1	8 ± 1	9 ± 3	9 ± 2	19 ± 9	18 ± 6	
nete	AST	87 ± 14	76 ± 11	84 ± 13	87 ± 7	225 ± 105	202 ± 25	203 ± 112	179 ± 61	79 ± 8	75 ± 13	72 ± 5	86 ± 7	94 ± 9	94 ± 9	
arar	ALP	160 ± 15	155 ± 19	190 ± 60	170 ± 21	359 ± 101	245 ± 54	308 ± 73	353 ± 57	198 ± 32	184 ± 19	166 ± 11	183 ± 44	153 ± 44	181 ± 28	
Pa	ALB	2.9 ± 0.1	3.0 ± 0.1	2.9 ± 0.1	2.9 ± 0.1	2.7 ± 0.1	2.8 ± 0.1	3.0 ± 0.2	2.9 ± 0.1	3.0 ± 0.1	3.1 ± 0.1	3.0 ± 0.2	3.0 ± 0.1	3.0 ± 0	2.9 ± 0.2	
	TP	5.2 ± 0.2	5.3 ± 0.2	5.3 ± 0.1	5.2 ± 0.1	4.8 ± 0	4.9 ± 0.3	5.1 ± 0.4	4.9 ± 0.4	5.3 ± 0.1	5.4 ± 0.3	5.4 ± 0.3	5.4 ± 0.3	5.4 ± 0.1	5.3 ± 0.2	

Table S3. Tabulated clinical pathology data for *Ttr*-targeting siRNAs (n=4-5).

Values represent the mean +/- standard deviation for all animals in the study

				Ttr				Hao l		
		0.9% NaCl	D1	D4	D11	0.9% NaCl	D6	D9	D12	
	ALT	42 ± 25	82 ± 13	38 ± 9	83 ± 10	33 ± 6	41 ± 9	36 ± 3	44 ± 11	
er	GLDH	36 ± 83	154 ± 68	8 ± 1	101 ± 33	9 ± 2	64 ± 10	31 ± 10	43 ± 25	
nete	AST	96 ± 40	316 ± 47	85 ± 10	293 ± 55	95 ± 26	155 ± 17	123 ± 22	165 ± 67	
arame	ALP	170 ± 25	292 ± 44	199 ± 46	401 ± 76	207 ± 53	432 ± 43	355 ± 74	544 ± 213	
P	ALB	3.2 ± 0.1	2.9 ± 0.2	3.2 ± 0.1	2.8 ± 0	3.1 ± 0.2	3.0 ± 0.2	3.0 ± 0.1	3.3 ± 0.2	
	ТР	5.5 ± 0.2	4.9 ± 0.4	5.6 ± 0.3	4.7 ± 0.1	5.4 ± 0.3	5.3 ± 0.3	5.5 ± 0.2	5.5 ± 0.5	

Table S4. Tabulated clinical pathology data for selected siRNAs at 30 mg/kg (n=4).

Values represent the mean +/- standard deviation for all animals in the study

 Table S5. Tabulated clinical pathology data for *Hao1*-targeting siRNAs (n=4).

		D6									D9						
		0.9% NaCl	0.9% NaCl	3 mg/kg	10 mg/kg	30 mg/kg	30 mg/kg	60 mg/kg	120 mg/kg	3 mg/kg	10 mg/kg	30 mg/kg	30 mg/kg	60 mg/kg	120 mg/kg		
	ALT	37 ± 5	33 ± 6	37 ± 4	49 ± 4	49 ± 8	41 ± 9	85 ± 72	n.d.	42 ± 6	33 ± 2	45 ± 7	36 ± 3	50 ± 9	108 ± 87		
н	GLDH	8 ± 2	9 ± 2	6 ± 1	19 ± 9	64 ± 30	64 ± 10	430 ± 572	n.d.	7 ± 1	7 ± 1	66 ± 62	31 ± 10	71 ± 53	260 ± 295		
nete	AST	87 ± 14	95 ± 26	86 ± 9	100 ± 20	155 ± 24	155 ± 17	772 ± 974	n.d.	83 ± 16	70 ± 4	131 ± 22	123 ± 22	153 ± 34	441 ± 383		
arar	ALP	160 ± 15	207 ± 53	192 ± 49	315 ± 62	477 ± 100	432 ± 43	445 ± 136	n.d.	195 ± 19	196 ± 23	312 ± 29	355 ± 74	392 ± 75	595 ± 288		
Pa	ALB	2.9 ± 0.1	3.1 ± 0.2	3.1 ± 0.1	3.0 ± 0.2	2.8 ± 0.1	3.0 ± 0.2	2.8 ± 0.3	n.d.	3.0 ± 0.1	2.9 ± 0.1	2.7 ± 0.2	3.0 ± 0.1	2.9 ± 0.2	2.7 ± 0.3		
	TP	5.2 ± 0.2	5.4 ± 0.3	5.3 ± 0.4	5.4 ± 0.4	5.1 ± 0.2	5.3 ± 0.3	4.7 ± 0.8	n.d.	5.4 ± 0.2	5.3 ± 0.2	5.2 ± 0.3	5.5 ± 0.2	5.5 ± 0.5	5.1 ± 0.4		

Values represent the mean +/- standard deviation for all animals in the study

Microscopic liver findings in rats

Results were generated for animals in four different rat toxicology studies (siRNAs dosed 3x weekly at specified dose):

- 1. **D1**, **D4**, **D6**, and **D9** @ 3, 10, and 30 mg/kg; 0.9% NaCl (#1) (n=4)
- 2. **D1** and **D4** @ 30, 60, and 120 mg/kg; 0.9% NaCl (#2) (n=5)
- 3. **D1**, **D4**, and **D11** @ 30 mg/kg; 0.9% NaCl (n=4)
- 4. **D6**, **D9**, and **D12** @ 30 mg/kg; **D6** and **D9** @ 60 and 120 mg/kg; 0.9% NaCl (#2) (n=4); Note that no animals from the 120 mg/kg cohort for **D6** successfully completed the study and the data is representative from those animals found moribund or sacrificed early.

			D1						D 4					
Dose	0.9% NaCl	3	10	30	30	60	120	3	10	30	30	60	120	
Degeneration			1	2-3	2	1-3	1-3							
Increased mitoses				2-3	2-3	1-2	2-3				1		1	
Necrosis, coagulative				1			1-2							
Necrosis, single cell			1	1-2	1-2	1-2	1			1	1	1	1	
Vacuolation, hepatocellular		1	1-2	2	2	1-3	1-3	1	1	1	1	1	1	
Hyperplasia, oval cell							2-3							
Karyomegaly						1	1-2							

Table S6. Microscopic liver findings after treatment with *Ttr*-targeting siRNAs (n=4-5).

The range of severity grade for each microscopic finding if present was graded on a scale of 1-4; (1 = minimal, 2 = mild, 3 = moderate, and 4 = marked).

1	0						00	()
	0.9% NaCl	D1	D4	D11	0.9% NaCl	D6	D9	D12
Hyperplasia, bile duct		1						
Increases mitoses		1-2		1-3		2	1	2-3
Infiltration, mixed cell				1	1	2-3	1	2
Karyomegaly				1	n.d.	n.d.	n.d.	n.d.
Necrosis, single cell, hepatocellular		1-2		1-2		1-3	1	2
Vacuolation, hepatocellular		2-3	1	3-4	1	2-3	1-2	3-4

Table S7. Microscopic liver findings after treatment with selected siRNAs at 30 mg/kg (n=4).

The range of severity grade for each microscopic finding if present was graded on a scale of 1-4; (1 = minimal, 2 = mild, 3 = moderate, and 4 = marked). n.d. = not determined

		D6								D	9		
Dose	0.9% NaCl	3	10	30	30	60	120	3	10	30	30	60	120
Change, cytoplasmic, eosinophilic						1-2	2						2
Hyperplasia, bile duct						2-3	2-3						1-2
Hyperplasia, Kupffer cell				1-2			2-3						
Hyperplasia, oval cell						1-4	1						1-2
Hypertrophy, hepatocellular						2-3	2						
Increased mitoses				1	2	3	1-3			1	1	1	1-2
Necrosis						3-4	2-4						2-3
Necrosis, single cell				2-3	1-3	2-3	2			1	1	1-2	1-2
Vacuolation, hepatocellular	1	1	1-2	2-3	2-3	2-3	1-2	1	1	1-2	1-2	1-2	1-2

Table S8. Microscopic liver findings after treatment with *Hao1*-targeting siRNAs (n=4).

The range of severity grade for each microscopic finding if present was graded on a scale of 1-4; (1 = minimal, 2 = mild, 3 = moderate, and 4 = marked).

Therapeutic index calculation

Figure S14. Therapeutic indices in rats as determined by ratio of ED₅₀ dose and NOAEL (n=4-5). The ED₅₀ values for *Ttr*-targeting siRNAs were 0.05 mg/kg (**D1**, parent) and 0.075 mg/kg (**D4**, GNA). The NOAEL values were 10 mg/kg (**D1**, parent) and >120 mg/kg (**D4**, GNA). The ED₅₀ values for *Hao1*-targeting siRNAs were 0.3 mg/kg for both parent **D6** and GNA **D9**. The NOAEL values were 10 mg/kg (**D6**, parent) and 60 mg/kg (**D9**, GNA).

In vivo RNAseq MA plots, CDF plots, and DEG counts

Figure S15. Cumulative distribution function (CDF) plots relative to control after treatment with the designated *Ttr*-targeting siRNAs D1 and D4 dosed 3x weekly at the specified dose (n=4-5). Each colored line represents the impact of different types of seed matches on the cumulative dysregulation of gene transcripts; black = background, purple = mer6, yellow = mer7-A1, blue = mer7-m8, red = mer8.

Figure S16. Gene dysregulation in rats following weekly dosing of GalNAc-siRNAs targeting *Ttr* (**D1**, **D4**, **D11**) or *Hao1* (**D6**, **D9**, **D12**). Rats were administered three weekly doses of 30 mg/kg, and frozen livers were collected 24 hours post last dose for RNAseq analysis (n=4). Each dot shown represents a gene transcript in the rat transcriptome, their average read count, and the level of change in expression compared to the control group dosed with 0.9% NaCl. Whereas grey dots represent gene transcripts which were not determined to be differentially expressed after siRNA treatment relative to the control, the blue and red dots represent differentially expressed transcripts (false discovery rate <0.05) with or without a canonical miRNA match (8mer, 7mer-A1, 7mer-m8) to the guide seed region, respectively. On-target knockdown is represented by the circled dot.

Schlegel et al

Figure S17. Cumulative distribution function (CDF) plots relative to control after treatment with the specified *Ttr*- and *Hao1*-targeting siRNAs dosed 3x weekly at 30 mg/kg (n=4). Each colored line represents the impact of different types of seed matches on the cumulative dysregulation of gene transcripts; black = background, purple = mer6, yellow = mer7-A1, blue = mer7-m8, red = mer8.

Figure S18. Cumulative distribution function (CDF) plots relative to control after treatment with the designated *Hao1*-targeting siRNAs **D6** and **D9** dosed 3x weekly at the specified dose (n=4). Each colored line represents the impact of different types of seed matches on the cumulative dysregulation of gene transcripts; black = background, purple = mer6, yellow = mer7-A1, blue = mer7-m8, red = mer8.

Table S9. Number of differentially expressed gene transcripts from <i>in vivo</i> RNAseq after
treatment with the specified <i>Ttr</i> - or <i>Hao1</i> -targeting siRNAs dosed 3x weekly at the
specified doses (n=4-5).

siDNA	Torgot				#DEGs		
SINIA	Target	Seed Match	3mg/kg	10mg/kg	30mg/kg	60mg/kg	120mg/kg
		Background	28	1003	1681	664	1204
		mer8	0	16	39	21	24
D1	Ttr	mer7-m8	1	38	62	32	49
		mer7-A1	1	50	103	37	63
		mer6	7	95	186	62	116
		Background	49	1	2	23	684
		mer8	2	0	0	2	11
D4	Ttr	mer7-m8	1	0	0	4	31
		mer7-A1	5	0	0	2	46
		mer6	7	0	0	2	80
		Background	70	791	3959	7436	8208
		mer8	1	5	10	12	14
D6	Haol	mer7-m8	5	16	29	41	41
		mer7-A1	0	7	18	23	24
		mer6	10	38	107	166	173
		Background	3	294	3144	4521	6325
		mer8	0	0	6	8	8
D9	Haol	mer7-m8	0	0	21	26	34
		mer7-A1	0	1	15	22	18
		mer6	0	15	79	101	148

Number of DEGs estimated relative to saline controls 24 hours post last dose at a false discovery rate < 0.05.

Table S10. Magnitude of cumulative dysregulation of gene transcripts as measured in CDF plots after treatment with the specified *Ttr-* or *Hao1*-targeting siRNAs dosed 3x weekly at the specified doses (n=4-5).

	T				CDF Shift		
siRNA	Target	Seed Match	3mg/kg	10mg/kg	30mg/kg	60mg/kg	120mg/kg
		mer8	-0.020	-0.102**	-0.220***	-0.201***	-0.161***
D1	Ttu	mer7-m8	0.068***	0.039	-0.142***	-0.114***	-0.081**
DI	1 lr	mer7-A1	0.117***	0.113***	-0.097***	-0.078***	-0.090***
		mer6	0.116***	0.126***	-0.029	-0.014	-0.018
		mer8	-0.016	-0.002	-0.066***	-0.062**	-0.193***
D4	Ttr	mer7-m8	0.066***	0.084***	-0.008	0.007	-0.118***
D4		mer7-A1	0.102***	0.109***	0.001	0.005	-0.159***
		mer6	0.085***	0.098***	0.028***	0.034***	-0.112***
		mer8	-0.231**	-0.435***	-0.393*	-0.380	-0.545
Dć	Ugol	mer7-m8	-0.199***	-0.288***	-0.326***	-0.055	-0.299
Do	паот	mer7-A1	-0.145**	-0.240***	-0.212	-0.227	-0.182
		mer6	-0.033	-0.103***	-0.145**	-0.049	-0.117
		mer8	-0.086	-0.105	-0.192	-0.089	-0.204
D0	Ugol	mer7-m8	-0.097**	-0.027	-0.156	-0.116	-0.036
Dy	паот	mer7-A1	-0.103*	-0.147**	-0.186	-0.159	-0.076
		mer6	-0.006	-0.014	-0.090*	-0.087	-0.053

Significance of each relative to background is indicated as follows *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.001.

Pharmacodynamics of GalNAc-siRNAs containing 2'-5'-RNA linkages

Figure S19. Knockdown of serum TTR protein after a single 0.5 mg/kg dose of parent or 2'-5'-RNA-modified siRNAs in mice (n=3).

Figure S20. Knockdown of liver *Hao1* mRNA 7 days post a single 1 mg/kg dose of parent or 2'-5'-RNA-modified siRNAs in mice (n=3).

In vitro off-target silencing of 2'-5'-RNA modified siRNAs

Figure S21. Activity of parent or 2'-5'-RNA-modified siRNAs targeting *Ttr* in the off-target reporter assay (n=4).

Figure S22. Activity of parent or 2'-5'-RNA-modified siRNAs targeting *Hao1* in the off-target reporter assay (n=4).

In vitro CDF plots after treatment with 2'-5'-RNA modified siRNAs

Figure S23. Cumulative distribution function (CDF) plots relative to control after transfection (n=4) with the designated *Ttr*- or *Hao1*-targeting siRNAs at a dose of 50 nM in primary rat hepatocytes. Each colored line represents the impact of different types of seed matches on the cumulative dysregulation of gene transcripts; black = background, purple = mer6, yellow = mer7-A1, blue = mer7-m8, red = mer8.

Additional PD and RNAseq data with HBV-targeting GalNAc-siRNAs

Figure S24. Evaluation of the pharmacodynamics after a single 1 mg/kg dose of HBV-targeting GalNAc-siRNAs in mice (n=3) transduced with HBV-AAV8. Serum HBsAg levels represent the average of all animals from a given cohort, each normalized to individual pre-dose serum HBsAg levels.

siRNA	Seed Match	#DEGs
	Background	422
	mer8	57
ALN-HBV	mer7-m8	121
	mer7-A1	72
	mer6	129
ALN-HBV02	Background	73
	mer8	10
	mer7-m8	17
	mer7-A1	20
	mer6	33

Table S11. Number of differentially expressed gene transcripts from *in vitro* RNAseq after treatment with **ALN-HBV** or **ALN-HBV02** at 10nM (n=4)

Number of DEGs estimated relative to mock controls post-transfection in HepG2.2.15 cells at a false discovery rate <0.05.

siRNA	Seed Match	CDF Shift
ALN-HBV	mer8	-0.100***
	mer7-m8	-0.079***
	mer7-A1	-0.032***
	mer6	-0.013**
ALN-HBV02	mer8	-0.024***
	mer7-m8	-0.018***
	mer7-A1	-0.018***
	mer6	-0.009**

Table S12. Magnitude of cumulative dysregulation of gene transcripts as measured in the CDF plots after treatment with **ALN-HBV** or **ALN-HBV02** at 10nM (n=4)

Significance of each relative to background is indicated as follows *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

Overview of published hAgo2 structural data

Figure S25. Overview of hAgo2 guide-only and guide-target structures. A) Global view of hAgo2 in guide-only (PDB ID 4F3T, (1)) and guide-target (PDB ID 4W5T, (2)) forms. B) Close up overlay of the two complexes, helix-7, and Ile365.

Figure S26. Overview of P-P distances between g5-g6, g6-g7, and g7-g8 in structures of Ago2 with guide only (A) or guide-target (B) complexes. Figures were generated using PyMol from PDB structures 4F3T (guide only, (1)) or 4W5T (guide-target, (2)).

References

- 1. Elkayam, E., Kuhn, C.-D., Tocilj, A., Haase, Astrid D., Greene, Emily M., Hannon, Gregory J. and Joshua-Tor, L. (2012) The Structure of Human Argonaute-2 in Complex with miR-20a. *Cell*, **150**, 100-110.
- 2. Schirle, N.T., Sheu-Gruttadauria, J. and MacRae, I.J. (2014) Structural basis for microRNA targeting. *Science*, **346**, 608-613.