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Editorial decision letter with reviewers’ comments, f irst round of review 

Dear Dr. Neogi, 
 
I’m enclosing the comments that reviewers made on your paper, which I hope you will find useful and 
constructive. As you'll see, they express interest in the study, but they also have a number of criticisms 
and suggestions. Based on these comments, it seems premature to proceed with the paper in its current 
form; however, if it's possible to address the concerns raised with additional experiments and/or analysis, 
we’d be interested in considering a revised version of the manuscript.  
  
As a matter of principle, I usually only invite a revision when I’m reasonably certain that the authors' work 
will align with the reviewers’ concerns and produce a publishable manuscript.  In the case of this 
manuscript, the reviewers and I have make-or-break concerns that can be addressed by: 

1. Improved contextualization of this study within previous literature. 
2. Clearer presentation of the rationale and structure of the study, and clearer articulation of the 

main advance. 
3. Reorganization of the Results to better reflect the scientific argument. 
4. Clearer description of the methodology. 
5. Addressing technical concerns and additional experiments or analyses to substantiate the main 

claims. 

Given the pre-existence of the Zhang 2020 scRNAseq dataset, this should be mentioned in the 
introduction along with the Krishnan 2021 paper as the baseline and context for the rationale and 
motivation of the current study. 

It's not clear if the main advance is intended to be methodological (e.g. the patient re-stratification and 
personalized GSMMs) or biological/clinical (e.g. the SLC transporter results).  In my experience, papers 
with both methodological development and biological insights need to stick to a single message and 
prioritize one over the other -- having more than one message will confuse the reader. In the case of a 
methodological advance, any resulting biological insights function as great applications of the method. In 
the case of biological advance, the method functions to deliver the biological insights. 

I agree with Reviewer #2 that the different experiments are disjointed from each other. It seems they are 
presented in order of discovery rather than as a scientific argument. Please reorganize the manuscript to 
reflect your scientific argument. Each experiment should support each other and the whole argument. 
Laying out the structure of the study beforehand and ensuring it reflects the structure of your argument 
and the organization of the paper itself will help elucidate any gaps that may need to be filled with further 
experiments or analyses. Essential to this process will be Reviewer #1's comments (especially those 
regarding Fig 5). 



 

 
 
 

To help guide revision, I’ve highlighted portions of the reviews that strike me as particularly critical.  I’d 
also like to be explicitly clear about an almost philosophical stance that we take at Cell Systems… 
  

• We believe that understanding how approaches fail is fundamentally interesting: it provides 
critical insight into understanding how they work. We also believe that all approaches do fail and 
that it's unreasonable, even misleading, to expect otherwise. Accordingly, when papers are 
transparent and forthright about the limitations and crucial contingencies of their approaches, we 
consider that to be a great strength, not a weakness.   

• We believe that the figures are the scientific backbone of the paper.  Currently, it’s not possible to 
understand the manuscript’s conceptual advance from figures presented.  Similarly, it’s not 
possible to understand where your approach gets its analytical power.  These things need to be 
demonstrated with data and analysis, in the form of figures with their legends or mathematical 
argumentation, and then supported with explanatory text.  

Please keep these in mind when addressing the reviewer and editorial concerns. 
  
As you address these concerns, it's important that you and I stay on the same page.  I'm always happy to 
talk, either over email or by Zoom, if you’d like feedback about whether your efforts are moving the 
manuscript in a productive direction. Do note that we generally consider papers through only one major 
round of revision, so the revised manuscript would be either accepted or rejected based on the next round 
of comments we receive from the reviewers.  If you have any questions or concerns, please let me 
know.  More technical information and advice about resubmission can be found below my 
signature.  Please read it carefully, as it can save substantial time and effort later.  
  
I look forward to seeing your revised manuscript. 
 
All the best, 
 
Ernesto Andrianantoandro, Ph.D. 
Scientific Editor, Cell Systems 

Reviewers' comments: 
 
Reviewer #1: The manuscript "Multiomics personalized network analyses highlight progressive immune 
disruption of central metabolism associated with COVID-19 severity" by Ambikan et al describes a 
comprehensive systems-level characterization of patient data in order to gain insights in biomarkers 
associated with SARS-CoV-2. Portions of this patient set have been previously analyzed by untargeted 
bulk plasma metabolomics and interleukin levels; here, additional whole blood transcriptomics and single 
cell type metabolomics is performed on the same samples. The authors analyzed the multi-omics features 
associated with COVID-19 severity by digital cell quantification, a variety of network tools, and integrative 
genome-scale flux balance analysis. They identify specific metabolic transporters and TCA intermediates 
associated with disease. Overall, I found the repertoire of analytical methods applied to the data 
interesting and somewhat insightful, however falling short of pinpointing how the disparate patient class 



 

 
 
 

features of metabolism are specific to targetable cell types. 
 
For a large data mining exercise like that performed here, visualization of results and communication of 
the data processing steps is of utmost importance and there were places in which clarity in how the 
results were generated was lacking: 
 
Study design: "Health controls" is used to describe the n=31 patients that are PCR-negative. 10 of these 
patients are identified as convalescent. Throughout the paper, the 21 patients that are CoV-2-Ab- should 
be clearly and consistently identified distinctly from the 10 patients that are CoV-2-Ab+. For example 
"health control" is used in Fig 1A for CoV-2-Ab-. Given the recent publications that suggest residual viral 
latency and/or tissue damage in asymptomatic and/or recovered patients, the separation of these groups 
should be maintained when possible in subsequent analyses. 
 
Figure 1A: the rest of the paper is predicated on the separation between healthy and convalescent versus 
mild & severe hospitalized patients on the UMAP plot of whole blood transcriptomics. Has an analysis 
been performed on the duration of SARS-CoV-2 infection? While severity is associated with length of time 
post-infection, some patients will progress to this stage/category faster than others. Transcriptomics and 
subsequent FBA will reflect a remodeling of expression levels that will occur over time. This may influence 
membership in SNF clusters in Figure 4 as well. 
 
Figure 1E/F: Please provide titles on top of the heatmaps as was done for S2B/C. It is striking that the 
membership of altered KEGG pathways between 1E and 1F is quite low (I counted 11 common ones?) 
1E does not support the GSEA result of top biological processes being mitochondrial. Please discuss. 
 
Figure 2: Is "healthy control" defined here as all PCR-negative individuals? This analysis has the 
opportunity to characterize any T cell exhaustion or residual effects of infection in immune cell populations 
of formerly infected individuals. 
 
Figure S3A: How is significance determined in this figure? 
 
Figure 4F. Please provide methodology for data processing/scaling of interleukin levels for generating this 
figure. 
 
Figure 5: At this point in the paper, I found it very challenging to follow how the patient-specific FBA 
models were generated. The details in the methods section are inadequate. The Github link is inactive. 
Please provide a table of which metabolites were used to define a closed form model with boundary 
levels. "The exchange reactions in the model were constrained using plasma metabolomics data as 
reference. " Is this performed independently using each patient's plasma values? 
 
For the personalized GSMMs in Fig 5D, it appears that the bulk whole-blood transcriptomic data is used 
to populate a generic blood cell model of metabolism to elucidate flux features that distinguish the SNF 
clusters. It is unfortunate that the study design did not allow for single cell RNAseq on these patients, 
however I am puzzled as to why the authors did not take advantage of the digital cell quantification via 
EPIC to estimate proportions of transcript counts originating from each cell type. After all of the detailed 



 

 
 
 

immunotyping performed earlier in the paper demonstrating pronounced differences in immune cell 
populations, why is the FBA lumped together, including cell types that require de novo nucleoside 
synthesis (and thus the importance of SLC29A1) and those that don't? Can a monocyte-derived DC 
specific metabolic flux model, for example, provide more insight on TCA-related changes than this generic 
model? 
 
Discussion: No mention of limitations of this study. The use of an independent scRNAseq data set from 
Zhang et al instead of internally consistent transcriptomics is a very large drawback for interpretation of 
the current study. 
 
 
Reviewer #2: In their work Ambikan et al. investigate the molecular response to COVID-19 using a variety 
of OMICs data sets from blood from COVID-19 patients and data analysis techniques. They identify 
molecular signatures of disease severity in COVID-19 and relate them to potential pathomechanisms that 
could cause the high heterogeneity in the course of the disease. To this end, the authors use RNA-Seq 
data from whole blood to identify differentially expressed genes between cohorts of patients with different 
disease severity. Subsequently, they use digital cell quantification to explore the frequency of different 
immune cell subtypes and find a loss of correlation between marker gene expression and subtype 
frequency for several immune cell subsets. In consequence, they use FACS to determine the frequency of 
different immune cell subsets. Subsequently, they use these data sets to stratify patients into novel 
clusters and use this stratification as basis for the analysis of sub-group specific changes in predicted 
metabolic activities through reconstruction of context-specific metabolic networks. While the research 
question being asked in the manuscript is important and the underlying data sets as well as insights 
gained quite relevant, it seems more like a patchwork of several independent stories woven together. 
Also the GitHub repository in which the code of the study is reported was not accessible 
(https://github.com/neogilab/COVID_GSMM). I cannot provide line numbers or page numbers in my 
review since those were missing from the submitted manuscript. 
 
Major points: 
Overall, the manuscript appears like a patchwork of several different stories woven together. Thus, the 
analysis of the bulk sequencing data are somehow disconnected from the FACS analysis of immune cell 
subsets and this is again disconnected from the modelling-driven part. Moreover, some of the questions 
being addressed could have been more easily answered with already available data sets. For instance, 
the authors use digital cell quantification to investigate the frequency of different immune cell subsets in 
the blood of COVID-19 patients. However, there is a large number of scRNA-Seq studies already 
available (e.g. PMID 32810438) that are much better able to elucidate changes in cell frequency in 
different stages as well as severity of COVID-19. Moreover, while this prompted a quantification of 
immune cell subsets in their samples, this information probably could also have been obtained from 
published studies. Such datasets could also have been easily used to investigate the observed loss of 
correlation between marker gene expression and abundance of specific immune cell subsets. Thus, the 
FACS-based analysis as well as the digital cell quantification somehow stand out as not really 
contributing to the storyline of the paper. 
 
I like the approach of mapping transcriptomic data from bulk sequencing data to metabolic models that 



 

 
 
 

have been conditioned with the specific metabolomics data. However, the authors include a viral 
replication reaction in the model for SARS-CoV-2 infected patients. While this could be justified if this was 
data from nasopharyngal swabs or lung lavage, a conclusive proof of productive viral replication in blood 
is still lacking. Moreover, the inclusion of the viral replication reaction only for SARS-CoV-2 infected 
patients while reasonable, might also affect the identified reactions. Thus, the authors should clarify which 
of the patient-cohort specific reactions are due to the addition of the viral replication reaction and which 
arise from differences in gene expression. Ideally, since there is no viral replication in blood, the viral 
replication reaction should not be used in the models. 
 
Several key results are reported in a somewhat unreflected manner. For instance, the authors discuss the 
transporter SLC16A6 extensively but fail to point out that most of its functions are only inferred from 
homology. There is one report that this transporter is involved in beta-hydroxybutyrate transport but the 
remaining transport functions are just inferred. Thus, this result seems somewhat questionable or at least 
needs to be put in a better context. Moreover, they report changes in butyrate concentrations between 
patient groups while this metabolite is of microbial origin and mostly consumed by enterocytes. This is 
also potentially interesting and could be discussed in more detail. 
 
The authors report glycolysis and glutaminolysis as potential targets to inhibit viral replication. While 
blocking these pathways would certainly prevent viral replication they are also essential for normal cellular 
function. This should be mentioned and it should be checked whether the approach also returns 
reactions/pathways that are less central for normal cellular function. Moreover, the model is based on 
blood data (see my previous comment) and hence it is questionable to which extent it reflects metabolic 
needs in virally infected cells. 
 
While there are different views on the relevance of a clear storyline for a manuscript, this is clearly 
missing from the manuscript. Thus, it is difficult to judge what are the most important and central findings 
of the study. While this is probably difficult to assess given the ongoing high frequency of COVID-19-
related publications, a lot of streamlining would clearly benefit the manuscript. 
 
The abstract contains a lot of grammatical errors, which are not as prevalent in the main text (e.g. 
"However, the clinical outcome and disease severity are heterogenous and cannot explain by a single 
factor."). The manuscript should be checked by a native English speaker. 
 
Minor points: 
Please provide a citation for the statement "Though the primary site of infection is the upper respiratory 
tract, SARS-CoV-2 can invade several organs, tissues, and cells of the body." 
 
The figures are in low quality but that's probably due to some hickup in the submission system. 
 
 
Reviewer #3: This study presented network-based integrative analysis of metabolic and transcriptomic 
data across COVID-19 phenotypes, including COVID-19 negative, hospitalized-mild, and -severe. The 
authors identified a variety of metabolic pathways related to COVID-19 severity. Overall, this is an 
interesting study, which may offer metabolic pathobiology of COVID-19 severity and identify potential 



 

 
 
 

metabolic pathways for future intervention approach development. However, several below major 
concerns should be considered further. 
 
It is not clear why the authors define hospitalized-mild (n=26, O2 requirement<4lit/min) and hospitalize-
severe (n=11, O2 requirement>4lit/min). 
 
Differential gene expression (DGE) analysis (Adj. p<0.05) identified 8492 genes that were differentially 
regulated between the HC and COVID-19 patients based on this small sample size. It is very hard to 
understand why 40% of human genome are differentially expressed. A more strict cutoff, including fold 
change, must be used to define the DEG. 
 
During DEG and GSEA analysis, disease comorbidities, such as diabetes and obesity, should be 
adjusted. 
 
Immune cell differences, including neutrophils and classical monocytes, are well described in recent 
studies, which are related to COVID-19 disease severities, such as doi: 10.1111/acel.13544 and doi: 
10.1038/s41392-021-00709-x. The authors are suggested to highlight novelty of the current findings. 
These COVID-19 disease severity-specific immune cell changes are sex- or age-dependent or not. 
 
Topological network analysis using Adj. p<10-5 (Spearman rank correlation). Yet, Adj. 
p<0.05 was used for differential expression analysis. Different adj. p-values were used without any 
rationale. 
 
More details for single-cell type metabolomics should be provided. 
 
Network-based integrative analysis of metabolomics and transcriptomics have pointed out multiple 
metabolic pathways related to COVID-19 severity; yet, most metabolic pathways have been widely 
reported in COVID-19 studies. The authors should highlight which metabolic pathways are novel 
pathways compared to previously published COVID-19 metabolic studies. In addition, which metabolic 
pathways cannot be funded by metabolomics or transcriptomics analysis alone. 
 
The resolution of figures is very poor. The reviewers cannot see all images and figure's text across all 
main figures. 
 
 
 
 

Authors’ response to the reviewers’ f irst round comments  

Attached. 
 
 



 

 
 
 

 

Editorial decision letter with reviewers’ comments, second round of review 

Dear Dr. Neogi, 
 
I hope this email finds you well.  The reviews are back on your manuscript and I’ve appended them 
below.  You’ll see that the reviewers find the revisions satisfactory, for the most part. However, Reviewer 
#1 still has concerns that need to be addressed through revision of the text and figures and some 
additional analysis to resolve whether the metabolic signatures you find are unique to COVID-19 (see 
highlighted portion of Reviewer #1's comments). 
  
If you have any questions or concerns about the revision, I'd be happy to talk about them, either over 
email or by Zoom.  More technical information and advice about resubmission can be found below my 
signature.  Please read it carefully, as it can save substantial time and effort later.  

 
I look forward to seeing your revised manuscript. 
 
All the best, 
 
Ernesto Andrianantoandro, Ph.D. 
Scientific Editor, Cell Systems 

Reviewer comments: 
 
Reviewer #1: The revision submitted by Ambikan et al is much improved over the previous version; 
specifically, the clear distinction between healthy controls and convalescent patients improves the paper 
and addition of a discussion paragraph on limitations is a welcome addition that acknowledges many of 
the shortcomings of the paper. The major scientific contribution of this work over previous efforts of 
applying network analysis and flux balance analysis to understanding COVID-19 is the use of blood-
based immune cells on an individual patient basis. The authors report distinct metabolic signature 
associated with COVID-19 infection that differs from prior efforts in lung alveolar cells or culture, however 
there are lingering questions in this work regarding the cause of these metabolic signatures - are these 
due to direct infection of the cells under this analysis, or simply changes in enzymatic expression in 
response to the high levels of circulating cytokines associated with severity of the disease? 
 
The authors do not consider this question sufficiently in the response to Reviewer 2, despite the mention 
in the rebuttal of qPCR performed on the samples for vRNA. Where is this information provided in the 
STAR Methods and elsewhere in the text? I would like details on the genome alignment methods, primers 
used, etc. The comparison of the metabolic phenotypes to data from non-SARS-CoV-2 infections, for 
example, could address the alternative hypothesis. Are these signatures unique to COVID-19? 
 



 

 
 
 

Fig 3E: impossible to view gradations in coloring between -log10 Padj values. I do not follow why the 
"distinctly down" regulation category is null for both sets of comparison 
Figure 4C: why is this listed as "used transcriptomic and metabolic data"? What is tossed out? 
In text: "…the integrative characterization of the samples pointed to 4 clusters (Table S1)." Should refer to 
Figure 4C in this statement. 
 
"While using the single-cell transcriptomics data published by Zhang et al. 2020 (Zhang et al., 2020) who 
had previously characterized patient groups similar to ours, indicated that the members of the 
mitochondrial carrier family (SLC25) (SLC25A1, and SLC25A11) were highly expressed (log 
expression>2) in more cells in the monocyte populations (Fig 5B and Fig S7)" incomplete sentence 
 
Fig 5D: impossible to view gradations in coloring between 0 and 1000 or 0 and -1000. Those that are 
highlighted in red are low flux, what is the interpretation of this? If they are near equilibrium do they matter 
much? 
Fig 6A: Again, I can't tell differences in color scales for gene and metabolite betweenness 
 
Reviewer #2: The authors have addressed most of my concerns. The last sentence of the abstract is 
quite incoherent and needs to be corrected. Moreover, a brief discussion about a potential role of the 
microbiome due to the observation of butyrate as a metabolite associated with disease pathology would 
be appreciated. 
 
Reviewer #3: The authors have addressed my previous concerns. 
 

Authors’ response to the reviewers’ second round comments  

Attached. 
 
 
 

Editorial decision letter  

Dear Dr. Neogi, 
  
I'm very pleased to let you know that the peer-review process is complete, and only a few minor, 
editorially-guided changes are needed to move forward towards publication.  

In addition to the final comments from the reviewers, I’ve made some suggestions about your manuscript 
within the “Editorial Notes” section, below. Please consider my editorial suggestions carefully, ask any 
questions of me that you need, make all warranted changes, and then upload your final files into Editorial 
Manager.  



 

 
 
 

I'm looking forward to going through these last steps with you.  Although we ask that our editorially-guided 
changes be your primary focus for the moment, you may wish to consult our FAQ (final formatting checks 
tab) to make the final steps to publication go more smoothly.  More technical information can be found 
below my signature, and please let me know if you have any questions.  

 All the best, 
 
Ernesto Andrianantoandro, Ph.D. 
Scientific Editor, Cell Systems 

 

  
Editorial Notes 

Transparent Peer Review:  Thank you for electing to make your manuscript’s peer review process 
transparent.  As part of our approach to Transparent Peer Review, we ask that you add the following 
sentence to the end of your abstract: “A record of this paper’s Transparent Peer Review process is 
included in the Supplemental Information.” Note that this doesn't  count towards your 150 word total! 

Also, if you've deposited your work on a preprint server, that's great!  Please drop me a quick email with 
your preprint's DOI and I'll make sure it's properly credited within your Transparent Peer Review record. 

  
Abstract:  The abstract reads nicely, but could do with some slight modification to prevent reader 
confusion: 

• “…identify the mechanism…” is a strong claim and the term “mechanism” could be confusing. 
Please change this to “…identify potential determinants…" 

• I do appreciate the motivation to address Reviewer #2's remaining concerns, but he last sentence 
is too speculative to be part of the Abstract. It is more appropriate for a Discussion point in the 
main manuscript. Please remove it from the Abstract. 

 Manuscript Text:   

• Although the last paragraph of the Introduction provides a nice brief overview of the paper, how 
everything fits together needs additional explanation in greater depth in the Results section. 
Please flesh out the section “Study design and patient cohorts” at the beginning of the Results 
section to also include a more detailed description of the structure of the entire study (i.e. 
including all analyses in the paper). How exactly the analyses are connected needs to be mapped 
out before presenting the rest of the results, to give the reader a chance to see how each of the 
results fits in. For example, it needs to be clear whether the DCQ and immune phenotyping is 
based on the original patient stratifications. You need to be able to see which outputs of each 



 

 
 
 

analysis feed into other analyses, and whether some run in parallel. A new Figure 1 with the 
overall study structure will help (see the Figures section below for my suggestions). Walking 
through this figure in the text and explaining the rationale will provide the reader with a better 
framework for interpreting the rest of the paper. 

• Please be more consistent with terminology, e.g. use either GSMM or GEM, but not both 
throughout all the text and figures. 

• In the Introduction, please better distinguish between the current work and previous work. You 
can use present tense to indicate what is presented in this paper and past tense to indicate 
previous work. 

• There can only be one reference list – please combine the reference lists and place the combined 
version in the main text. 

Also:  

• House style disallows editorializing within the text (e.g. strikingly, surprisingly, importantly, etc.), 
especially the Results section.  These terms are a distraction and they aren't needed—your 
excellent observations are certainly impactful enough to stand on their own.  Please remove 
these words and others like them.  “Notably” is suitably neutral to use once or twice if absolutely 
necessary. 

• We don’t allow “priority claims” (e.g. new, novel, etc.).  For a discussion of why, read: 
http://crosstalk.cell.com/blog/getting-priorities-right-with-novelty-claims, 
http://crosstalk.cell.com/blog/novel-insights-into-priority-claims.   

• Please make sure to only use the word "significantly" in the statistical sense. 

Figures and Legends:   

• Figure S1 only depicts the personalized GSMM workflow, and does not provide the structure of 
the entire study. Please either create a new Figure 1 that depicts the entire structure of the study, 
or move Figure S1 into the main figures as the new figure 1 and modify/revise to add information 
about the DCQ, Immune phenotyping, and sctMetabolomics and display graphically how they are 
connected to the rest of the analyses. 

• Reviewer #1’s point about the difficulty of seeing the gradations in figures 3E, 5D, and 6A is well 
taken. I recommend trying some different color combinations to improve legibility (e.g. red and 
blue instead of purple and green for 3E). For 5D, it is difficult to tell the difference between 0 to 
500 and 500 to 1000 with the chosen colors. For 6A, having the betweenness scale going 
between two different colors (e.g. purple to teal) is too confusing, better would be saturation of 
just one color (e.g. light to dark blue). 

• Please revise the titles of the figure legends for Figures 2, 3, 5, and 6 to be more concrete and 
better describe the purpose of the figure. The titles for Figures 1 and 4 are good examples of 
what to aim for. 

Also, please look over your figures keeping the following in mind: 



 

 
 
 

• When data visualization tools are used (e.g. UMAP, tSNE), please ensure that the dataset being 
visualized is named in the figure legend and, when applicable, its accession number is included. 

• When color scales are used, please define them, noting units or indicating "arbitrary units," and 
specify whether the scale is linear or log.  

• Please ensure that every time you have used a graph, you have defined "n's" specifically and 
listed statistical tests within your figure legend. 

STAR Methods:     

• Please include an entry for your original code and the github doi for it in the Key Resources Table 
under “Software and Algorithms.” 

• For “Identifier” in the Key Resources table, please list how the resource can be found/obtained 
(i.e. a product number for material reagents, kits, etc. or a web page or doi for accessing an 
electronic resource). If this is not applicable, please write “N/A” in this column. 

Thank you! 
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Response to Reviewer: 

Reviewers' comments: 

Reviewer #1: The manuscript "Multiomics personalized network analyses highlight 
progressive immune disruption of central metabolism associated with COVID-19 severity" by 
Ambikan et al describes a comprehensive systems-level characterization of patient data in 
order to gain insights in biomarkers associated with SARS-CoV-2. Portions of this patient set 
have been previously analyzed by untargeted bulk plasma metabolomics and interleukin 
levels; here, additional whole blood transcriptomics and single cell type metabolomics is 
performed on the same samples. The authors analyzed the multi-omics features associated 
with COVID-19 severity by digital cell quantification, a variety of network tools, and 
integrative genome-scale flux balance analysis. They identify specific metabolic transporters 
and TCA intermediates associated with disease. Overall, I found the repertoire of analytical 
methods applied to the data interesting and somewhat insightful, however falling short of 
pinpointing how the disparate patient class features of metabolism are specific to 
targetable cell types. 

For a large data mining exercise like that performed here, visualization of results and 
communication of the data processing steps is of utmost importance and there were places 
in which clarity in how the results were generated was lacking: 

Study design: "Health controls" is used to describe the n=31 patients that are PCR-negative. 
10 of these patients are identified as convalescent. Throughout the paper, the 21 patients 
that are CoV-2-Ab- should be clearly and consistently identified distinctly from the 10 
patients that are CoV-2-Ab+. For example "health control" is used in Fig 1A for CoV-2-Ab-. 
Given the recent publications that suggest residual viral latency and/or tissue damage in 
asymptomatic and/or recovered patients, the separation of these groups should be 
maintained when possible in subsequent analyses. 

Reply: We are thankful for the insightful suggestions. We have now separated CoV-2-Ab+ (n=10) 
and CoV-2-Ab-(n=21) and executed all the subsequent analysis. The CoV-2-Ab- (n=21) samples 
are now termed as healthy controls throughout the manuscripts. Fig 1 (digital cell quantification; 
previously Fig 2) and Fig 3 (differential expression analysis; previously Fig1) are changed 
accordingly. We have also adjusted for cell type proportions, BMI and other hidden factors in the 
data while performing differential expression analysis for all pair of comparisons. We have used the 
R package RUVSeq (Remove Unwanted Variations from RNASeq data) to remove unwanted and 
unknown confounding factors from the transcriptomics data. The method computes factors of 
unwanted variation originate from covariates of interests and other hidden sources and those factors 
can be added in the design matrix for differential expression analysis. (Method section is updated). 
Differential expression analysis between CoV-2-Ab+ and CoV-2-Ab- identified two significantly 
regulated genes (adj.p <0.05 and |LFC| > 1.5) and CoV-2-Ab- (n=21) showed higher number of co-
expression (n=61960) while CoV-2-Ab+ (n=10) showed 2800 positive correlations among markers 
genes of cell types (Fig 1).   

Figure 1A: the rest of the paper is predicated on the separation between healthy and 
convalescent versus mild & severe hospitalized patients on the UMAP plot of whole blood 
transcriptomics. Has an analysis been performed on the duration of SARS-CoV-2 infection? 
While severity is associated with length of time post-infection, some patients will progress 
to this stage/category faster than others. Transcriptomics and subsequent FBA will reflect a 
remodeling of expression levels that will occur over time. This may influence membership in 
SNF clusters in Figure 4 as well. 

Reply: Thank you for your critical comment. We agree that any source of variations in the data can 
affect further transcriptomics analysis to find differentially regulated genes. So that, we have now 
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adjusted for cell type proportions, BMI and other hidden factors in the data while performing 
differential expression analysis for all pair of comparisons as mentioned in response to the previous 
comment. Also, the Flux Balance Analysis (FBA) mentioned in the manuscript were performed for 
each patient group as well as for each sample (personalized GSMM). While group-specific FBA 
analysis may be affected by sample heterogeneity, for which we thus performed sample-specific 
FBA. We generated context specific genome scale metabolic models for each sample by inputting 
the corresponding gene expression table and identified the metabolic reactions showed flux through 
FBA. Then we looked for reactions common for each patient group and by this way the heterogeneity 
was handled. The Similarity Network Fusion (SNF) was performed by integrating transcriptomics 
and metabolomics data. The resulting clusters (Fig 4) are equally influenced by both transcriptomics 
and metabolomics signatures in each of the sample data. So, the variation in transcriptomics data 
may have very little effect in the results.   

Figure 1E/F: Please provide titles on top of the heatmaps as was done for S2B/C. It is striking 
that the membership of altered KEGG pathways between 1E and 1F is quite low (I counted 11 
common ones?) 1E does not support the GSEA result of top biological processes being 
mitochondrial. Please discuss. 

Reply: Thank you for the comments. Titles are now added to the respective figures. The KEGG 
pathway GSEA were executed for COVID19-vs-HC and Hosp-Mild-vs-Hosp-Severe differential 
analysis. Biological process analysis was performed only for genes which are uniquely expressed 
in Hospitalized-severe identified from the Venn-diagram. As both functional analyses were 
performed on different sets of genes, the results show certain level of difference. 

Figure 2: Is "healthy control" defined here as all PCR-negative individuals? This analysis has 
the opportunity to characterize any T cell exhaustion or residual effects of infection in 
immune cell populations of formerly infected individuals. 

Reply: Thank you for your suggestion. The digital cell quantification analysis is now re-executed for 
Cov-2-Ab- (n=21; Healthy controls) and Cov-2-Ab+ (n=10) separately. The new analysis has 
identified higher number of positive correlations between the cell type marker genes among Cov-2-
Ab- samples (n=61960) compared to Cov-2-Ab+ samples (n=2800). The results sections and 
corresponding figures are updated. 

 
Figure S3A: How is significance determined in this figure? 
 

Reply: The nominal p values computed from the correlation analysis are adjusted using 
Benjamini-Hochberg method. 

Figure 4F. Please provide methodology for data processing/scaling of interleukin levels for 
generating this figure. 
 
Reply: Normalized values of interlukins are scaled down and mean values of each sample are 
computed. It is now mentioned in method section. 

Figure 5: At this point in the paper, I found it very challenging to follow how the patient-
specific FBA models were generated. The details in the methods section are inadequate. The 
Github link is inactive. Please provide a table of which metabolites were used to define a 
closed form model with boundary levels. "The exchange reactions in the model were 
constrained using plasma metabolomics data as reference. " Is this performed independently 
using each patient's plasma values? 
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Reply: Thank you for your comment. We have performed genome scale metabolic modelling and 
flux balance analysis (FBA) at patient group level, and at personalized level of each sample (patient 
specific / personalized FBA). Patient specific modeling and FBA was performed to account for the 
possible sample heterogeneity. Briefly, we have re-constructed genome scale metabolic model for 
each sample by inputting corresponding gene expression table as input through tINIT (PMID: 
24646661, 22615553). Further, metabolic reactions show significant flux are identified through FBA 
from each sample-wise model and common reactions for each cohort are found (Fig 5D). The 
resultant list of reactions identified from FBA were used for the metabolic network generation and 
topology analysis to rank metabolites and enzymatic genes important for the coordinated metabolic 
system (Fig 6A). While performing FBA, the exchange reactions were constrained to control the 
nXtrient Xptake b\ the s\stem Xsing plasma metabolomics data independentl\ Xsing each patient¶s 
plasma metabolic measurements. The list of exchange reactions constrained for each model are 
now uploaded to Github repository (68 files). We already provided the detailed description of the 
packages and inputs used for the analysis in the Star Method Section.  

For the personalized GSMMs in Fig 5D, it appears that the bulk whole-blood transcriptomic 
data is used to populate a generic blood cell model of metabolism to elucidate flux features 
that distinguish the SNF clusters. It is unfortunate that the study design did not allow for 
single cell RNAseq on these patients, however I am puzzled as to why the authors did not 
take advantage of the digital cell quantification via EPIC to estimate proportions of transcript 
counts originating from each cell type. After all of the detailed immunotyping performed 
earlier in the paper demonstrating pronounced differences in immune cell populations, why 
is the FBA lumped together, including cell types that require de novo nucleoside synthesis 
(and thus the importance of SLC29A1) and those that don't? Can a monocyte-derived DC 
specific metabolic flux model, for example, provide more insight on TCA-related changes 
than this generic model? 

Reply: Thank you for your suggestion. It is indeed better to generate metabolic models specific for 
cell types and analyse the metabolic changes. But the analysis requires certain cell type specific 
information to feed the models. One such information is cell type specific metabolic measurements 
to constrain the exchange reactions to adjust the nutrients uptakes by the single cell system. This is 
important to accurately compute the metabolic flux in response to the disease. Currently, we lack 
the cell type specific metabolic measurements. Further, while we fully agree with the reviewer that 
a single-cell level metabolic model flux prediction would be ideal, to the best of our knowledge no 
robust metabolic modelling framework can currently satisfactory do so. Due to the large sparsity of 
scRNAseq data, such models can neither 1. fulfil minimum biological requirements for biological 
feasibility by the metabolic flux distributions; 2. sufficiently cover a substantial fraction of the model 
enzymatic genes such that metabolic flux distributions can be more accurately quantified. As such, 
existing approaches still substantially rely on bulk quantifications for flux prediction. We have now 
mentioned these in the limitation section. 

Discussion: No mention of limitations of this study. The use of an independent scRNAseq 
data set from Zhang et al instead of internally consistent transcriptomics is a very large 
drawback for interpretation of the current study. 

Reply: We are thankful for the suggestion. This limitation is now acknowledged in the discussion. 
We should note that the focus for this study was the GSMM and personalised modelling insights. As 
stated above the single cell metabolomics is not yet developed and integration of scRNAseq data 
for accurate model flux prediction is still not currently possible, preventing the construction of robust 
single-cell level GSMMs. This prompted us to developed single cell type metabolomics 
(sctMetabolomics). We use the Zhang et al data to rationalise the cell type for sctMetabolomics base 
on the transporter reactions. We have now clarified this. We are developing the scMetabolomics 
and hopefully will be available in a couple year time given the technological limitations of the 
metabolomics profiling (our present method need atleast 200,000 cells). Given that our focus was 
not transcriptomics Ze didn¶t performed the scRNAseq in the same popXlation.  
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Reviewer #2: In their work Ambikan et al. investigate the molecular response to COVID-19 
using a variety of OMICs data sets from blood from COVID-19 patients and data analysis 
techniques. They identify molecular signatures of disease severity in COVID-19 and relate 
them to potential pathomechanisms that could cause the high heterogeneity in the course of 
the disease. To this end, the authors use RNA-Seq data from whole blood to identify 
differentially expressed genes between cohorts of patients with different disease severity. 
Subsequently, they use digital cellquantification to explore the frequency of different 
immune cell subtypes and find a loss of correlation between marker gene expression and 
subtype frequency for several immune cell subsets. In consequence, they use FACS to 
determine the frequency of different immune cell subsets. Subsequently, they use these data 
sets to stratify patients into novel clusters and use this stratification as basis for the analysis 
of sub-group specific changes in predicted metabolic activities through reconstruction of 
context-specific metabolic networks. While the research question being asked in the 
manuscript is important and the underlying data sets as well as insights gained quite 
relevant, it seems more like a patchwork of several independent stories woven together. 
Also the GitHub repository in which the code of the study is reported was not accessible 
(https://github.com/neogilab/COVID_GSMM). I cannot provide line numbers or page numbers 
in my review since those were missing from the submitted manuscript. 

Major points: 

Overall, the manuscript appears like a patchwork of several different stories woven together. 
Thus, the analysis of the bulk sequencing data are somehow disconnected from the FACS 
analysis of immune cell subsets and this is again disconnected from the modelling-driven 
part.  

Reply: We are thankful for the critical comment. We have used transcriptomics data generated from 
whole blood samples so the gene expression variations can come from various cell types. In order 
to examine the level of difference in cell type proportions among the samples, we have used a 
deconvolution algorithm adapted from the package EPIC (Estimating the Proportions of Immune 
and Cancer cells) to compute the proportions of 18 different cell types. For this purpose, we have 
used reference gene expression profile for 18 different cell types obtained from Human Protein Atlas 
and a list of signature genes of the 18 cell types obtained from resources such as CellMarker and 
PangloDB and estimated the cell type proportions using the sample-wise gene expression table. We 
have mentioned the entire procedure as digital cell quantification (DCQ) in the manuscript. The 
results from DCQ are reported in Fig 1 (previously Fig 2). The information is now used in the 
differential expression analysis to adjust for the variation due to the cell type proportions (Fig 2; 
previously Fig 1). We have noticed that the digital cell count is highly dependent upon the depth and 
quality of the RNAseq data. We have recently published a study (doi: 10.7554/eLife.76071) where 
the same algorithm didn¶t Zork becaXse of the low depth of the data. We therefore used the FACS 
to validate the DCQ.    

Moreover, some of the questions being addressed could have been more easily answered 
with already available data sets. For instance, the authors use digital cell quantification to 
investigate the frequency of different immune cell subsets in the blood of COVID-19 patients. 
However, there is a large number of scRNA-Seq studies already available (e.g. PMID 
32810438) that are much better able to elucidate changes in cell frequency in different stages 
as well as severity of COVID-19. Moreover, while this prompted a quantification of 
immune cell subsets in their samples, this information probably could also have been 
obtained from published studies. Such datasets could also have been easily used to 
investigate the observed loss of correlation between marker gene expression and abundance 
of specific immune cell subsets. Thus, the FACS-based analysis as well as the 
digital cell quantification somehow stand out as not really contributing to the storyline of the 
paper. 

https://eur01.safelinks.protection.outlook.com/?url=https://github.com/neogilab/COVID_GSMM&data=04%7C01%7Cujjwal.neogi@ki.se%7Ca687d120afa24567ea1b08d9f7d7d5e2%7Cbff7eef1cf4b4f32be3da1dda043c05d%7C0%7C0%7C637813337270558634%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0=%7C3000&sdata=AMRi+y7D5SekB2ipeOA9oGVxJXT7W5URvFlb22iU5aw=&reserved=0
https://eur01.safelinks.protection.outlook.com/?url=https://doi.org/10.7554/eLife.76071&data=04%7C01%7Cujjwal.neogi@ki.se%7Ce9db93fa354140e4e44f08da0dbb055e%7Cbff7eef1cf4b4f32be3da1dda043c05d%7C0%7C0%7C637837394148729732%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0=%7C3000&sdata=1FTprQZjZPkKtMbk7zlmH3Ny9jPi7+jHypoPdhroqX0=&reserved=0
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Reply: Thank you for your critical comments. We agree that there already exists many single cell 
data belong to COVID19 research. As we mentioned in the response to the previous comment, since 
the transcriptomics data is from whole blood samples, we have performed DCQ analysis to compute 
the cell type proportion and we have now used this information to adjust for any variation that can 
affect the differential expression and updated the results. The DCQ results is further validated using 
FACS based method. The focus of the study was not transcriptomics that several great reports were 
there bXt the GSMM. We are sorr\ that the first Yersion of the manXscript, Ze didn¶t precisel\ mention 
this. We have now clearl\ mentioned this. We can¶t Xse the pXblished data as Ze need paired 
transcriptomics and metabolomics in the same matrix (here blood).    

I like the approach of mapping transcriptomic data from bulk sequencing data to metabolic 
models that have been conditioned with the specific metabolomics data. However, the 
authors include a viral replication reaction in the model for SARS-CoV-2 infected patients. 
While this could be justified if this was data from nasopharyngal swabs or lung lavage, a 
conclusive proof of productive viral replication in blood is still lacking.Moreover, the 
inclusion of the viral replication reaction only for SARS-CoV-2 infected patients while 
reasonable, might also affect the identified reactions. Thus, the authors should clarify which 
of the patient-cohort specific reactions are due to the addition of the viral replication reaction 
and which arise from differences in gene expression. Ideally, since there is no viral 
replication in blood, the viral replication reaction should not be used in the models. 

Reply: Thank you for your suggestion. Though the replication of the virus in the blood cell is matter 
of debate, Ze strongl\ align Zith the reYieZer¶s YieZ. NoZ Ze also aligned the data Zith the SARS-
CoV-2 ref genome and performed qPCR. We did not find any evidence virus in our patient 
population. We also have now performed the flux balance analysis without viral biomass objective 
function (VBOF) for all samples. The new analysis provided same results as before, i.e. with addition 
of VBOF. This further support that the VBOF has no significant influence on the metabolic models 
generated from blood samples where there is no presence of the virus. We now mentioned this in 
the manuscript.   

Several key results are reported in a somewhat unreflected manner. For instance, the authors 
discuss the transporter SLC16A6 extensively but fail to point out that most of its functions 
are only inferred from homology. There is one report that this transporter is involved in beta-
hydroxybutyrate transport but the remaining transport functions are just inferred. Thus, this 
result seems somewhat questionable or at least needs to be put in a better context. Moreover, 
they report changes in butyrate concentrations between patient groups while this metabolite 
is of microbial origin and mostly consumed by enterocytes. This is also potentially 
interesting and could be discussed in more detail. 

Reply: Here we have taken advantage of GSMMs as frameworks to characterize which specific 
metabolic reactions were active, prioritize disrupted metabolic systems, prioritize enzymatic 
genes/metabolites based on their metabolic importance, and to mechanistically characterize the flux 
flow differences between patient groups and at personalized levels. By constraining the models with 
patient gene expression and metabolomic profiles, we could thus identify how metabolic activities 
differed with respect to disease severity. While we are fully aware that metabolic models, like other 
models, represent approximations to the in vivo profiles, we have used the latest and most curated 
reference model for humans to date (DOI: 10.1126/scisignal.aaz1482) updated since the original 
publication). Thus, while it is true that some of the genes present in the model are inferred, they 
nevertheless represent the closest and best curated approximation to model human metabolism that 
we are currently aware.  

We agree with the reviewer that SLC16A6 transport functions are inferred. Our study is not designed 
to infer the function rather we reported what is known for SLC16A6 and partly speculative (the last 
sentence). Potential role of SLC16A6 is already reported in cancer and other respiratory viral 
diseases. As suggested, we have now revised the sections as follows  
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³The SLC16 gene family comprised of 14 members of the MCT family plays an important role in energy 
metabolism as it catalyzes the rapid transport of lactate and pyruvate across the cell membrane that are 
essential components for glycolysis [reviewed in (Halestrap, 2013)]. Though no study reported the role of SLC 
transporter earlier, a co-expression analysis performed in microarray analysis data of influenza-infected 
pediatric patients reported upregulated expression of SLC16A6 (Zarei Ghobadi et al., 2019), suggesting its 
potential role in respiratory viral infections. The SL16A6 has been reported to act as a transporter of ketone 
bRdieV like ȕ-hydroxybutyrate out of liver (Newman and Verdin, 2017) that is again internalized by tissues 
other than liver and is utilized in TCA-cycle in mitochondria or fatty acid synthesis in cytoplasm (Sheraj et al., 
2021).  A more recent study also reported SL16A6 as taurine transporter (Higuchi et al., 2022) indicate its role 
in energy metabolism. It is also possible that transporters such as SLC16A6, which was differentially 
upregulated in COVID-19, can also regulate the intracellular and extra-cellular levels of Į-keto acids, like Į-
ketoglutarate, which are essential components of TCA-cycle.´ 

The authors report glycolysis and glutaminolysis as potential targets to inhibit viral 
replication. While blocking these pathways would certainly prevent viral replication they are 
also essential for normal cellular function. This should be mentioned and it should be 
checked whether the approach also returns reactions/pathways that are less central for 
normal cellular function. Moreover, the model is based on blood data (see my previous 
comment) and hence it is questionable to which extent it reflects metabolic needs in virally 
infected cells. 

Reply: Thank you for the suggestion. We have previously reported that blocking of glutaminolysis 
and glycolysis inhibit viral replication (Krishnan et al 2021) and discussed in context to our own 
findings (Krishnan et al 2021 and Appelberg et al 2020). Moreover 2-DG is approved in India for 
emergency use in SARS-CoV-2 severe patients. However, no data was released. It may not be ideal 
choice in mild or moderate cases. Rather more for the severe lifesaving cases as pointed out our 
study too. Though no scientific literature available, the press release of the Indian Govt 
(https://pib.gov.in/PressReleasePage.aspx?PRID=1717007), reported that the Phase 2 trials of the 
2-DG arm showed faster symptomatic cure than Standard of Care (SoC) arm on various endpoints 
(vital parameters) with a significantly favorable trend (2.5 days difference). In the 2-DG arm, 42% of 
the patients improved symptomatically and became free from supplemental oxygen by Day-3 
compared to 31% in the SoC arm, indicating an early relief from oxygen therapy/dependence. A 
higher proportion of patients treated with 2-DG showed RT-PCR negative conversion in COVID 
patients. 

We have recently shown that blocking glycolysis and glutaminolysis can also block the replication 
of CCHF Viruses (doi:10.7554/eLife.76071). A recent study in HIV-1 showed that DON reversed 
cognitive impairment in EcoHIV-infected mice in HIV-associated neurocognitive disorders (HAND). 
We also recently shown that what are the other pathways can alter in HIV-1 latent cell model while 
treated with DON (Mikealoff et al 2022, Communication Biology). Given that metabolic reprograming 
is plastic and reversible, we noticed (in case of HIV) that after removal of the pressure the cells 
behave normally (unpublished data).  

So, we believe there is high feasibility of targeting host metabolism as a host-directed therapy during 
severe cases if we undertsnd the metabolic reprogramming during acute viral infection but more 
research is warranted to take it to the clinical trials. 

While there are different views on the relevance of a clear storyline for a manuscript, this is 
clearly missing from the manuscript. Thus, it is difficult to judge what are the most important 
and central findings of the study. While this is probably difficult to assess given the ongoing 
high frequency of COVID-19-related publications, a lot of streamlining would clearly benefit 
the manuscript. 

Reply: Thank you for the suggestion. We have now changed the flow of the manuscript following 
the addition of other experiments and analysis and rationalised all the experiments. The novelty of 
the study is personalised GSMM, FBA and DCQ. However, both the methods were dependent upon 
the quality of the data. Therefore, we provided fig 1-3 to validate what we observed in the 
computational prediction is correct. For example, suppose we found one metabolic reaction is 

https://pib.gov.in/PressReleasePage.aspx?PRID=1717007
https://eur01.safelinks.protection.outlook.com/?url=https://doi.org/10.7554/eLife.76071&data=04%7C01%7Cujjwal.neogi@ki.se%7Ce9db93fa354140e4e44f08da0dbb055e%7Cbff7eef1cf4b4f32be3da1dda043c05d%7C0%7C0%7C637837394148729732%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0=%7C3000&sdata=1FTprQZjZPkKtMbk7zlmH3Ny9jPi7+jHypoPdhroqX0=&reserved=0
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significant it could also possible that the metabolic pathways are not dysregulated (please see below 
one example). Similarly DCQ by our methods do not work with low depth samples. We have now 
mentioned this in the manuscript. 

The abstract contains a lot of grammatical errors, which are not as prevalent in the main text 
(e.g. "However, the clinical outcome and disease severity are heterogenous and cannot 
explain by a single factor."). The manuscript should be checked by a native English speaker. 

Reply: We have now corrected, and the manuscript is read by a native speaker. 

 
Minor points: 

Please provide a citation for the statement "Though the primary site of infection is the upper 
respiratory tract, SARS-CoV-2 can invade several organs, tissues, and cells of the body." 
Reply: Reference provided. 

The figures are in low quality but that's probably due to some hickup in the submission 
system. 
Reply: We don¶t knoZ what happened. All the figures were 300dpi. We have now re-uploaded as 
single files. 

Also the GitHub repository in which the code of the study is reported was not accessible 
(https://github.com/neogilab/COVID_GSMM).  

Reply: The github link was embargoed. Now we have made it public. 

Reviewer #3: This study presented network-based integrative analysis of metabolic and 
transcriptomic data across COVID-19 phenotypes, including COVID-19 negative, 
hospitalized-mild, and -severe. The authors identified a variety of metabolic pathways related 
to COVID-19 severity. Overall, this is an interesting study, which may offer metabolic 
pathobiology of COVID-19 severity and identify potential metabolic pathways for future 
intervention approach development. However, several below major concerns should be 
considered further. 

It is not clear why the authors define hospitalized-mild (n=26, O2 requirement<4lit/min) and 
hospitalize-severe (n=11, O2 requirement>4lit/min). 

Reply: We are thankful for the comment. When we collected the samples there were no guideline 
from WHO. The definitions Zere based on the ³clinicians¶ decision´. We haYe noZ clarified this. 
Moreover as we stated earlier ³Clinical categorization of COVID-19 patients relies on their oxygen 
requirement. However, our earlier study identified that O2 need at hospitalization did not predict 
mortality (Saccon et al., 2021).´ It rationalized SNF and personalised GSMM. We also added this in 
the limitation section. 

Differential gene expression (DGE) analysis (Adj. p<0.05) identified 8492 genes that were 
differentially regulated between the HC and COVID-19 patients based on this small sample 
size. It is very hard to understand why 40% of human genome are differentially expressed. A 
more strict cutoff, including fold change, must be used to define the DEG. 

Reply: Thank you for the suggestion. The cut-off is now updated. Fold change cut-off of 1.5 is also 
added along with the adj.pvalue cut-off of 0.05. 

https://eur01.safelinks.protection.outlook.com/?url=https://github.com/neogilab/COVID_GSMM&data=04%7C01%7Cujjwal.neogi@ki.se%7Ca687d120afa24567ea1b08d9f7d7d5e2%7Cbff7eef1cf4b4f32be3da1dda043c05d%7C0%7C0%7C637813337270558634%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0=%7C3000&sdata=AMRi+y7D5SekB2ipeOA9oGVxJXT7W5URvFlb22iU5aw=&reserved=0
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During and GSEA analysis, disease comorbidities, such as diabetes and obesity, should be 
adjusted. 

Reply: Thank you for the suggestion. We agree the various confounding factors can affect the 
differential expression analysis. Therefore, we have now re-performed the analysis with adjustment 
for the corresponding confounding factors. We have used the R package RUVSeq (Remove 
Unwanted Variations from RNASeq data) to remove any unwanted noise from the transcriptomics 
data. The method computes factors of unwanted variation originate from covariates of interests and 
other hidden sources and those factors can be added in the design matrix for differential expression 
analysis. (Method section is updated). 

Immune cell differences, including neutrophils and classical monocytes, are well described 
in recent studies, which are related to COVID-19 disease severities, such as doi: 
10.1111/acel.13544 and doi: 10.1038/s41392-021-00709-x. The authors are suggested to 
highlight novelty of the current findings. These COVID-19 disease severity-specific 
immune cell changes are sex- or age-dependent or not. 

Reply: We are thankful for the comment.  The novelty of the study is the SNF and personalized 
GSMM and cellular metabolic environment. We are sorry it was not explicitly mentioned in the first 
version of the manuscript. We have now RUVseq to adjust the variations coming from the co-variates 
and a new Fig 3 is added.  

 
Topological network analysis using Adj. p<10-5 (Spearman rank correlation). Yet, Adj. 
p<0.05 was used for differential expression analysis. Different adj. p-values were used 
without any rationale. 

 
Reply: Thank you for the comment. In differential expression analysis, the multiple hypothesis 
correction was performed for all protein-coding genes (~19999). Based on the number of detected 
differentially expressed genes (adj.P < 0.05) we estimate a maximum 405 (adj.p <0.05) of potential 
false positives in HC-vs-COVID19 and a maximum 232 (adj.p<0.05) false positives in Hospitalized-
Mild-vs Hospitalized-Severe analysis. In turn, the topological network analysis tests ~85 Million 
hypotheses (correlations), under which a traditional cut-off of Adj.P<0.05 would lead to a maximum 
of ~1.9 Million potential false positives. For this reason, we imposed a stringent cut-off of 10-5 in 
network analysis (~333 potential false positives).  

More details for single-cell type metabolomics should be provided 

Reply: The detailed method is already provided in the Star Method section. 

Network-based integrative analysis of metabolomics and transcriptomics have pointed out 
multiple metabolic pathways related to COVID-19 severity; yet, most metabolic pathways 
have been widely reported in COVID-19 studies.  

Reply: Thank you for the comments. We agree that there are several great publications that discuss 
about metabolic pathways in the context of COVID19. But in the current study our main objective is 
to study the specific metabolic reactions (not pathway as whole) that alter in COVID19 and COVID19 
disease severity and to rank the metabolites and enzymatic genes important for existence of the 
metabolic network. To answer the objectives, we have used context specific genome scale 
metabolic modelling and flux balance analysis to identify the metabolic reactions specific for 
COVID19 (Fig 5A). Further we have generated metabolic networks from the results obtained from 
FBA and did topological analysis to rank the metabolites and enzymatic genes important for exitance 
COVID19 metabolic network (Fig 6A) 
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The metabolic reprograming is plastic and reversible. Under certain metabolic environment or stress 
the metabolic pathZa\s changes it¶s soXrce of metabolites, essentials for the cell to survive. 
Therefore metabolic pathways based on the RNAseq data can provide valuable information about 
the regXlation of the pathZa\s bXt can¶t infer the metabolic reprogramming. 

As an example, the production of the alpha-ketoglutarate is through several reactions and part of 
several metabolic pathways as you see in the below figure. We give the Fig 3 just to show the 
pathways that are regulated based on the gene expression data while GSMM provide the metabolic 
reactions and essentiality analysis to point out specific metabolites or metabolic reprograming. 

 

 

The resolution of figures is very poor. The reviewers cannot see all images and figure's text 
across all main figures. 

Reply: We don¶t knoZ Zhat happened. All the figXres Zere 300dpi. We haYe noZ re-uploaded. 
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Response to Reviewer: 

Reviewers' comments: 

Reviewers' comments: 
 
Reviewer #1: The revision submitted by Ambikan et al is much improved over the previous version; 
specifically, the clear distinction between healthy controls and convalescent patients improves the 
paper and addition of a discussion paragraph on limitations is a welcome addition that acknowledges 
many of the shortcomings of the paper. The major scientific contribution of this work over previous 
efforts of applying network analysis and flux balance analysis to understanding COVID-19 is the use 
of blood-based immune cells on an individual patient basis. The authors report distinct metabolic 
signature associated with COVID-19 infection that differs from prior efforts in lung alveolar cells or 
culture, however there are lingering questions in this work regarding the cause of these metabolic 
signatures - are these due to direct infection of the cells under this analysis, or simply changes in 
enzymatic expression in response to the high levels of circulating cytokines associated with severity 
of the disease? 
 
 
Response: We are thankful for the suggestion. This is an exciting question. We have now added 
the hypothesis to the discussion as follows:: 
"As the SARS-CoV-2 was not dectected in the blood cell populations in our cohort, we therefore 
hypothesised that the systemic metabolic alterations are most likely because of the bystander effect 
of the infection due to the inflammatory conditions and the specific metabolic environment that may 
differ from the metabolic alteration during productive replication in the infecting cells." 

 
The authors do not consider this question sufficiently in the response to Reviewer 2, despite the 
mention in the rebuttal of qPCR performed on the samples for vRNA. Where is this information 
provided in the STAR Methods and elsewhere in the text? I would like details on the genome 
alignment methods, primers used, etc.  
 
Response: We already published the method in our earlier paper, both the primers details and the 
alignment method (Appelberg et al. 2020, Emerg Microb Infection). We have now quoted that papers 
in the Star Method section are instead repeating. 
 
The comparison of the metabolic phenotypes to data from non-SARS-CoV-2 infections, for example, 
could address the alternative hypothesis. Are these signatures unique to COVID-19? 
 
Response: Thank you for the suggestion. Systemic GSMM was not performed earlier. We recently 
constructed GSMM for HIV-1. We are in the process of developing an Atlas for emerging and re-
emerging viruses like CCHF, Ebola, and Dengue. As suggested, we have added the below text in 
the discussion: 
"Though systemic GSMM was not reported in other respiratory diseases caused by viruses, in our 
recent study to understand the natural control of HIV-1 infection, we observed the regulation of the 
similar metabolic pathways but difference in the metabolic reactions, potentiate a disease specific 
contextualisation of the metabolic flux (Ambikan et al., 2022). A viral disease-specific systemic 
GSMM atlas for other emerging and re-emerging viruses is currently in progress."  

 
Fig 3E: impossible to view gradations in coloring between -log10 Padj values. I do not follow why 
the "distinctly down" regulation category is null for both sets of comparison 
 
Response: We are thankful for the comment. Few of the pathways were found to have the same 
adjusted p values, which is the reason for the color gradient to be not clearly visible. We have used 
the R package Piano (PMID: 23444143) for pathway enrichment analysis. The tool takes gene-level 
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statistics (p values) and direction of expression (log2 fold change) as input to find down-regulated 
and upregulated pathways. The tool reports three classes of significance values for each pathway: 
distinct-directional, mixed-directional, and nondirectional. The nondirectional class uses the 
absolute values of the log2 fold change, thereby not considering the direction of change to 
computing the pathway statistics. The distinct-directional class takes the direction of regulation into 
account. If a gene set has an identical pattern of significant up-regulation and down-regulation, it will 
cancel out and thus won't come substantial. The mixed-directional class takes a subset of 
upregulated and downregulated genes separately to calculate the pathway statistics. In the study 
we have considered a distinct-directional class to define down-regulated and upregulated pathways 
where majority of genes are down-regulated and upregulated, respectively. Distinct-directional 
significant pathways show a distinct pattern of change in the pathways. In the present analysis, no 
pathways were found to be significantly (p.adj < 0.05) down-regulated in distinct directional classes. 
This means that there are no pathways with a distinct pattern of down-regulation of the genes. We 
can further observe that some pathways such as B cell receptor signaling pathway, FoxO signaling 
pathway and Phospholipase D signaling pathway etc. came significant in mixed directional class 
which implies. However, these pathways are distinctly upregulated; there exist the specific number 
of genes which are down-regulated as well.  
 
Figure 4C: why is this listed as "used transcriptomic and metabolic data"? What is tossed out? 
In text: "…the integrative characterization of the samples pointed to 4 clusters (Table S1)." Should 
refer to Figure 4C in this statement. 
 
Response: Thank you for pointing out this. We have used the similarity network fusion method to 
integrate transcriptomics and metabolomics data to classify the patients solely based on omics data 
signatures. We have re-written the figure legends for better clarity. Also Figure 4C is referred in the 
pointed out text in the manuscript. 
 
"While using the single-cell transcriptomics data published by Zhang et al. 2020 (Zhang et al., 2020) 
who had previously characterized patient groups similar to ours, indicated that the members of the 
mitochondrial carrier family (SLC25) (SLC25A1, and SLC25A11) were highly expressed (log 
expression>2) in more cells in the monocyte populations (Fig 5B and Fig S7)" incomplete sentence 
 
Response: We have corrected it now. 
 
Fig 5D: impossible to view gradations in coloring between 0 and 1000 or 0 and -1000. Those that 
are highlighted in red are low flux, what is the interpretation of this? If they are near equilibrium do 
they matter much? 
Fig 6A: Again, I can't tell differences in color scales for gene and metabolite betweenness 
 
Response: The color scale shows a gradient corresponding to the values between 0 – 1000 and 0 
- -1000 (1000 splits in each direction) for 5D and 0 to 600 in 6A. Generally, the heatmaps were 
drawn using Z-score (typically -4 to 4), where very few color input is required. To get a proper 
gradient, we have to input several hundred colors. Also, the flux value does not show a drastic 
difference among the patients. This can be the reason for the gradient to be not clear. However this 
is not impacted by the result or interpretation. We did not analyze the data quantitatively rather, we 
analyzed it qualitatively. We checked for reactions that alter in forward (positive flux) or revere 
direction (negative flux) or completely absent (zero flux). The explanation for responses highlighted 
in red is mentioned in the main text and the figure legend. 
 
Reviewer #2: The authors have addressed most of my concerns. The last sentence of the abstract 
is quite incoherent and needs to be corrected. Moreover, a brief discussion about a potential role of 
the microbiome due to the observation of butyrate as a metabolite associated with disease pathology 
would be appreciated. 
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Response: We are thankful for the suggestion. We have now changed the last sentence of the 
abstract and added a brief discussion about the microbiome.. 
 
“Further, metabolite essentiality analysis identified butyrate, a microbiome-derived four-carbon 
short-chain fatty acid, as an essential metabolite in severe COVID-19, which plays an essential role 
in energy metabolism and intestinal homeostasis (Liu et al., 2018). Recently our integrative analysis 
of cytokines, metabolites, and microbiome features suggested a potential role of microbial-derived 
immunoregulatory processes in fatal outcomes in COVID-19 due to the failure of the negative 
feedback mechanism that should confine the cytokine storm (Albrich et al., 2022). Interestingly, 
MCTs are also involved in butyrate transportation (Chang et al., 2014).” 
 
 
Reviewer #3: The authors have addressed my previous concerns. 
 
Response: Thank you 


