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We have now reached a decision on the above manuscript. 

To see the reviewers' reports and a copy of this decision letter, please go to: https://submit-
jcs.biologists.org and click on the 'Manuscripts with Decisions' queue in the Author Area. 
(Corresponding author only has access to reviews.) 

As you will see, the reviewers raise a number of criticisms that prevent me from accepting the 
paper at this stage. They suggest, however, that a revised version might prove acceptable, if you 
can address their concerns. If you think that you can deal satisfactorily with the criticisms on 
revision, I would be pleased to see a revised manuscript. We would then return it to the reviewers. 

We are aware that you may be experiencing disruption to the normal running of your lab that 
makes experimental revisions challenging. If it would be helpful, we encourage you to contact us 
to discuss your revision in greater detail. Please send us a point-by-point response indicating 
where you are able to address concerns raised (either experimentally or by changes to the text) 
and where you will not be able to do so within the normal timeframe of a revision. We will then 
provide further guidance. Please also note that we are happy to extend revision timeframes as 
necessary. 

Please ensure that you clearly highlight all changes made in the revised manuscript. Please avoid 
using 'Tracked changes' in Word files as these are lost in PDF conversion. 
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I should be grateful if you would also provide a point-by-point response detailing how you have 
dealt with the points raised by the reviewers in the 'Response to Reviewers' box. Please attend to 
all of the reviewers' comments. If you do not agree with any of their criticisms or suggestions 
please explain clearly why this is so. 

Reviewer 1 

Advance summary and potential significance to field 

The manuscript by Hantel et al postulates the role of a cilia-localized GID/CTLH ubiquitin ligase 
complex in protein homeostasis of Hedgehog (Hh) signaling components. They also suggest that 
knockdown of these components in Xenopus produces ciliopathy-like phenotypes in vivo. Overall, 
the manuscript would benefit from additional control experiments and reevaluation of the data on 
some of the Hh signaling phenotypes as described below.  

Comments for the author 

Major comments: 
1. The authors nicely show the localization of GID complex proteins in basal body (TWA1 and
RMND5A) or inside the cilium (MKLN1 and ARMC8). However, key controls, such as testing in
knockdown/knockout cells, for the antibodies are missing.
2. Levels of Gli2 in cilia are affected in RMND5A knockout cells. However, as per literature, Gli2 is
localized to primarily in ciliiary tips predominantly upon Hh pathway activation. Instead, the
authors see Gli2 localized throughout cilia and to be unaffected upon SAG treatment in control
cells.
3. Hh phenotypes seen in RMND5A knockout cells for the postulated Hh pathway proteostasis
phenotypes are subtle and need to tested for rescue upon add back of RMND5A. Other subunits in
the GID complex could be tested by knockdown, if possible.
4. The authors suggest that knockdown of Rmd5a in Xenopus produces ciliopathy-like phenotypes
with overlap in MKS and OPD syndromes. I am not sure if the current phenotypic analyses suggest
such overlap.

Minor. 
1. Sources of GID complex antibodies have not been mentioned.
2. Levels of Gli1 transcript upregulation in WT cells upon SAG treatment is very different between
panels in Figures 3-4.
3. Skeletal staining phenotypes in Fig 6G needs to be highlighted for the general reader.
4. Although GID functions as a complex, the authors show that the different components localized
to either basal body or ciliary axoneme. Please discus if they can function independently.

Reviewer 2 

Advance summary and potential significance to field 

In the manuscript entitled “Cilia-localized GID/CTLH ubiquitin ligase complex regulates protein 
homeostasis of Sonic Hedgehog signaling components and knockdown produces ciliopathy-like 
phenotypes in vivo” from Hantel and colleagues. the authors show that components of the 
GID/CTLH complex, known to regulate AMPK activity, localize to the ciliary basal body (or 
axoneme) and that a member of this complex, RMND5A, is required for induction of the Hedgehog 
(Hh) signaling pathway. Such regulation of Hh signaling by RMND5A appears to be independent of its 
role in AMPK and the mTOR regulation and the data suggest that RMND5A functions by promoting 
the efficient ciliary localization of specific Hh signal transduction machinery (Gli2 and Patched1). 
The authors further show that expression of RNAs encoding components of the GID/CTLH complex is 
found in ciliated tissues in the Xenopus embryo and morpholino-mediated knockdown of rmnd5 in 
Xenopus results in defects consistent with defective ciliary function. Collectively, the work 
represents an interesting and potentially important advance in the field of ciliar signaling as the 
mechanisms that control the ciliary import/homeostasis of signal transduction components are not 
well understood. 
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Comments for the author 

The work from Hantel et al., has generally been well executed and it supports arguments and 
conclusions made by the authors. However, there is one area where further experiments are 
warranted, a point of confusion requiring clarification, and a minor issue with wording: 
a) The authors prevent evidence that knockdown of rmnd5 in Xenopus results in abnormalities
of the brain, eye, and craniofacial cartilage. These phenotypes may result from defects in ciliary
function and/or Hedgehog signaling but further investigation of the in vivo model to tie this back to
the in vitro work should be done. Specifically, the authors should at least anlayze cilia in the
morphants (length, frequency and including, if possible, the localization of cilia proteins). More
importantly, to address an in vivo role for rmnd5 with respect to Hh signaling, the authors should
analyze readouts of the Hh pathway in the morhpants (e.g., Gli1 — assayed by in situ hybridization
or qPCR). In addition, co-injection of a construct overexpressing Shh along with the rmnd5, (in
parallel with the Shh construct on its own) would provide a more sensitized system to test whether
loss of rmnd5 can rescue the phenotypes of Shh overexpression and therefore participates in
xenopus Hh signaling.
b) In figure 4F, the authors show that treatment of cells with Compound C (dorsomorphin)
suppresses the effects of SAG treatment on Gli1 expression. This seems odd because, as I
understand it, Compound C is an antagonist of AMPK activity and AMPK antagonizes Hh pathway
activity by phosphorylating and destabilizing Gli1. First, the authors should explain better what
Compound C is (it seems to come out of nowhere in the paper). Second, and more importantly, that
authors should clarify why Compound C would seem to antagonize Hh pathway activity here since
Compound C should inhibit an inhibitor of the Hh pathway (AMPK) – I would have predicted
stronger, not weaker, Hh responses. Am I missing something here?
c) Lastly (a minor point): on page 6, the authors write, : “This suggests a function of the cilia-
localized GID-complex in the regulation of ciliary SHH-protein homeostasis.” This statement is
confusing and should be reworded as it suggests the GID complex controls homeostasis of the SHH
ligand (rather—it should be regarding Hh signal transducing proteins).

First revision 

Author response to reviewers' comments 

Dear Reviewers, 
We appreciate your valuable and helpful comments on our manuscript entitled “Cilia-localized 
GID/CTLH ubiquitin ligase complex regulates protein homeostasis of Sonic Hedgehog signaling 
components” (Manuscript JOCES/2021/259209) and have taken these comments as a guide for the 
correction and quality improvement of our manuscript. Every point you made was carefully 
considered and revised. Your questions/comments are written in italic letters, our answers not. 
The following points were made: 

Reviewer #1: 

Reviewer 1 Advance Summary and Potential Significance to Field: The manuscript by Hantel et al 
postulates the role of a cilia-localized GID/CTLH ubiquitin ligase complex in protein 
homeostasis of Hedgehog (Hh) signalling components. They also suggest that knockdown of 
these components in Xenopus produces ciliopathy-like phenotypes in vivo. Overall, the 
manuscript would benefit from additional control experiments and reevaluation of the data on 
some of the Hh signaling phenotypes as described below. 

Reviewer 1 Comments for the Author: 

Major comments: 

1. The authors nicely show the localization of GID complex proteins in basal body (TWA1 and
RMND5A) or inside the cilium (MKLN1 and ARMC8). However, key controls, such as testing in
knockdown/knockout cells, for the antibodies are missing.
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We thank reviewer #1 for appreciating the fact that GID complex subunits co-localize with basal 
bodies and the ciliary axoneme. Antibodies used in this study were previously tested for specificity 
by the manufacturer and in several publications. We particularly chose these antibodies (anti-
TWA1, anti-ARMC8, anti-MKLN1), because no/little cross-reactivity can be observed in Western 
analysis and bands are reduced upon knockdown of corresponding proteins (Maitland et al., 2019). In 
case of the anti-RMND5A antibody, we used NIH 3T3 cells lacking RMND5A (KO NIH3T3) in order to 
test antibody specificity (see images below) and added Supplementary Figure 4 to the manuscript. 
To make this clear we added the sentence ‘Specificities of the used antibodies were either 
tested by Western blot analysis for anti- RMND5A (Figure S4) or in previous publications for anti-
TWA1, anti-ARMC8, anti-MKLN1 (Maitland et al., 2019).’ to the manuscript (p.7). Furthermore, we 
skipped primary antibodies to control for the possibility of signal overlap in the different channels 
and used overexpression of RMND5A-GFP constructs in cell lines and in vivo to exclude unspecific 
localization at the basal body which is not the case in GFP expressing constructs and in basal 
bodies of multi- ciliated cells of the skin but at centrioles of adjacent cell types (Supplementary 
Figure 2). 

[NOTE: We have removed unpublished data that had been provided for the referees in confidence.] 

2. Levels of Gli2 in cilia are affected in RMND5A knockout cells. However, as per literature, 
Gli2 is localized to primarily in ciliiary tips predominantly upon Hh pathway activation. Instead, 
the authors see Gli2 localized throughout cilia and to be unaffected upon SAG treatment in 
control cells.

Reviewer #1 raised a critical point. We added to the manuscript ‘In 2005, Haycraft and 
colleagues showed that the GLI proteins (GLI1, GLI2 and GLI3) localize at the distal tips of 
primary cilia without any stimulation of HH signalling (Haycraft et al., 2005). From then on, a lot of 
studies revealed an accumulation of the GLI proteins at the ciliary tip upon HH signaling 
stimulation (Chen et al., 2009; Massa et al., 2019; Moon et al., 2014; Wen et al., 2010; Yang et al., 
2015; Yoshida et al., 2020). However, several reports described a presence of GLI2 and GLI3 in 
the entire cilium without HH stimulation (Clement et al., 2009; Egeberg et al., 2012; Emechebe et 
al., 2016; Kiprilov et al., 2008) reflecting the transport of the GLI proteins from the ciliary base 
to the distal tip and vice versa (Eguether et al., 2014; Kim et al., 2009; Qin et al., 2011). In this 
context, it was demonstrated that the localization of GLI3 along the entire cilium is not changed 
by SAG treatment (Emechebe et al., 2016). In our study, SAG treatment does not alter the ciliary 
localization of GLI2 but – importantly – leads to a consistent and significant upregulation of 
target gene expression demonstrating robust pathway activation upon SAG treatment.’ on page 
14. 

3. Hh phenotypes seen in RMND5A knockout cells for the postulated Hh pathway proteostasis 
phenotypes are subtle and need to tested for rescue upon add back of RMND5A. Other subunits in 
the GID complex could be tested by knockdown, if possible.

We have taken this comment very seriously and performed rescue experiments with RMND5A 
overexpressing plasmids in the KO context. In our experiments overexpression of RMND5A is not 
sufficient to complement for SHH signalling defects (see below, Figure 1). At first, this result 
seemed counterintuitive and suggested off-target effects, however we performed several 
experiments which suggest that overexpression of GID-components causes defects in ciliogenesis 
and cilia function and thus interfere with SHH signalling as well. 

Nonetheless, we consider the SHH-and cilium-phenotype specific to RMND5A for the following 
reasons: (1) RMND5A knock out results in significant elongation of primary cilia, a phenotype that 
can be phenocopied by siRNA induced knock-down of RMND5A (Liu et al., 2020). (2) We have 
tested a second independent KO clone that we retrieved from CRISPR- Cas9 mutation and 
tested SAG induced Sonic Hedgehog signalling. Our second clone (clone 33) shows an almost 
complete lack of SAG induced GLI1 induction and behaves comparable to clone 32 (see below, 
Figure 3). (3) siRNA knock down phenocopies the SHH signalling defect (see Figure 2 
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manuscript). (4) GID-subunits localize to the primary cilium (see Figure 1 manuscript) and (5) 
Phenotypes in Xenopus can be traced back to defects in SHH signaling (see Figure 7, manuscript). 

Furthermore, we performed additional overexpression experiments with GID-complex components 
that might explain the non-rescue phenotype. We generated a new plasmid expressing a GID4-GFP 
fusion protein and transfected cells with either a control GFP plasmid or the GID4-GFP expressing 
plasmid. Thereafter, we induced cilia and counted green cells with cilia and without cilia. The 
graph below shows that overexpression of GID4 results in significant reduction of cells with 
primary cilia when compared to cells transfected with a GFP expressing plasmid (Figure 4, below). 
Similarly, the overexpression of RMND5A-GFP affected ciliogenesis (Figure 2, see below). We 
reason that a carefully balanced level of GID-subunits is critical for ciliogenesis and cilia function 
and conclude that overexpression of GID-subunits can interfere with SHH signalling and thus 
results in the non-rescue. At this time we do not fully understand the molecular reason for this 
result and thus wish to exclude such data from this manuscript. 

[NOTE: We have removed unpublished data that had been provided for the referees in 
confidence.] 

[NOTE: We have removed unpublished data that had been provided for the referees in 
confidence.] 

4. The authors suggest that knockdown of Rmd5a in Xenopus produces ciliopathy-like 
phenotypes with overlap in MKS and OPD syndromes. I am not sure if the current phenotypic 
analyses suggest such overlap.

We agree with reviewer #1. Phenotypic comparison between species is fundamentally associated 
with limitations. References to certain syndromal diseases in humans can only be traced in rough 
patterns of organ involvement. However, at the outset of this study, the observed morpholino-
based knockdown phenotypes in Xenopus and the work of Vogel et al. describing an association 
between the RMND5A locus and occipital encephalocele were the focus and guided us to the 
connection with cilia (Vogel et al., 2012). In particular, the cartilage phenotype overlaps with 
phenotypes described in the context of components of SHH 
signaling; see: http://www.xenbase.org/common/showPhenotype.do?
method=display&phenoId=23769. 

To make this clear to the reader we added a section in the discussion of the manuscript to 
highlight that direct comparisons of phenotypes between species is associated with limitations 
and furthermore deleted reference to MKS from the manuscript on p.6 l.19 we deleted ‘with a 
Meckel-Gruber-like syndrome’. 

To provide further evidence of ciliopathy-like phenotypes we performed additional experiments in 
Xenopus laevis that largely support our hypothesis that knockdown of rmnd5 results in defects in 
ciliary function and SHH-signaling (see Figure 7). We followed spatiotemporal expression of 
sox2 (pan-neural marker), shh (axial mesoderm and shh target gene in the floorplate) and 
nkx2.1 (marker of the ventral forebrain) by whole-mount in situ hybridization (Figure 7). From the 
novel data we conclude that rmnd5 function doesn’t interfere with primary neural induction in the 
neural plate territory as monitored by sox2 expression at NF stage 14 as well as with the expression 
domains of shh that appears almost normal. Our new data suggests, that induction of the neural 
plate territory as well as production of SHH morphogen seems mostly unaffected. The 
development of the forebrain and eye appears hindered as the head of the injected side is 
smaller, evident by the shift of the olfactory anlage, missing stratification of the eye and smaller 
eyes including a missing lens. Transcripts of nkx2.1, a marker of the ventral forebrain, were 
additionally monitored to illustrate patterning events of the prospective forebrain, which highly 
depend on shh signaling. As result we show that the expression of nkx2.1 is clearly reduced on 
the injected side (Figure 7) supporting our hypothesis that RMND5A/GID2 depletion interferes with 
SHH signal transduction and likely SHH patterning. 

© 2022. Published by The Company of Biologists under the terms of the Creative Commons Attribution License 
(https://creativecommons.org/licenses/by/4.0/). 

http://www.xenbase.org/common/showPhenotype.do?method=display&amp;phenoId=23769
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Minor comments: 
 
1. Sources of GID complex antibodies have not been mentioned. 
 
We thank the reviewer for this very important point, we have included the missing antibodies in 
the antibody list in the manuscript on page 25. Additionally, we have included the sentence 
‘Additional antibodies were diluted 1:100 in PBS containing 3% BSA and 0,3% Tween-20 and used to 
visualize subunits of the GID-complex (TWA1, RMND5A, ARMC8, MKLN1).’ in the Figure legends on 
page 26. 
 
2. Levels of Gli1 transcript upregulation in WT cells upon SAG treatment is very different 
between panels in Figures 3-4. 
 
We agree with reviewer #1. Importantly, the differences mentioned by reviewer #1 can also be 
seen in in vitro experiments of several previous studies (Diao et al., 2018; Eguether et al., 2018; 
Hasegawa et al., 2017) suggesting that the conditions of in vitro experiments might cause these 
differences in the expression of Gli1. However, we find consistent and statistical significant 
upregulation of Gli1 transcripts upon SAG treatment in all of our experiments ensuring the 
reliability of our data. 
 
3. Skeletal staining phenotypes in Fig 6G needs to be highlighted for the general reader. 
 
We have described the cartilage staining phenotypes and its relation to SHH-signaling and 

ciliopathies for the general reader and added the sentences ‘Craniofacial development is initiated 
by cranial neural crest cells that migrate from the dorsal neural tube into a series of branchial 
arches to give rise to the Meckel’s and palatoquadrate cartilages, the palatoquadrate cartilages 
and the branchial cartilages (Baltzinger et al., 2005) (Figure 6G, b). Craniofacial defects can be 
visualized by Alcian blue staining in the developing tadpole (Abramyan 2019).’ We have included 
the text in the manuscript at p.15 line18. 
 

4. Although GID functions as a complex, the authors show that the different components 
localized to either basal body or ciliary axoneme. Please discus if they can function 
independently. 
 
We are also intrigued by the differing localization of different GID-subunits. Recent data from the 
yeast GID-complex show that it is existing with various subunit compositions. Also the human 
GID-complex seems to appear with e.g. either MKLN1 or WDR26 (Lampert et al., 2018). 
Consequently, it is possible that different localisations can be explained by different subunit 
compositions or by functions independent of the complex. Interestingly the ciliary proteasome 
behaves very similar and subunits can be found at the basal body, others at the axoneme 
(Gerhardt et al., 2015). To make this clear to the reader we have added the sentence ‘At this 
stage it is unknown whether the differing distribution of GID-complex subunits can be explained by 
a function independent of the GID-complex or by different subunit compositions that localize 
either to the basal body or the axoneme.’ in the discussion. 
 
 
Reviewer #2: 
 
Reviewer 2 Advance Summary and Potential Significance to Field: In the manuscript entitled 
“Cilia-localized GID/CTLH ubiquitin ligase complex regulates protein homeostasis of Sonic 
Hedgehog signaling components and knockdown produces ciliopathy-like phenotypes in vivo” 
from Hantel and colleagues. the authors show that components of the GID/CTLH complex, known 
to regulate AMPK activity, localize to the ciliary basal body (or axoneme) and that a member 
of this complex, RMND5A, is required for induction of the Hedgehog (Hh) signaling pathway. 
Such regulation of Hh signaling by RMND5A appears to be independent of its role in AMPK and 
the mTOR regulation and the data suggest that RMND5A functions by promoting the efficient 
ciliary localization of specific Hh signal transduction machinery (Gli2 and Patched1). The authors 
further show that expression of RNAs encoding components of the GID/CTLH complex is found in 
ciliated tissues in the Xenopus embryo and morpholino-mediated knockdown of rmnd5 in Xenopus 
results in defects consistent with defective ciliary function. Collectively, the work represents an 
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interesting and potentially important advance in the field of ciliar signaling as the mechanisms 
that control the ciliary import/homeostasis of signal transduction components are not well 
understood. 

Reviewer 2 Comments for the Author: The work from Hantel et al., has generally been well 
executed and it supports arguments and conclusions made by the authors. However, there is 
one area where further experiments are warranted, a point of confusion requiring clarification, 
and a minor issue with wording: 

a) The authors prevent evidence that knockdown of rmnd5 in Xenopus results in abnormalities
of the brain, eye, and craniofacial cartilage. These phenotypes may result from defects in ciliary
function and/or Hedgehog signaling but further investigation of the in vivo model to tie this
back to the in vitro work should be done. Specifically, the authors should at least anlayze cilia in
the morphants (length, frequency and including, if possible, the localization of cilia proteins).

We thank reviewer #2 for this comment. To provide further evidence that knockdown of rmnd5 in 
Xenopus results in defects in ciliary function and SHH signaling, we expanded our phenotypic 
studies. To knock-down rmnd5 translation, antisense morpholino together with synthetic RNA 
encoding nuclear beta-galactosidase were injected into one cell of 2-cell stage embryos to mark 
the injected side of the larvae visible as red nuclear staining. We followed spatiotemporal 
expression of sox2 (pan-neural marker), shh (axial mesoderm and shh target gene in the 
floorplate) and nkx2.1 (marker of the ventral forebrain) by whole-mount in situ hybridization 
(Figure 7). We can conclude from the data that rmnd5 function doesn’t interfere with primary 
neural induction in the neural plate territory as monitored by sox2 expression at NF stage 14 as 
well as with the expression domains of shh that appeared almost normal (Figure 7A and B). The 
data suggest that induction of the neural plate territory as well as production of SHH morphogen 
seems mostly unaffected. To test whether SHH signal transduction is impaired, the expression of 
the SHH target gene nkx2.1, a marker of the ventral forebrain, was monitored. Remarkably, the 
expression of nkx2.1 is clearly reduced on the injected side (Figure 7C) revealing disturbed SHH 
signaling in rmnd5a-deficient Xenopus forebrains. Interestingly, SHH signals from the notochord 
are able to induce the SHH expression in the floor plate in the absence of RMND5A although SHH 
signaling is impeded. A similar situation has been reported in the neural tube of Ft/Ft mouse 
embryos at E10.5 in which the induction of Shh expression in the floor plate was successful but 
SHH target expression in the ventral neural tube was hampered (Gotz et al., 2005). In these 
embryos, six genes – Irx3, Irx5, Irx6, Fto, Fts and Rpgrip1l – are deleted (Peters et al., 2002). 
One of the products of these genes, Rpgrip1l, localizes to the ciliary transition zone and is 
involved in SHH signal transduction (Gerhardt et al., 2015; Vierkotten et al., 2007; Wiegering et 
al., 2019). Importantly, morphogenesis of the forebrain and the eyes is strongly perturbed in Ft/Ft 
mouse embryos (Anselme et al., 2007) and resembles the phenotype of the rmnd5a-deficient side 
in Xenopus. We reason that the forebrain and eye phenotype of Ft/Ft embryos might be caused by 
the loss of Rpgrip1l, since Rpgrip1l- negative mouse embryos display defects in forebrain and eye 
development as well (Besse et al., 2011; Delous et al., 2007; Vierkotten et al., 2007). Remarkably, 
mutations in RPGRIP1L result in severe human ciliopathies (Delous et al., 2007). All these findings 
point to a close relationship between the GID-complex, SHH signaling, cilia and ciliopathies. 
Concerning our in vitro and in vivo data on SHH signaling, we hypothesize that the lack of target 
gene activation in the absence of RMND5A is a result of the reduced amount of SHH signaling 
components in the cilium. 

Corresponding sections were added to the manuscript on page 14 and highlighted in red. 

More importantly, to address an in vivo role for rmnd5 with respect to Hh signaling, the authors 
should analyze readouts of the Hh pathway in the morhpants (e.g., Gli1 — assayed by in situ 
hybridization or qPCR). 

As outlined above, we analyzed the expression of the HH target nkx2.1 in forebrain development 
of Xenopus after the knock-down of rmnd5a. The observed reduced expression of nkx2.1 reflects 
an impaired SHH signaling in the absence of Rmnd5a. 

In addition, co-injection of a construct overexpressing Shh along with the rmnd5, (in parallel 
with the Shh construct on its own) would provide a more sensitized system to test whether loss 
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of rmnd5 can rescue the phenotypes of Shh overexpression and therefore participates in 
xenopus Hh signaling. 

The Sonic hedgehog morphogen acts in a graded manner to pattern e.g. the ventral neural tube. 
The balanced distribution of this morphogen in a gradient is critical for development. Changing this 
gradient by overexpressing Shh will cause severe developmental phenotypes, most likely being 
lethal (https://doi.org/10.1038/emboj.2009.12). Our experiments consistently show that SHH 
signalling is affected upon reduction of GID-complex activity by qPCR as well as patterning of the 
forebrain as detected by nkx2.1 whole mount in situ and other experiments. 

b) In figure 4F, the authors show that treatment of cells with Compound C (dorsomorphin) 
suppresses the effects of SAG treatment on Gli1 expression. This seems odd because, as I 
understand it, Compound C is an antagonist of AMPK activity and AMPK antagonizes Hh 
pathway activity by phosphorylating and destabilizing Gli1. First, the authors should explain 
better what Compound C is (it seems to come out of nowhere in the paper).
We thank referee #2 for this comment. To make it clear to the reader what Compound C really is, 
we added the sentence ‘Dorsomorphin (Compound C) is an established selective inhibitor of AMPK 
displaying no significant inhibition of other kinases and consequently influences AMPK-dependent 
signaling pathways (Zhou et al., 2001)’ on p.8 highlighted in red.

Second, and more importantly, that authors should clarify why Compound C would seem to 
antagonize Hh pathway activity here since Compound C should inhibit an inhibitor of the Hh 
pathway (AMPK) – I would have predicted stronger, not weaker, Hh responses. Am I missing 
something here? 

We thank Referee #2 for pointing that out. Compound C inhibits AMPK signaling. Since AMPK 
signaling negatively regulates HH signaling, an upregulation of HH signaling by Compound C 
seems to be obvious. We administered the AMPK inhibitor Compound C to SAG- treated wild type 
cells and detected a decreased SHH target gene expression (Figure 4F) indicating that AMPK 
positively regulates HH signaling in NIH-3T3 cells. Since the negative regulatory effect of AMPK on 
SHH signaling was shown in NIH-3T3 cells (Di Magno et al., 2016; Li et al., 2015), it is unlikely that 
AMPK has a cell type-specific effect on SHH signaling. However, Compound C has also an inhibitory 
effect on PDGFRβ. It was demonstrated that this inhibitory effect is independent of AMPK 
signaling (Kwon et al., 2013) and that PDGFRβ signaling activates HH signaling resulting in an 
increased expression of the HH target gene Gli1 (Fingas et al., 2011). Thus, it is conceivable that 
the reduced HH signaling caused by treatment with Compound C in our work could be traced back 
to a side effect of Compound C such as its inhibitory effect on PDGFRβ. We inserted this possibility 
in the discussion part of the revised manuscript p15 line 8: ‘Since the negative regulatory effect 
of AMPK on SHH signaling was shown in NIH-3T3 cells (Di Magno et al., 2016; Li et al., 2015), it is 
unlikely that AMPK has a cell type-specific effect on SHH signaling. Potentially, the observed 
reduction of HH target gene expression caused by treatment with Compound C could be traced 
back to a side effect of Compound C. Kwon et al. described an inhibitory and AMPK-independent 
effect of Compound C on platelet-derived growth factor receptor β (PDGFRβ) (Kwon et al., 
2013). It is already known that PDGFRβ signaling activates SHH signaling resulting in an increased 
expression of the SHH target gene Gli1 (Fingas et al., 2011). Accordingly, the reduced SHH target 
gene expression in combined-treated (SAG and Compound C) wild type NIH-3T3 cells could be 
triggered by the inhibition of PDGFRβ.’ 

A section in the discussion was added on p.14-15 to highlight this. 

c) Lastly (a minor point): on page 6, the authors write, : “This suggests a function of the cilia- 
localized GID-complex in the regulation of ciliary SHH-protein homeostasis.” This statement is 
confusing and should be reworded as it suggests the GID complex controls homeostasis of the SHH 
ligand (rather—it should be regarding Hh signal transducing proteins). 

We thank Referee 2 for this comment. In order to minimize confusion, we rephrased the sentence 
and wrote ‘This suggests a function of the cilia-localized GID-complex in regulating the 
proteostasis of several SHH signaling components within the primary cilium.’ instead.

https://doi.org/10.1038/emboj.2009.12
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Second decision letter 

MS ID#: JOCES/2021/259209 

MS TITLE: Cilia-localized GID/CTLH ubiquitin ligase complex regulates protein homeostasis of Sonic 
Hedgehog signaling components 

AUTHORS: Friederike Hantel, Huaize Liu, Herbert Neuhaus, Lisa Fechtner, Jie Ding, Danilo Arlt, 
Peter Walentek, Pablo Villavicencio-Lorini, Christoph Gerhardt, Thomas Hollemann, and Thorsten 
Pfirrmann 
ARTICLE TYPE: Research Article 

I am happy to tell you that your manuscript has been accepted for publication in Journal of Cell 
Science, pending standard ethics checks.  

Reviewer 1 

Advance summary and potential significance to field 

The authors have made significant revisions to the original manuscript. 

Comments for the author 

There are certain sections that need further attention. 
1. For antibody controls, the authors show an immunoblot using RMND5A ko. They can use the same
line to show specificity of the antibody used in immunofluorescence in Fig 2.
2. The data in Figure 5 shows Gli2 staining throughout cilia that is not complying with the published
literature (eg please see Kim 2009 PNAS, cited twice as Kim 2009a/b in the manuscript).
3. The new data using morpholino in Fig 7 needs to be shown with appropriate controls. For eg, was
the control side also injected with control oligos especially as the injected side neural tube shows
"slightly retarded development"? The Nkx2.2 RNA ISH data is interesting and should be quantified
with respect to control side and number of embryos tested should be mentioned.
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Reviewer 2 

Advance summary and potential significance to field 

First, please accept my apologies for the long delay in reviewing the revised manuscript, “Cilia-
localized GID/CTLH ubiquitin ligase complex regulates protein homeostasis of Sonic Hedgehog 
signaling components” (JOCES/2021/259209) by Hantel and colleagues. The authors have 
satisfactorily addressed my concerns with the original submission. 
Specifically, the in situ hybridization data inn figure 7 indeed indicate that rmnd5a knockdown 
results in a reduction of the nkx2.1 expression domain in the brain on the injected side, which 
supports the conclusion that rmnd5a is required for proper Hh signal transduction. This effect does 
not appear to stem from changes in shh expression. I also appreciate the explanation for the 
unexpected effect of Compound C on Hh target gene expression, given the data from other groups 
indicating that Compound C inhibits PDGFRβ,  and that PDGFRβ potentiates Hh signaling. Finally, I 
appreciate the change in language on page 6 about the GID-complex and Hh signaling components.  
Finally, I feel the authors have satisfactorily address the concerns Reviewer 1 raised. 

Comments for the author 

I feel the revised manuscript is satisfactory in its current form. 


	Untitled



