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SUMMARY
Understanding which biological pathways are specific versus general across diagnostic categories and
levels of symptom severity is critical to improving nosology and treatment of psychopathology. Here, we
combine transdiagnostic and dimensional approaches to genetic discovery for the first time, conducting a
novel multivariate genome-wide association study of eight psychiatric symptoms and disorders broadly
related to mood disturbance and psychosis. We identify two transdiagnostic genetic liabilities that distin-
guish between common forms of psychopathology versus rarer forms of serious mental illness. Biological
annotation revealed divergent genetic architectures that differentially implicated prenatal neurodevelopment
and neuronal function and regulation. These findings inform psychiatric nosology and biological models of
psychopathology, as they suggest that the severity of mood and psychotic symptoms present in serious
mental illness may reflect a difference in kind rather than merely in degree.
INTRODUCTION

Psychiatric disorders are one of the leading causes of global dis-

ease burden, affecting more than 25% of the world’s population

at some point during their lifetime.1 Twin- and family-based

studies have established that a substantial portion of individual

differences in liability to psychiatric disorders is attributable to

genetic variation.2 Genome-wide association studies (GWASs)

have identified numerous genetic loci that have replicable asso-

ciations with severe and debilitating psychiatric disorders,
This is an open access article under the CC BY-N
including schizophrenia,3 bipolar disorder,4 and major depres-

sive disorder.5

GWASs have also identified a substantial degree of genetic

overlap across psychiatric disorders, finding high genetic covari-

ances and many pleiotropic loci.6,7 This genetic overlap compli-

cates efforts to identify causes, consequences, and treatments

that are specific to any individual psychiatric disorder.8 In

response to these challenges, transdiagnostic approaches in

psychiatry aim to identify biological systems that are perturbed

across many forms of illness.9,10 Transdiagnostic research may
Cell Genomics 2, 100140, June 8, 2022 ª 2022 The Author(s). 1
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yield new therapeutic targets with broad utility as well as inform

nosological classification and stratification of at-risk

populations.

Concurrent with the emergence of transdiagnostic research,

efforts to identify disorder-specific genetic loci have turned to-

ward studying self-report measures in population-based co-

horts,11–13 as case-control study designs require diagnostic

schedules that can be slow and costly. If valid, this dimensional

approach in non-clinical samples has the potential to accelerate

genetic discovery via dramatic increases in sample size, as self-

report survey measures of psychiatric symptoms can be admin-

istered at scale to large, genotyped population-based samples,

such as UK Biobank.14,15 However, while this approach may be

valid for some common forms of psychopathology,16 it is un-

known whether the biology that influences normative variation

in subthreshold symptoms also underlies rarer psychiatric condi-

tions, such as those characterized by mania and/or psychosis.

Here, we combine transdiagnostic and dimensional research

approaches to genetic discovery in two important ways. First,

we use a novel combination of Bayesian item response theory

and linear mixed models to perform GWASs of depressive

(DEP), manic (MAN), and psychotic (PSY) symptoms on more

than 250,000 individuals in the UK Biobank. This approach has

been shown to yield higher heritability estimates than single-

item measures or simple composite measures.17,18 Second,

we used genomic structural equation modeling (Genomic

SEM)19 to characterize the shared genetic architecture among

these three symptom dimensions and five additional psychiatric

disorders: major depressive disorder (MDD), bipolar II disorder

(BD2), bipolar I disorder (BD1), schizoaffective disorder (SZA),

and schizophrenia (SCZ).

These analyses yield insight into three conceptual questions in

the biological study of psychopathology. First, how do the ge-

netic bases of mood and psychotic symptoms compare and

contrast with the genetic bases of psychiatric diagnoses that

are characterized by those symptoms? Second, to what extent

can the shared genetic architecture of these symptoms and

disorders be summarized with a single dimension of liability, a

‘‘p factor,’’ as has been previously proposed on the basis of

phenotypic analyses?20 Third, how are dimensions of transdiag-

nostic liability similar and dissimilar in their genetic architecture,

underlying biology, and associations with other aspects of hu-

man wellbeing and disease?

RESULTS

Novel loci associated with lifetime endorsement of
mood and psychotic symptoms
We used a combination of Bayesian item response theory and

linear mixed models to conduct univariate GWASs for self-re-

ported measures of lifetime depression, mania, and psychosis

from 252,252 individuals in the UK Biobank. We observed sub-

stantial inflation of the median test statistic for all three pheno-

types, and the linkage disequilibrium (LD) score regression inter-

cepts and attenuation ratios suggest that test-statistic inflation is

primarily due to polygenic signal rather than bias (Figure 1; Ta-

ble 1). After applying a standard clumping algorithm via FUMA

(r2 = 0.1, 250 kb merge window), we identified 23 independent
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loci associated with lifetime depressive, manic, and/or psychotic

symptoms (Tables S1A–S1C). Nine of these loci were signifi-

cantly associated with two or more phenotypes, and six loci

were associated with all three psychiatric phenotypes.

The identified risk loci span 12 chromosomes and include var-

iants tagging the major histocompatibility complex region on

chromosome 6 as well a well-known inversion polymorphism on

chromosome 17 previously associated with several psychiatric

phenotypes.22Many of these risk loci replicated previous findings

fromGWASsof psychopathology orwere in high LDwith previous

hits for phenotypes including neuroticism23 (e.g., rs7111031,

rs10503002, rs4245154), broadly defined depression11 (e.g.,

rs9586, rs191800971, rs7111031), and schizophrenia24 (e.g.,

rs4245154, rs4702). However, several loci contained lead SNPs

that were new GWAS signals altogether, identifying new regions

of the genome that confer risk for psychopathology, such as

rs4722389, rs7324564, and rs570217967.

Moreover, our gene-based association analyses performed

via MAGMA identified 124 genes associated with at least one

of the psychiatric symptoms (depression, mania, or psychosis),

31 of which were associated with all three. For all phenotypes,

we observed enriched expression in brain tissue as well as an

enriched signal for brain-related gene sets. We report detailed

biological annotation (e.g., gene mapping, gene set enrichment,

tissue enrichment) for each of these GWASs in Tables S1D–S1L.

Two transdiagnostic genetic liabilities underlie mood
and psychotic psychopathology
To describe the genomic relationships among psychiatric symp-

toms and disorders commonly characterized by depression,

mania, and/or psychosis4,5,21 (see Table 1 for overview of study

phenotypes), we first used bivariate LD score regression to esti-

mate genetic correlations between all pairs of psychiatric pheno-

types.While we observed very large positive genetic correlations

among the three psychiatric symptoms (mean rg = 0.95, SEM =

0.02), we observed more modest genetic correlations for the

five psychiatric disorders (mean rg = 0.55, SEM = 0.09). We

found that schizophrenia, schizoaffective disorder, and bipolar

I were highly correlated with one another (rgSCZ-SZA = 0.87

[SE = 0.13], rgSCZ-BD1 = 0.72 [SE = 0.03], rgSZA-BD1 = 0.81 [SE =

0.12]), but these disorders generally had markedly smaller ge-

netic correlations with bipolar II and major depressive disorder

(rgSCZ-BD2 = 0.53 [SE = 0.03], rgSCZ-MDD = 0.39 [SE = 0.04],

rgSZA-BD2 = 0.28 [SE = 0.21], rgSZA-MDD = 0.06 [SE = 0.12],

rgBD1-MDD = 0.33 [SE = 0.04]). Bipolar I and bipolar II were highly

correlated, though (rgBD1-BD2 = 0.88 [SE = 0.11]). Interestingly, we

found that bipolar II and major depressive disorder were also

highly correlated with each other (rgBD2-MDD = 0.69 [SE = 0.13])

as well as with all psychiatric symptoms (rgBD2-DEP = 0.75

[SE = 0.11], rgBD2-MAN = 0.71 [SE = 0.11], rgBD2-PSY = 0.70 [SE =

0.11], rgMDD-DEP = 0.85 [SE = 0.03], rgMDD-MAN = 0.77 [SE =

0.03], rgMDD-PSY = 0.80 [SE = 0.04]). Notably, many of these ge-

netic correlations differed from the phenotypic correlations

observed in UK Biobank (Figure S1).

After applying a hierarchical-clustering algorithm to the ge-

netic-correlation matrix, we found two distinct clusters of psychi-

atric phenotypes (Figure 2A). The first cluster comprised the three

psychiatric symptoms, major depressive disorder, and bipolar II,
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Figure 1. Univariate association results for lifetime measures of mood disturbance and psychosis

(A–C) Manhattan plots and a quantile-quantile plots for (A) depressive, (B) manic, and (C) psychotic symptoms. In the Manhattan plots, the x axis refers to

chromosomal position, the y axis refers to the significance on a -log10 scale, the horizontal dashed line denotes genome-wide significance (p = 53 10�8), and the

horizontal dotted linemarks suggestive significance (p = 53 10�5). In the quantile-quantile plots, the x axis refers to expected p value, while the y axis refers to the

observed p value. For each plot, the nearest gene for the lead SNP in the top five genome-wide significant loci is labeled.
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and the second cluster comprised bipolar I, schizoaffective disor-

der, and schizophrenia. We then conducted an exploratory factor

analysis (EFA) of the genetic covariance matrix, which produced

results that were consistent with the groupings suggested by

the hierarchical clustering algorithm. The correlated two-factor

model with approximate simple structure suggested that pheno-

types principally loaded onto one of two latent genetic factors

with negligible cross-loadings (Figure 2B). Combined, these two

correlated latent factors explained 81.3% of the total SNP-based

genetic variances across phenotypes.
Finally, we formally modeled the genetic covariance matrix via

confirmatory factor analysis (CFA). We based our model on the

EFA results, which consisted of two correlated latent factors,

F1 and F2. F1 can be conceptualized as capturing common psy-

chopathology related to mood disturbance (including self-re-

ported depressive, psychotic, and manic symptoms, as well as

bipolar II and major depressive disorder), while F2 can be

conceptualized as capturing rarer forms of serious mental illness

(bipolar I, schizoaffective disorder, and schizophrenia). We did

not estimate any cross-loadings. Instead, we estimated
Cell Genomics 2, 100140, June 8, 2022 3



Table 1. Summary of study phenotypes

GWAS (abbr.) Source N h2 lGC Mean c2 Intercept Ratio

Depressive symptoms (DEP) present study 252,252 0.08 1.31 1.38 1.01 0.02

Manic symptoms (MAN) present study 252,252 0.08 1.31 1.39 1.00 0.00

Psychotic symptoms (PSY) present study 252,252 0.07 1.31 1.33 1.00 0.01

Major depressive D/O (MDD) Wray et al., 20185 138,884 0.10 1.19 1.20 1.00 <0

Bipolar II D/O (BD2) Stahl et al., 20194 25,576 0.10 1.07 1.08 1.03 0.42

Bipolar I D/O (BD1) Stahl et al., 20194 45,871 0.22 1.31 1.37 1.04 0.09

Schizoaffective D/O (SZA) Stahl et al., 20194 9,667 0.27 1.06 1.06 1.02 0.35

Schizophrenia (SCZ) Ruderfer et al., 201821 65,967 0.23 1.49 1.63 1.05 0.08

F1 (mood disturbance) present study 377,518 N/A 1.44 1.53 1.05 0.10

F2 (serious mental illness) present study 51,276 N/A 1.46 1.61 1.02 0.04

Heritability (h2) was estimated using LD score regression. lGC refers to the median c2 statistic of the GWAS divided by the expected median of the c2

distribution with 1 degree of freedom.Mean c2 refers to the average c2 statistic of the GWAS. Intercept refers to the estimated intercept from univariate

LD score regression. Ratio refers to a measure of stratification bias that is defined as (Intercept – 1)/(Mean c2 � 1). To harmonize measurement ap-

proaches among psychiatric disorders, summary statistics for MDD were obtained for the clinically ascertained cohorts, excluding 23andMe and UK

Biobank. D/O, disorder; The effective sample size is reported for F1 and F2 (STAR Methods).
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correlated residuals between bipolar I and bipolar II, as inspec-

tion of the genetic correlation matrix suggested a unique rela-

tionship between these disorders. The path diagram for this

model is presented in Figure 2C.

We compared the correlated factor model with a common

factor model, where all phenotypes were indicators of a single

latent factor (i.e., a p factor) (Section 1.1 of supplemental

methods; Figure S2). Briefly, we found that the common factor

model showed suboptimal fit to the data, while the correlated

factors model with correlated residuals for BD1 and BD2

showed excellent fit (Figure S3). Fit indices from the CFA indi-

cated that the correlated factors model closely approximated

the observed genetic covariance matrix (c2(18) = 496.16,

Akaike information criterion = 532.16, comparative fit index =

0.99, standardized root mean square residual = 0.06). That is,

the patterns of covariance among the eight psychiatric pheno-

types were most parsimoniously represented by two transdiag-

nostic latent factors at the genetic level, which were correlated

onlymodestly (rg = 0.42; SE = 0.03). This is a notable divergence

from the factor structure frequently observed at the phenotypic

level, including that seen with similar phenotypes in the UK Bio-

bank (Section 1.1 of supplemental methods). However, we note

that a direct comparison of phenotypic and genetic factor

structure cannot be performed in the UK Biobank due to an

insufficient number of clinical cases.

Transdiagnostic factors have markedly divergent
genetic architectures
We then conducted a multivariate GWAS of the two latent ge-

netic factors, F1 (Neff = 377,518) and F2 (Neff = 51,276). The

results of these analyses are summarized in Table 1 and Fig-

ure 3. Briefly, we observed substantial inflation of the median

test statistic for both F1 (lGC = 1.44, mean c2 = 1.53) and F2

(lGC = 1.46, mean c2 = 1.61), which is indicative of a robust

polygenic signal for both factors (Figure S4). The LD score

regression intercepts and attenuation ratios for F1 (intercept =

1.05, SE = 0.01; ratio = 0.10, SE = 0.02) and F2 (intercept =

1.02, SE = 0.01; ratio = 0.04, SE = 0.02) suggest that test-sta-
4 Cell Genomics 2, 100140, June 8, 2022
tistic inflation is primarily due to polygenic signal rather than

bias.

After applying a standard clumping algorithm, we identified 26

and 59 independent loci associated with F1 and F2, respectively

(Table 2; Tables S2A and S2B). Only five loci were associated

with both factors. While many of these genomic regions have

been previously identified in either the constituent GWASs or

related studies, several contain novel discoveries. For example,

several loci associated with F1 contain lead SNPs that have not

been previously associated with psychopathology, such as

rs13153844 (p = 2.09 3 10�9, nearest gene = PSMC1P5),

rs1551765 (p = 3.89 3 10�8, nearest gene = GRIA1),

rs147584788 (p = 1.08 3 10�8, nearest gene = AC003088.1),

and rs8035987 (p = 3.943 10�8, nearest gene = SIN3A). Several

loci associated with F2 also contain lead SNPs that

were also novel risk variants for psychopathology, including

rs2953329 (p = 3.27 3 10�8, nearest gene = AKT3),

rs10199182 (p = 1.56 3 10�8, nearest gene = AC068490.2),

rs9463650 (p = 3.34 3 10�8, nearest gene = RPS17P5),

rs11603014 (p = 2.32 3 10�8, nearest gene = RP11-890B15.2),

rs10777957 (p = 1.79 3 10�8, nearest gene = ANKS1B), and

rs11064837 (p = 2.43 3 10�8, nearest gene = RP11-768F21.1).

Tests of heterogeneity suggested that the majority of

observed SNP effects operate via the latent factors (i.e., associ-

ated SNPs primarily had consistent, pleiotropic effects on the

constituent phenotypes). Indeed, QSNP tests identified no het-

erogeneous loci for F1 and only three heterogeneous loci for

F2 with lead SNPs rs11696888 on chromosome 20 (QSNP p =

2.04 3 10�8; nearest gene = STAU1), rs1990042 on chromo-

some 7 (QSNP p = 2.10 3 10�8, nearest gene = AC004854.1),

and rs3764002 on chromosome 12 (QSNP p = 2.703 10�8; near-

est gene =WSCD2). Interestingly, the heterogeneous locus with

lead SNP rs11696888 also contains rs200005157, which is a four

base pair insertion/deletion that was previously identified as a lo-

cus with divergent effects on bipolar disorder and schizo-

phrenia.21 Fine mapping conducted by Ruderfer and colleagues

identified CSE1L as a plausible causal gene with divergent ef-

fects for bipolar disorder and schizophrenia on chromosome 20.



Figure 2. Relationships between eight psy-

chiatric symptoms and disorders

(A) Matrix of bivariate genetic-correlation estimates,

where the diagonal elements correspond to SNP h2

and the off-diagonal elements correspond to ge-

netic correlations. Estimates that are non-significant

are crossed out.

(B) Scatterplot of standardized factor loadings from

the exploratory factor analysis.

(C) Path diagram for the final confirmatory factor

model with standardized parameter estimates.
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Transdiagnostic factors are related to different aspects
of neurobiology
To characterize the effects of variants associated with the

transdiagnostic factors of psychopathology, we used FUMA to

conduct a series of gene-mapping analyses. Specifically, we

used positional mapping to align lead SNPs to genes based on

genomic location, expression quantitative trait loci (eQTL) map-

ping to match cis-eQTL SNPs to genes whose expression they

affect, and chromatin-interaction mapping to link SNPs to genes

on the basis of three-dimensional DNA-DNA interactions. These

three methods linked the associated SNPs for F1 and F2 to

a combined 287 and 570 putative risk genes, respectively

(Tables S2C–S2J). We then used MAGMA to conduct gene-

based association analyses, which identified 115 and 243 genes

associated with F1 and F2 (Tables S2K and S2L). Finally, we

used S-Multi-Xcan to identify 50 and 91 genes associated with

differential expression levels in brain tissue for F1 and F2,

respectively (Tables S2M and S2N).

Collectively, these five approaches mapped a total of 332

genes to F1 and 710 genes to F2 (Figure 3). Only 159 of these pu-
tative risk genes were related to both fac-

tors. Focusing on genes implicated across

all five methods, we found 11 genes

robustly linked to F1 and 16 to F2 (Figure 3).

Two genes (PGBD1 and XRCC3) were

related to both factors across all analyses.

This limited overlap in mapped genes un-

derscores the unique genetic architecture

of each factor.

The modest genetic correlation between

F1 and F2 (rg = 0.42, SE = 0.03) implies that

the majority of SNP-based genetic vari-

ance in each factor is unique from the

other. To further characterize the shared

and unique genetic architecture of these

factors, we used HESS to estimate the

local genetic covariance for 1,698 contig-

uous, similarly sized partitions across the

genome. We found that approximately

27% of the genome explains 80% of the

total genetic covariance between F1 and

F2 and that only 15 genomic partitions

share a significant local genetic correlation

after correcting for multiple comparisons

(Figure 4A).
Gene set enrichment and gene property (i.e., tissue expres-

sion) analyses further suggest that the genetic architectures

of F1 and F2 are divergent at more granular levels of analysis,

converging only at higher levels. While results from gene set

enrichment analyses broadly implicated neurodevelopmental

and neurobiological pathways for both factors, the specific

molecular functions, cellular components, and biological pro-

cesses tended to differ (Figure 4B; Tables S3A and S3B). For

example, gene sets related to neurons were enriched for F1

and F2, but gene sets for specific parts of neurons were differ-

entially enriched (e.g., the axon for F1 versus the somatoden-

dritic compartment for F2). Similarly, in the tissue-expression

analysis, we found that the brain was broadly implicated in

the pathogenesis of psychopathology, as nearly all brain-

related tissues were enriched for both F1 and F2 (Tables S3C

and S3D). At the level of brain tissue, the only regions with

divergent effects were the substantia nigra and brainstem,

which were not significantly enriched for F1 after correction

for multiple comparisons. However, shortcomings of these

analyses include the relatively low spatial resolution of
Cell Genomics 2, 100140, June 8, 2022 5
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Figure 3. Multivariate association results for the two transdiagnostic latent genetic factors

(A and B) Miami plots for (A) F1 and (B) F2. The top of each Miami plot corresponds to the significance of SNP effects on each latent factor, as traditionally

conveyed in aManhattan plot, while the bottom corresponds to the significance of heterogeneity tests for SNP effects (QSNP; i.e., the degree to which SNP effects

are not mediated by F1 or F2). For each plot, the x axis refers to chromosomal position, the y axis refers to the significance on a -log10 scale, the horizontal dashed

line denotes genome-wide significance (p = 53 10�8), and the horizontal dotted line marks suggestive significance (p = 53 10�5). For each plot, the nearest gene

for the lead SNP in the top five genome-wide significant loci is labeled.

(C and D) UpSet plots illustrating the intersection of the five gene-mapping methods, ranked by degree of overlap.
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brain-related gene expression data and the limited sample size

of the underlying data.

Therefore, to gain greater insight into potential etiological rela-

tionships between psychopathology and neurobiology, we esti-

mated genetic correlations between the transdiagnostic factors

of psychopathology and 101 morphological features of the hu-

man brain. Although we generally observed negative genetic

correlations with cortical and subcortical features (i.e., greater

risk for psychopathology was associated with smaller volumes

across the brain) and positive with ventricular features (i.e.,

greater risk for psychopathology was associated with larger ven-

tricular volumes), specific estimates betweenmorphological fea-

tures and F1 and F2 showed relatively little concordance (Fig-

ure 4C). After correcting for multiple comparisons, only the

genetic correlation between F1 and the right middle temporal

gyrus remained statistically significant (rg = �0.15, SE = 0.04,

p = 3.98 3 10�4) (Tables S3E and S3F).

We then used data from the Allen HumanBrain Atlas to identify

genes with transcriptomic profiles that were spatially similar to

the neuroimaging genetic correlation maps for F1 and F2
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(Tables S3G and S3H). Notably, these transcriptomically priori-

tized gene sets for F1 and F2 were entirely disjointed from one

another and differentially expressed in pre-and postnatal cortical

tissue from the PsychENCODE dataset (Figure 4D). We found

that the developmental expression profile of the F1 gene set

most closely resembled that of postnatal inhibitory neuronal

genes, while the developmental expression profile of the F2

gene set most closely resembled that of prenatal inhibitory

neuronal genes25,26 (Figure S5). We note that the F1 and F2

gene sets also resemble postnatal microglia and prenatal neural

progenitor cells, respectively, although to a lesser extent.

Transdiagnostic factors are differentially associated
with human health and wellbeing
To better understand how these transdiagnostic genetic liabil-

ities may manifest above and beyond their constituent pheno-

types, we conducted a series of genetic correlation and poly-

genic prediction analyses focused on theoretically relevant

phenotypes. In the genetic correlation analyses, we evaluated

the relationships between the latent factors of psychopathology



Table 2. Lead SNPs for the top ten loci per latent factor from multivariate association analyses

Lead SNP CHR:BP A1 A2 MAF Z p Nearest gene Function CADD RDB

F1 (depressive symptoms, manic symptoms, psychotic symptoms, major depressive disorder, and bipolar II disorder)

rs30266 5:103972357 G A 0.32 �7.83 4.94 3 10�15 RP11-6N13.1 ncRNA intronic 2.275 N/A

rs148682985 6:29288001 G A 0.03 �7.66 1.93 3 10�14 DDX6P1 intergenic 2.643 5

rs9586 3:49213637 C T 0.02 7.46 8.80 3 10�14 KLHDC8B UTR3 11.63 N/A

rs28656217 4:42099424 T C 0.16 7.30 2.85 3 10�13 SLC30A9 intergenic 4.861 6

rs67526282 18:53471187 T C 0.33 �7.04 1.97 3 10�12 RP11-397A16.3 intergenic 7.656 6

rs7934649 11:113372671 C T 0.36 �6.53 6.50 3 10�11 DRD2 intergenic 1.426 7

rs17410557 18:50776391 T C 0.38 �6.04 1.52 3 10�9 DCC intronic 4.502 7

rs3807866 7:12250378 G A 0.40 �6.03 1.69 3 10�9 TMEM106B upstream 7.544 N/A

rs184262 3:12134740 A G 0.15 6.02 1.77 3 10�9 SYN2 ncRNA intronic 6.559 7

rs2696673 17:44315803 A C 0.22 �6.01 1.89 3 10�9 RP11-259G18.2 intergenic 3.3 N/A

F2 (bipolar I disorder, schizoaffective disorder, and schizophrenia)

rs7746199 6:27261324 C T 0.17 9.34 9.95 3 10�21 POM121L2 intronic 0.879 1f

rs9834970 3:36856030 T C 0.49 �7.96 1.67 3 10�15 TRANK1 intergenic 11.17 4

rs12764899 10:104635103 G A 0.23 7.95 1.82 3 10�15 C10orf32-ASMT:AS3MT intronic 1.133 7

rs4298967 12:2408194 A G 0.34 7.92 2.37 3 10�15 CACNA1C intronic 10.73 5

rs6461049 7:2017445 C T 0.44 �7.15 8.80 3 10�13 MAD1L1 intronic 0.914 5

rs12902973 15:85105982 G C 0.28 7.04 1.89 3 10�12 UBE2Q2P1 ncRNA intronic 1.808 7

rs4380187 2:185811940 A C 0.45 6.86 6.95 3 10�12 ZNF804A intergenic 2.923 7

rs2535627 3:52845105 T C 0.50 6.63 3.36 3 10�11 ITIH4 intergenic 5.307 N/A

rs1198588 1:98552832 A T 0.23 �6.62 3.65 3 10-11 NFU1P2 intergenic 1.829 3a

rs11693528 2:200736507 C G 0.18 �6.60 4.18 3 10�11 AC073043.1 ncRNA intronic 2.344 6

Results for all lead SNPs are presented in Tables S2A and S2B. Lead SNPs refer to approximately independent lead SNPs identified via FUMA.

CHR:BP refers to genomic location of the lead SNP, specifically the chromosome and base pair location on that chromosome. A1 and A2 refer to

the alleles for that SNP. MAF, minor allele frequency; CADD, Combined Annotation Dependent Depletion score; RDB, RegulomeDB score.
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and 92 phenotypes broadly related to four broad domains of hu-

man health and wellbeing (Figure 5A; Table S4A). We found that

genetic correlation estimates for F1 and F2 were moderately

correlated across all broad domains (r = 0.60, p =

2.773 10�10) as well as within each of the four domains: demog-

raphy and socioeconomic status (r = 0.55, p = 1.17 3 10�2),

health and disease (r = 0.42, p = 1.17 3 10�2), personality and

risky behavior (r = 0.60, p = 3.05 3 10�3), and psychopathology

and cognition (r = 0.63, p = 1.573 10�2). Generally, we found that

F1 was more consistently correlated with phenotypes typically

related to psychopathology than F2. This pattern was also

observed in the partial genetic correlation analyses, where we

found strong evidence of divergent genetic correlations after ac-

counting for the overlap between F1 and F2 (Figure 5B;

Table S4B). Indeed, partial genetic correlation estimates for F1

and F2 were negatively correlated across all domains (r =

�0.43, p = 2.72 3 10�5).

In the polygenic prediction analyses, we used electronic

health records from the Vanderbilt University Medical Center

biobank (BioVU) to evaluate the penetrance and pleiotropy

of genetic risk for the transdiagnostic factors of psychopathol-

ogy across 1,335 disease phenotypes, hereby referred to as

‘‘phecodes’’ (Figure 5C; Tables S4C and S4D). We found

that polygenic scores for F1 and F2 were generally associated

with all of the constituent phenotypes for both factors, but F1
was more strongly associated with mood-related phecodes,

while F2 was more strongly associated with psychosis-related

phecodes. Both polygenic scores for F1 and F2 shared asso-

ciations with some forms of psychopathology (e.g., suicidality,

posttraumatic stress disorder, substance-use disorders, and

anxiety disorders) but diverged in their associations with

others (e.g., personality disorders, paranoid disorders).

Beyond psychopathology, F1 was more consistently associ-

ated a variety of medical phecodes, including those related

to infectious diseases (e.g., viral hepatitis, HIV disease) and

pervasive developmental disorders as well as diseases of

the circulatory, digestive, endocrine, genitourinary, musculo-

skeletal, and respiratory systems.

DISCUSSION

By jointly analyzing genome-wide data for eight psychiatric dis-

orders and symptoms in a novel multivariate framework, we

identified two distinct transdiagnostic factors that distinguished

common forms of psychopathology related tomood disturbance

versus rare forms of serious mental illness. Together, these fac-

tors explained approximately 80% of the SNP-based genetic

variance in mood and psychotic psychopathology but were

themselves only moderately correlated. Extensive biological

annotation of these two transdiagnostic factors revealed
Cell Genomics 2, 100140, June 8, 2022 7



Figure 4. Biological annotation of the two transdiagnostic latent genetic factors

(A) Manhattan plots for local genetic correlation, covariance, and variance for F1 and F2. Black bars indicate significant local genetic correlation.

(B) Scatterplot of gene set enrichment results illustrating convergence and divergence across the latent genetic factors with accompanying histograms for the top

10 gene sets for each factor.

(C) Scatterplot of neuroimaging genetic-correlation results with accompanying figures where the�log10 p values are mapped across the cortex, as parcellated in

the Desikan-Killiany-Tourville atlas.

(D) Smoothed line plots of gene set expression across developmental time in the PsychENCODE dataset for prioritized genes with transcriptomic profiles that are

spatially similar to the neuroimaging genetic correlation maps for F1 and F2 (as indexed in the Allen Human Brain Atlas). For all plots, the dashed black line cor-

responds to the Bonferroni-corrected significance threshold when applicable.
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clear differences between their factors in their underlying

genetic architecture and biology. Further follow-up analyses

highlighted additional differences between the factors in their as-

sociations with human wellbeing and disease. Our results pro-

vide four critical insights into the genetic architecture of forms
8 Cell Genomics 2, 100140, June 8, 2022
of psychopathology characterized by mood disturbance and

psychosis.

First, we built on genomic investigations of the dimensional

structure of certain forms of psychopathology, such as a

large-scale study of the mood-disorder spectrum,27 and
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Figure 5. Genetic-correlation and phenome-wide association results for the two transdiagnostic latent genetic factors
(A) Scatterplot of genetic correlations (rg) with marginal histograms.

(B) Scatterplot of partial genetic correlations (bg) with marginal histograms. For both plots, phenotypes are grouped into one of four broad domains: (1)

demography and socioeconomic status, (2) health and disease, (3) personality and risky behavior, and (4) psychopathology and cognition. A line of best fit (with

95% confidence interval) is fit for all 92 data points. Points are colored burgundy if significant only for F1, violet if significant only for F2, black if significant for both,

and faded gray if non-significant for both. The standard errors (SEs) for point estimates are plotted for both factors.

(C) Rotated Miami plot for (left) F1 and (right) F2, where the y axis refers to the ICD-10 code category, the x axis refers to the significance on a �log10 scale, the

vertical light red line denotes phenome-wide significance (p = 3.27 3 10�5) following Bonferroni correction, and the vertical light blue line marks nominal sig-

nificance (p = 0.05). The direction of the triangle refers to the direction of effect. Phecodes closely resembling Genomic SEM model phenotypes are bolded and

italicized for emphasis.
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identified two transdiagnostic factors that explain the vast ma-

jority of SNP-based genetic variance in their constituent pheno-

types. Perhaps surprisingly, variation in self-reported manic

and psychotic symptoms is much more closely related to com-

mon forms ofmood psychopathology (self-reported depressive

symptoms, major depressive disorder, bipolar II disorder) than

to psychiatric disorders characterized by severe mood distur-

bance and/or psychosis. These findings extend those of an

earlier GWAS of psychotic experiences,28 which also reported

stronger genetic overlap with major depressive disorder than
bipolar disorder or schizophrenia. Here, we also find that the

factor structure at the genetic level is different than the factor

structure that we observe at the phenotypic level in the UK Bio-

bank with similar indicators. This finding contrasts with what

has been called the ‘‘phenotypic null hypothesis,’’ which states

that genetic and phenotypic factor structures are expected to

converge.29 Overall, these results illustrate how diagnostic

boundaries, which are known to be problematic based onwide-

spread phenotypic comorbidity, become even fuzzier at the ge-

netic level of analysis.
Cell Genomics 2, 100140, June 8, 2022 9
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Second, our multivariate association analyses identified 80

approximately independent loci associatedwith one of the trans-

diagnostic factors. Many of these genome-wide significant loci

contain novel lead SNPs and map to genes that have not been

previously associated with mood or psychotic psychopathology,

such as SIN3A, which has been reported to be a key transcrip-

tional regulator of cortical neurodevelopment, involved in neuro-

genesis and corticocortical projections in the developing

mammalian brain.30 Moreover, by employing multiple gene-

mapping techniques, we were also able to triangulate on novel

genes associated with psychopathology, including WDR73, the

causal gene in a rare recessive autosomal disorder character-

ized by severe encephalopathy, developmental delay, and neu-

rocognitive impairment.31 Associations such as these are partic-

ularly interesting in light of results suggesting that genes

disrupted in Mendelian disorders are also dysregulated by

non-coding variants in phenotypically similar traits and disor-

ders.32 Furthermore, we build on the results of a large GWAS

of eight psychiatric disorders33 by providing novel evidence of

factor-specific pleiotropy (i.e., consistent effects across a

factor’s constituent indicators) via QSNP results, which also

identified several novel loci with significantly heterogeneous

effects for bipolar I disorder, schizoaffective disorder, and

schizophrenia.

Third, our extensive biological annotation revealed a marked

divergence in the biology associated with the two transdiagnos-

tic factors. While we find that the CNS is dually implicated at a

broad systems-based level (e.g., non-specific enrichment of

brain tissues), the biology associated with the two factors quickly

diverges at more molecular levels of investigation. Via our novel

approach to gene prioritization based on spatial transcriptomics,

we identified two sets of factor-specific genes with contrasting

developmental expression profiles. Specifically, we found that

transcriptomically prioritized genes associated with the factor

broadly characterized by common mood disturbance (F1) ex-

hibited lower expression levels during early prenatal periods,

while transcriptomically prioritized genes for the factor broadly

characterized by rarer forms of serious mental illness (F2) ex-

hibited higher expression levels during early prenatal periods.

Notably, both of these trajectories identify the prenatal epoch

as a critical developmental period related to psychopathology,

albeit in different ways. These findings coalesce with and build

upon previous studies that have begun to characterize develop-

mental expression patterns of transdiagnostic genetic liabil-

ities.34 Here, we found that the two observed trajectories

strongly resembled those of postnatal and prenatal inhibitory

neuronal genes,25 which have been implicated in the develop-

ment of mood and psychotic disorders.35–37

Fourth, we found that the two factors differ substantially in

their associations with human wellbeing and disease. Our results

expand upon recent phenome-wide association studies of ge-

netic risk for major depressive disorder38 and schizophrenia,39

expanding the list of complex traits and medical phenotypes

associated with mood and psychotic psychopathology. We

also identified an interesting pattern of results in our genetic cor-

relation and phenome-wide association analyses, where the fac-

tor comprising more common forms of mood disturbance (F1)

had broader and often stronger negative associations with so-
10 Cell Genomics 2, 100140, June 8, 2022
cioeconomic and health-related outcomes than the factor

comprising rarer forms of serious mental illness (F2). This runs

counter to associations often observed at the phenotypic level,

where individuals diagnosed with more serious mental illnesses

tend to face more severe impairments and consequences in

these domains.40,41 These results raise questions about the po-

tential ascertainment biases that affect GWASs. For example,

clinically ascertained samples of people with diagnosed psychi-

atric disorders (particularly when those disorders are rare and

seriously impairing) are subject to different sources of selection,

attrition, and non-response than population-based studies that

utilize self-report surveys. Consider, for instance, that individuals

who are homeless and incarcerated in Western countries are

drastically more likely than the general population to meet diag-

nostic criteria for a serious mental illness,42,43 but these socially

marginalized groups are less likely to have access to adequate

mental health care or be included in medical research. This se-

lective representation of psychopathology may induce collider

bias and lead to misleading estimates of genetic association.44

Indeed, cohort-level studies have already found that educational

attainment polygenic scores are positively associated with

research participation, while psychopathology polygenic scores

are negatively associated.45,46

Limitations of the study
While we have taken many steps to address potential con-

founds, these major findings should be interpreted in light of

several limitations. First, SEM does not reveal a ‘‘ground truth’’

about the nature of the phenotypes included in the analysis.

Instead, it is a useful statistical framework for representing com-

plex data structures, and latent factors are most appropriately

considered as convenient statistical entities that explain the

(co)variances of their indicators. As such, latent genetic factors

are most useful as explanatory devices when accompanied by

extensive biological annotation and follow up, as done in the pre-

sent study. Second, the univariate GWASs are comprised of

different samples with different measurement approaches and

varying levels of power. However, we have made efforts to

harmonize each of the GWASs used in Genomic SEM analyses

(e.g., excluding self-rated measures from diagnostic pheno-

types, and vice versa), and previous examination of these con-

cerns suggest that the genetic factor structure is not biased by

sample overlap or sample-size differences.19,33

Third, the univariate GWASs are comprised of different co-

horts that may be subject to different sources of bias that cannot

be fully quantified. For example, we note that the UK Biobank is

subject to a volunteer selection bias, where study participants

are generally healthier than individuals who are not study partic-

ipants.47 In ideal circumstances, the phenotypic and genetic fac-

tor analyses reported here would be performed within the same

participants in order to minimize confounding by differences in

sample selection. However, such deep phenotypic data are

not currently available at the scale required for GWASs. Fourth,

the current study focuses on forms of psychopathology that

involve a wide variety of disturbances in mood and reality testing

but does not comprehensively sample the full range of psychiat-

ric disorders. These results thus complement other transdiag-

nostic research studies that have illuminated how schizophrenia
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and bipolar I disorder diverge genetically from other clinically

defined disorders, such as compulsive disorders and disorders

of childhood.33

Conclusions
In summary, we have conducted a novel multivariate GWAS of

multiple symptoms and disorders spanning mood and psychotic

psychopathology. This analysis identified two transdiagnostic

genetic liabilities operating quite distinctly from one another.

Extensive biological annotation revealed contrasting genetic ar-

chitectures that implicated prenatal neurodevelopment and

neuronal function and regulation in markedly different ways.

Given the degree of divergence between these two factors,

future research is warranted to investigate the utility and appro-

priateness of even broader spectra of psychopathology (e.g., the

p factor20) as explanatory devices at the level of molecular ge-

netics. Collectively, our results suggest that the severity of

mood and psychotic symptoms evident in severe psychiatric

disorders might actually reflect a difference in kind rather than

merely in degree.
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24. Pardiñas, A.F., Holmans, P., Pocklington, A.J., Escott-Price, V., Ripke, S.,

Carrera, N., Legge, S.E., Bishop, S., Cameron, D., Hamshere, M.L., et al.

(2018). Common schizophrenia alleles are enriched in mutation-intolerant

genes and in regions under strong background selection. Nat. Genet. 50,

381–389. https://doi.org/10.1038/s41588-018-0059-2.

25. Lake, B.B., Chen, S., Sos, B.C., Fan, J., Kaeser, G.E., Yung, Y.C., Duong,

T.E., Gao, D., Chun, J., Kharchenko, P.V., and Zhang, K. (2018). Integrative

single-cell analysis of transcriptional and epigenetic states in the human

adult brain. Nat. Biotechnol. 36, 70–80. https://doi.org/10.1038/nbt.4038.

26. Li, M., Santpere, G., Imamura Kawasawa, Y., Evgrafov, O.V., Gulden, F.O.,

Pochareddy, S., Sunkin, S.M., Li, Z., Shin, Y., Zhu, Y., et al. (2018). Integra-

tive functional genomic analysis of human brain development and neuro-

psychiatric risks. Science 362, eaat7615. https://doi.org/10.1126/science.

aat7615.

27. Coleman, J.R.I., Gaspar, H.A., Bryois, J., Byrne, E.M., Forstner, A.J., Hol-

mans, P.A., de Leeuw, C.A., Mattheisen, M., McQuillin, A., Pavlides,

J.M.W., et al. (2019). The genetics of the mood disorder spectrum:

genome-wide association analyses of more than 185,000 cases and

439,000 controls. Biol. Psychiatry 88, 169–184.

28. Legge, S.E., Jones, H.J., Kendall, K.M., Pardiñas, A.F., Menzies, G.,
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Data and code availability
This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in the key resources table.

This paper does not report custom code or software. Any additional information required to reanalyze the data reported in this paper

is available from the lead contact upon request.

METHOD DETAILS

Phenotype construction in UK biobank
Mplus48 v8 was used to estimate person-specific thetas (i.e., factor scores) for three symptom domains: depression, mania, and psy-

chosis. As each psychiatric phenotypes was assessed by four items, thetas were estimated via a multidimensional two-parameter

probit model,61 which allowed item-level responses across measurement occasions to be combined for correlated latent variables
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simultaneously. Furthermore, a combination of multiple imputation and Bayesian estimation with non-informative priors was used to

maximally leverage all available responses for participants to minimize the impact of missing data. See Section 1.1 of Methods S1 for

further description of the phenotypic modeling.

Univariate genome-wide association analyses
BOLT-LMM49 v2.3.2 was used to conduct GWASs in the UK Biobank for three lifetime measures of psychiatric symptoms: depres-

sion, mania, and psychosis. This approach used a linear mixed model that included a genetic relationship matrix to estimate SNP

effects, which offered improved control for population stratification and maximized power by accounting for relatedness among in-

dividuals. The first 40 principal components of ancestry computed with flashPCA2 (Section 1.2 of Methods S1), sex, birth year, sex-

by-birth year interactions, and batch were included as covariates. EasyQC51 was used to perform extensive quality control on the

GWAS summary statistics. The main objective of the quality control was to filter out rare and low-frequency SNPs, as well as

SNPs that were not imputed well. Three main filters were imposed: (i) MAF <0.005; (ii) imputation quality score <0.9; (iii) unavailable

in reference panel. Additional quality control procedures and filters are further described in Section 1.3 of Methods S1. The reference

panel was a combination of the 1000 Genomes phase 3 v5 and UK10K, which has been described in a previous study.14

Multivariate genome-wide association analyses
Genomic SEM19 v0.0.2 was used to conduct multivariate GWAS based on eight phenotypes: depressive symptoms, manic symp-

toms, psychotic symptoms, major depressive disorder, bipolar II disorder, bipolar I disorder, schizoaffective disorder, and schizo-

phrenia (see Table 1 for overview). Following identification of the confirmatory factor model that best explained the observed genetic

covariances among the phenotypes, Genomic SEM was used to estimate the individual SNP effects on each latent factor in the

model. Note that Genomic SEM is unbiased in the presence of varying and unknown sample overlap across the contributing

GWAS samples, as the cross-trait intercepts estimated via multivariable LD score regression are used to estimate (and account

for) sample overlap and phenotypic correlation.

Effective sample size (Neff ) for each latent factor was estimated as Neffz1
m

Pb

a
nj, wherem is the number of SNPs in the GWAS, a is

the lowerMAF threshold for inclusion in the calculation (here, 10%), b the upper limit (here, 40%), and nj is the effective sample size for

SNP j, which is calculated as ðZj=bjÞ2=s2j .QSNP tests were used to evaluate whether SNP effects on the latent factors were driven by

heterogeneous effects across constituent phenotypes. Further description ofmultivariate association analyses andQSNP tests is pro-

vided in Sections 2.4 and 2.5 of Methods S1, respectively.

Genetic correlations among study phenotypes
LD score regression52 v1.0.1 was used to estimate genetic correlations between all pairwise combinations of the eight study phe-

notypes. Standard procedures and best practices for LD score regression were followed (e.g., restricting to HapMap362 SNPs

with a minor allele frequencyR0.01). Default parameters were used for the three new GWASs of psychiatric symptoms. For the ex-

isting GWASs of psychiatric disorders, parameters (e.g., sample prevalence, population prevalence) were defined as outlined in the

original studies. A hierarchical clustering algorithm was applied to the final genetic correlation matrix to guide factor selection in the

exploratory factor analysis. Although the original LD score regression software was used for this preliminary analysis, the multivari-

able version of LD score regression employed by Genomic SEM was used for all subsequent analyses. Please note that these soft-

ware produce estimates that are effectively identical.

Exploratory factor analysis
The stats R package was used to conduct an EFA of the genetic correlations among the eight study phenotypes. Specifically, the

factanal function was used to conduct an EFA with promax rotation on the standardized S matrix derived from the multivariable

version of LD score regression employed by Genomic SEM. This enabled an empirical assessment of (i) the number of latent factors

that best explained the multivariate genetic architecture observed among the set of study phenotypes (i.e., the number of transdiag-

nostic liabilities present), and (ii) how constituent phenotypes load onto separable latent factors. As suggested by the hierarchical

clustering algorithm, two factors were extracted that optimally accounted for shared variation among sets of the observed variables.

Results from this analysis were subsequently used to guide construction of the confirmatory factor models. A brief overview of factor

analysis is provided in Section 2.2 of Methods S1.

Confirmatory factor analysis
Genomic SEM was used to test whether a common factor model or a correlated factors model best fit the data via CFA, where fit

reflects the degree to which the specified latent variable structure adequately explains the observed covariances among the set

of observed variables. Parameter estimates were derived using weighted least squares estimation. Model fit was assessed using

conventional indices in structural equation modeling: the model c2 statistic, the Akaike information criterion (AIC), the comparative

fit index (CFI), and the standardized root mean square residual (SRMR). All fit indices retain their standard interpretations within a

Genomic SEM framework. However, the model c2 statistic is best used as a comparative measure of fit to evaluate competing
e2 Cell Genomics 2, 100140, June 8, 2022
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models rather than a measure of statistical significance given the sensitivity of model c2 to sample size, which is comparatively

extremely large for GWAS samples. For CFI and SRMR, values greater than .90 and less than .08, respectively, were considered

reflective of good model fit.63 Further description of structural equation modeling and confirmatory factor analysis are provided in

Section 2.3 of Methods S1.

Heritability for observed and latent phenotypes
LD score regression was used to estimate the heritability of the three psychiatric symptom phenotypes, as well as the two latent ge-

netic factors. Standard procedures and best practices for LD score regression were followed. As there is no phenotypic variance for

latent genetic factors modeled in Genomic SEM, heritability is more accurately referred to as genetic variance for F1 and F2. Further-

more, as genetic variance estimates are influenced by the heritability estimates of constituent phenotypes and themetric of the latent

genetic factor, we note that estimates for F1 and F2 should only be interpreted in the context of the present study.

Local heritability and genetic correlations
HESS53 and its bivariate extension, r-HESS,54 were used to estimate local genetic variance, local genetic covariance, and the pro-

portion of the genome that contributes to the total genetic covariance for F1 and F2. For each factor, HESS was first used to estimate

local genetic variance and covariance across 1,698 approximately LD-independent contiguous genomic partitions, averaging 1.5Mb

per partition. The European samples from the 1000 Genomes Project Phase 3v564 (n = 503) were used as a reference panel for

these analyses. Independent genomic partitions were then ranked by their absolute genetic covariance, and the percentage that

accounted for 80% of the total genetic covariance between F1 and F2 was used to further quantify genetic overlap between F1

and F2.65

Gene mapping and identification
The FUMA55 SNP2GENE pipeline was used to apply a standard clumping algorithm that identified associated genomic loci, lead

SNPs within loci, and all independent significant SNPs within loci. The European samples from the 1000 Genomes Project Phase

3v5 (n = 503) were used as a reference panel for LD. FUMA was also used to employ an ensemble of methods to identify putative

risk genes for the univariate and multivariate GWAS phenotypes. Specifically, FUMA v1.3.6c was used to conduct positional,

eQTL, and chromatin interaction mapping to identify risk-conferring genes that map to genome-wide significant loci. Default param-

eters were used for each of these analyses. ANNOVAR annotations66 were used for positional mapping, the Geno-type-Tissue

Expression (GTEx) v8 brain dataset67 was used as the reference tissue data for eQTL mapping, and Hi-C data from adult and fetal

human brain samples68 was used to examine enhancer-promoter and promoter-promoter chromatin interactions.

Two additional methods were employed to identify putative risk genes based on genome-wide summary statistics: and MAGMA56

and S-PrediXcan.57 The former was used to calculate gene-based association statistics, and the latter was used to identify function-

ally expressed genes via joint analysis of SNP effects and eQTL expression effects. Both methods are described in the following

section.

Gene-based association and enrichment analyses
MAGMA v1.08, a bioinformatics software for gene-based biological annotation, was used to conduct gene association, gene set

enrichment, and gene property analyses for all novel study phenotypes. Default MAGMA parameters were employed and standard

procedures were followed for gene-based association analyses based on summary statistics. MAGMA was also used to conduct

competitive gene-set enrichment and gene property analyses based on the gene-level p values produced in the association ana-

lyses. These analyses tested whether genes within an annotated set are more strongly associated with the phenotype of interest

than other genes. For gene set enrichment analyses, up to 9,987 gene sets cataloged in MolSigDB v7.0 were tested, which corre-

sponded to 7,343 biological processes, 1,001 cellular components, and 1,643 molecular functions. For the gene property analyses,

54 tissues from the GTEx v8 dataset were tested. Bonferroni-corrected thresholds of p % 5.01e-6 and p % 9.26e-4 were used to

determine significance for gene sets and tissues, respectively.

S-PrediXcan v0.6.2was used (i) to predict gene expression levels in brain tissues, and (ii) to test whether predicted gene expression

correlated with either transdiagnostic factor. Tissue weights were computed using reference data from the GTEx v8 dataset. GWAS

summary statistics for F1 and F2, the reference transcriptomic data, and covariance matrices for the SNPs within each gene model

were included as input data. Thirteen brain tissues were tested: anterior cingulate cortex, amygdala, caudate basal ganglia, cere-

bellar hemisphere, cerebellum, cortex, frontal cortex, hippocampus, hypothalamus, nucleus accumbens basal ganglia, putamen

basal ganglia, spinal cord and substantia nigra. A Bonferonni-corrected threshold of p % 8.97e-7 was established for transcrip-

tome-wide significance, which corrected for 55,753 gene-based tests.

Genetic correlation analyses between latent factors and other complex traits
Genomic SEMwas used to estimate genetic correlations and partial genetic correlations between latent factors of psychopathology

and other phenotypes of interest. Specifically, genetic correlations were estimated for two broad sets of phenotypes:

(i) morphological features of the human brain, and (ii) complex traits related to human health and well-being. Summary statistics

for 101 neuroimaging phenotypes69 (cortical and subcortical gray matter volumes, ventricular volumes, and global measures of brain
Cell Genomics 2, 100140, June 8, 2022 e3
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volume) were downloaded from https://github.com/BIG-S2/GWAS. Summary statistics for 92 phenotypes broadly related to various

domains of human health and well-being were downloaded from various online sources, using download links from GWAS Atlas70

whenever possible. All summary statistics were cleaned and processed using the munge function of Genomic SEM, retaining all

HapMap3 SNPs outside of the major histocompatibility complex regions with an allele frequency R .01. A Bonferroni correction

was applied within each family of tests to adjust p values for multiple comparisons (p % 4.95e-4 for neuroimaging phenotypes;

p % 5.43e-4 for complex traits).

Spatiotemporal transcriptomic analyses
Microarray gene expression data from the Allen Human Brain Atlas (AHBA)71 were downloaded from https://human.brain-map.org/

static/download, and subsequently aligned to the Desikan-Killiany-Tourville atlas (N = 62 cortical brain regions)72 for spatial compat-

ibility with the cortical neuroimaging phenotypes.73 Spatial correlation coefficients (Spearman’s r) were computed for each of 20,647

genes compared against the -log10 p values from F1 and F2. To examine the developmental trajectories of the F1 and F2 gene sets

(positive Z-scores of AHBA correlation coefficients, p < .05), weighted gene correlation network analysis58 was used to estimate ei-

gengene values (i.e., gene set expression) for these gene sets in the PsychENCODE dataset, treating each factor-specific gene set as

a module. These expression values were then plotted as function of time, using a non-parametric LOESS curve line-of-best-fit to

characterize developmental expression trajectories for F1 and F2, which indicated that the prioritized gene sets for each transdiag-

nostic factor are differentially expressed in pre- and postnatal cortical tissue. Evaluation of cell-type-specific gene sets was per-

formed as above, using available data from a recent cell-specific sequencing study in adult human brain tissue.25

Phenome-wide polygenic prediction
PRS-CS59 and PLINK60 v1.9 were used to calculate polygenic scores for the transdiagnostic latent genetic factors, F1 and F2.

PRS-CS, a Bayesian polygenic prediction method, was used to apply a continuous shrinkage prior to SNP effect estimates and infer

posterior SNP weights using GWAS summary statistics for F1 and F2 and an external reference panel to model LD. In the present

study, PRS-CS was used to adjust weights for 1,027,871 SNPs typed on both the 1000 Genomes Project Phase 3v5 and the

HapMap3 reference panels with a minor allele frequency R .01. The European samples from the 1000 Genomes Project Phase

3v5 (n = 503) were used as a reference panel for LD. PLINK was then used to calculate polygenic scores for each individual by sum-

ming all included variants weighted by the inferred posterior effect size for the effect allele, and converting that value to a Z-score for

each participant within the prediction sample.

The genotyped BioVU sample (n = 66,915) was used to test for associations between polygenic scores for F1 and F2 and a wide

array of medical phenotypes. Genotyping and quality control for this sample have been described elsewhere. Case-control medical

phenotypes, also referred to as ‘‘phecodes,’’ were constructed from International Classification of Disease (ICD) diagnostic codes in

participant electronic health record data. Two instances of an ICD diagnostic code were required to be present to be classified as a

case for a given phecode, and 50 cases were required for a phecode to be analyzed. A total of 1,335 phecodes were included in the

phenome-wide association analyses. The PheWAS R package was used to conduct phenome-wide association analyses. A logistic

regressionmodel was fit to each of 1,335 case/control phenotypes to estimate the odds of each diagnosis given the polygenic scores

for F1 and F2. Sex, median age of the longitudinal electronic health record measurements, and the top 10 principal components of

ancestry were included as covariates. A Bonferroni-corrected threshold of at p % 3.74e-5 was established for phenome-wide

significance.
e4 Cell Genomics 2, 100140, June 8, 2022
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Figure S1. Phenotypic correlations between psychiatric symptoms and disorders, related to Figure 2. 
Matrix of phenotypic correlations for available psychiatric symptoms and disorders in the UK Biobank 
discovery sample.   



 
Figure S2. Path diagrams for the four confirmatory factor models, related to Figure 2. a,b,c,d, Path 
diagrams with standardized parameter estimates for (a) a common factor model, (b) a correlated factors model, 
(c) a correlated factors model with bipolar II disorder cross-loading on both factors, and (d) a correlated factors 
model with correlated residuals between bipolar I disorder and bipolar II disorder. Standard errors are reported 
in parentheses next to each parameter estimate. Latent genetic factors are highlighted in blue. 



 
Figure S3. Observed and implied genetic correlation matrices, related to Figure 2. a, Matrix of observed 
genetic correlations for the eight psychiatric symptoms and disorders. b,c, Matrices of model implied genetic 
correlations for (a) the common factor (i.e., the p factor) and (b) the final correlated factors model (Figure 
S2d). Model implied correlations are presented below the diagonal while the difference between the model 
implied and observed correlations (model implied rg – observed rg) are presented above the diagonal. Positive 
and negative values above the diagonal, therefore, reflect upwardly and downwardly biased estimates, 
respectively. 
 
  



 

 
Figure S4. Quantile-quantile plot for the latent genetic factors, related to Figure 3. a,b, Quantile-
quantile plot for (a) F1 and (b) F2, illustrating strong polygenic signal for both multivariate GWAS. The y-
axis corresponds to the observed distribution of P, while the x-axis corresponds to the expected distribution 
of P under the null. The null is plotted as a solid gray line, and the accompanying 95% confidence interval is 
plotted as a dotted black line. 
 
  



 
Figure S5. Spatiotemporal gene expression of specific cell types, related to Figure 4. a,b, Developmental 
trajectories fit via LOESS regression for (a) prenatal and (b) adult cell types in the Brainspan dataset. Cell 
type data is derived from Li and colleagues10. Note: inhibitory neurons = mostly GABAergic interneurons, 
excitatory neurons = mostly glutamatergic excitatory projection neurons, NPC = neural progenitor cells, 
VSMC = vascular smooth muscle cells, OPC = oligodendrocyte progenitor cells. 



1 

Methods S1, Supplemental description of methods employed in this study, related to STAR Methods. 
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1 Genome-wide association analyses in UK Biobank 
To investigate the genetic architecture of psychiatric symptoms related to mood disturbance and psychosis, we 
used a novel combination of Bayesian item response theory and linear mixed models to conduct univariate 
GWASs  in the UK Biobank (N = 252,252). Details regarding the phenotypes and extensive quality control 
procedures are described below. 

1.1 Phenotype construction 

Lifetime symptoms of depression and mania were assessed with two sets of items administered via in-person 
(Wave 1) and online (Wave 2) surveys. Lifetime symptoms of psychosis were only assessed during the online 
follow-up survey. Although items were very similar across assessment occasions, there were slight differences 
in wording and response options, as described below. 

1.1.1 Depression 

Wave 1. The in-person surveys indexed depressive symptoms with two screener items that assessed the 
presence of notable, prolonged feelings of sadness or apathy.  
 

1. "Looking back over your life, have you ever had a time when you were feeling depressed or down for 
at least a whole week?" 

• Data-Field 4598 (Data-Coding 100349). 
• Possible responses: "Yes", "No", "Do not know", and "Prefer not to answer". 

2. "Have you ever had a time when you were uninterested in things or unable to enjoy the things you used 
to for at least a whole week?" 

• Data-Field 4631 (Data-Coding 100349). 
• Possible responses: "Yes", "No", "Do not know", and "Prefer not to answer". 

 
Wave 2. The web-based follow-up survey also indexed depressive symptoms with two screener items that 
assessed the presence of notable, prolonged feelings of sadness or apathy 
 

1. "Have you ever had a time in your life when you felt sad, blue, or depressed for two weeks or more in 
a row?" 

• Data-Field 4598 (Data-Coding 503). 
• Possible responses: "Yes", "No", and "Prefer not to answer". 

2. "Have you ever had a time in your life lasting two weeks or more when you lost interest in most things 
like hobbies, work, or activities that usually give you pleasure?" 

• Data-Field 4631 (Data-Coding 503). 
• Possible responses: "Yes", "No", and "Prefer not to answer". 

1.1.2 Mania 

Wave 1. The in-person surveys indexed manic symptoms with two screener items that assessed the presence 
of notable, prolonged feelings of (hypo)mania or irritability.  
 

1. "Have you ever had a period of time lasting at least two days when you were feeling so good, "high", 
excited or "hyper" that other people thought you were not your normal self or you were so "hyper" that 
you got into trouble?" 

• Data-Field 4642 (Data-Coding 100349). 
• Possible responses: "Yes", "No", "Do not know", and "Prefer not to answer". 
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2. "Have you ever had a period of time lasting at least two days when you were so irritable that you found 
yourself shouting at people or starting fights or arguments?" 

• Data-Field 4653 (Data-Coding 100349). 
• Possible responses: "Yes", "No", "Do not know", and "Prefer not to answer". 

 
Wave 2. The web-based follow-up survey indexed manic symptoms with two screener items that assessed the 
presence of notable, prolonged feelings of (hypo)mania or irritability.  
 

1. "Have you ever had a period of time when you were feeling so good, "high", excited or "hyper" that 
other people thought you were not your normal self or you were so "hyper" that you got into trouble?" 

• Data-Field 20501 (Data-Coding 502). 
• Possible responses: "Yes", "No", "Do not know", and "Prefer not to answer". 

2. "Have you ever had a period of time when you were so irritable that you found yourself shouting at 
people or starting fights or arguments?" 

• Data-Field 20502 (Data-Coding 502). 
• Possible responses: "Yes", "No", "Do not know", and "Prefer not to answer". 

1.1.3 Psychosis 

Wave 2. The web-based follow-up survey assessed psychotic symptoms with four screener items. These items 
indexed various types of unusual beliefs and experiences that are indicative of psychosis or psychotic-like 
experiences. 
 

1. “Did you ever see something that wasn't really there that other people could not see? Please do not 
include any times when you were dreaming or half-asleep or under the influence of alcohol or drugs.” 

• Data-Field 20471 (Data-Coding 502). 
• Possible responses: "Yes", "No", "Do not know", and "Prefer not to answer". 

2. “Did you ever hear things that other people said did not exist, like strange voices coming from inside 
your head talking to you or about you, or voices coming out of the air when there was no one around? 
Please do not include any times when you were dreaming or half-asleep or under the influence of 
alcohol or drugs.” 

• Data-Field 20463 (Data-Coding 502). 
• Possible responses: "Yes", "No", "Do not know", and "Prefer not to answer". 

3. “Did you ever believe that a strange force was trying to communicate directly with you by sending 
special signs or signals that you could understand but that no one else could understand (for example 
through the radio or television)? Please do not include any times when you were dreaming or half-
asleep or under the influence of alcohol or drugs.” 

• Data-Field 20474 (Data-Coding 502). 
• Possible responses: "Yes", "No", "Do not know", and "Prefer not to answer". 

4. “Did you ever believe that there was an unjust plot going on to harm you or to have people follow you, 
and which your family and friends did not believe existed? Please do not include any times when you 
were dreaming or half-asleep or under the influence of alcohol or drugs.” 

• Data-Field 20468 (Data-Coding 502). 
• Possible responses: "Yes", "No", "Do not know", and "Prefer not to answer". 

1.1.4 Item response theory models 

To construct psychiatric symptom phenotypes in UK Biobank, we used Mplus1 v8 to estimate a two-parameter 
probit multidimensional item response theory (IRT) model, which simultaneously combined self-report items 
across waves for each symptom dimension while leveraging all available information and accounting for the 



 5 

correlations between dimensions. IRT scaling was used as it does not assume that all items are equivalently 
related to the underlying construct of interest, accommodates differences in the base rate of item endorsement, 
and does not assume that missing data are missing completely at random. The advantages of IRT scaling using 
full-information estimation over averaging proportion scores for incomplete longitudinal data is described in 
more detail in Curran and colleagues2. The two parameter probit multidimensional IRT model can be expressed 
as:  
 

𝑃"𝑦!"# = 1&θ!" , α!# , γ!#+ = Φ"α!#θ!" − γ!#+ = .
1
√2π

$!"%!#&'!"

&(

𝑒
&)$
* 𝑑𝑡 

 
where P represents probability; yvij is the observed response for binary item j for individual i in symptom 
dimension v; and θvi, αvj, and γvj are scalar parameters that represent the latent construct hypothesized to 
underlie the observed item response patterns, item discrimination (i.e., the degree to which the item 
discriminates between individuals in different regions on the latent continuum), and item difficulty (i.e., the 
location where the item provides maximum information) for symptom dimension v. We freely estimated slope 
parameters for all items, and we modeled items as functions of single time-invariant, symptom-specific θ 
parameters.  
 
We estimated IRT model parameters (αvj, γvj, and θvi) using a Bayesian framework with non-informative priors 
and multiple imputation, which maximally leveraged all available responses for participants and minimized 
the impact of missing data. This approach is a full information approach that is asymptotically equivalent to 
maximum likelihood estimation. We imputed 100 plausible θ values for each participant to create a sampling 
distribution of θ for each symptom. The median values of these distributions were then used as the phenotype 
for the GWAS. 

1.1.5 Phenotypic factor structure in UK Biobank 

To evaluate the phenotypic factor structure of psychiatric symptoms and disorders characterized by mood 
disturbance and psychosis, we first created diagnostic phenotypes for the 252,252 individuals in the discovery 
sample, corresponding to diagnoses of major depressive disorder, bipolar disorder, schizoaffective disorder, 
and schizophrenia. These phenotypes were derived from electronic health records. 
 

1. Diagnoses - main ICD-10 
• Data-Field 41202 (Data-Coding 19) 

2. Diagnoses - secondary ICD-10 
• Data-Field 41204 (Data-Coding 19) 

 
Due to low base rates, schizoaffective disorder and schizophrenia cases were combined. These variables were 
then included as observed variables in the multidimensional IRT model described in Supplementary Section 
1.1.4. We first estimated the zero-order correlations between each pairwise combination of the psychiatric 
symptoms and disorders (Figure S1). To maintain consistency across phenotypic and genetic factor analyses, 
we then conducted an exploratory factor analysis of the covariance matrix for these phenotypes, where we 
tested one-, two-, and three-factor solutions using the factanal function of R. As described in Supplementary 
Section 2.2, we retained the highest dimensional solution where each factor explained at least 20% of the 
variance.  
 
Here, the three-factor solution satisfied this criterion (F1 = 35%, F2 = 29%, F3 = 23%), yielding three factors 
that were each predominantly characterized by a psychiatric disorder and their cardinal symptom(s). 
Specifically, we found that the factors corresponded to the following phenotypes (with loadings ≥ .30):  
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• F1: schizophrenia (1.08), psychosis (.90), and bipolar disorder (.31) 
• F2: bipolar disorder (.54), mania (1.10), and depression (.51)  
• F3: major depressive disorder (1.10) and depression (.31) 

 
Collectively, these results suggest that symptoms and disorders tend to correlate most strongly in a canonical 
fashion at the phenotypic level (i.e., psychosis with schizophrenia, mania with bipolar disorder, depression 
with major depressive disorder).  

1.2 Principal components of ancestry 

Although the present analyses were limited to participants who self-reported non-Hispanic European descent, 
we sought to further account for cryptic relatedness and population stratification specific to this population. 
To this end, we used flashPCA23 to extract the first 40 principal components of ancestry in individuals who 
reported having non-Hispanic European ancestry. 
 
We used an approach that broadly paralleled the original process used to estimate principal components of 
ancestry in the entire UKB dataset, as well as the default flashPCA2 recommendations as outlined by Abraham 
and colleagues in their online code repository (https://github.com/gabraham/flashpca). Specifically, we first 
generated a list of UKB participants that (i) were used in original PCA (i.e., passed QC thresholds, pruned for 
kinship, etc.) and (ii) self-reported 'White British' ethnicity and have very similar genetic ancestry based on 
original PCA of the genotypes (as determined in the sample QC file provided by UKB investigators). We then 
extracted the hard genotype calls for those individuals and applied the recommended SNP-level QC thresholds 
(directly genotyped SNPs outside of long-range LD regions, minor allele frequency ≥ .01, genotyping call rate 
≥ .02, missingness rate ≤ .05, and a Hardy-Weinberg equilibrium threshold ≥ 5e-6). Next, we applied the 
recommended LD pruning thresholds to produce a sample of 322,886 individuals with 77,355 independent 
markers before estimating the first 40 principal components with flashPCA2. Principal component loadings 
for each SNP used in the analysis were computed, exported, and then used to project all remaining participants 
of non-Hispanic European ancestry (e.g., siblings not used in the original PCA, participants of White Irish 
ancestry, participants of White Scottish ancestry, etc.) onto the PCs, yielding a final set of PC scores for the 
entire subsample. Scatterplots of the principal component scores were then manually examined to identify 
potential ancestral outliers in the sample. 

1.3 Quality control 

We used an EasyQC4 pipeline similar to the one reported by Linnér and colleagues5 to check each set of UKB 
summary statistics for quality control problems. For each results file, we applied the following threshold in 
order. 
 
1. We removed SNPs if either allele corresponded to a value other than “A”, “C”, “G”, or “T”.  
2. We excluded SNPs if any of the following values were missing: P value, beta, standard error, effect allele 

frequency, sample size, and imputation accuracy (for imputed SNPs).  
3. We excluded SNPs with values outside of permissible ranges (e.g., negative or infinite standard errors, 

nonsensical P values, allele frequencies greater than 1 or below 0). 
4. We dropped SNPs with minor allele frequencies less than .005. 
5. We filtered out SNPs with low imputation accuracy, which was defined as an imputation score < .90.  
6. We dropped duplicated SNPs based on GRCh37 base pair positions. When duplicated SNPs were 

identified, we retained the SNP with the largest sample size.  
 
We then inspected several diagnostic plots to further ensure that results were not prone to systematic errors, 
including:  
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7. We checked for errors in allele frequencies and strand orientations by inspecting a plot of allele frequencies 

in our analytic sample against the allele frequency in a non-Hispanic European reference sample. 
8. We checked for discrepancies between the reported P values and the reported coefficient estimates and 

their SEs. 
9. We looked for evidence of population stratification that had not been accounted for by checking a Q-Q 

plot. 

2 Genomic structural equation modeling 
Genomic structural equation modeling (Genomic SEM)6 is a novel statistical method for applying structural 
equation modeling techniques to GWAS summary statistics to model the joint genetic architecture of complex 
traits. It is a flexible framework that allows for more accurate modeling of multivariate genetic covariance 
matrices, such as those derived from LD Score regression. Here, we conducted a series of Genomic SEM 
analyses to investigate the multivariate genetic architecture of the psychiatric symptoms and disorders 
characterized by mood disturbance and psychosis. The aim of these analyses is three-fold: (i) to identify the 
latent genetic factor(s) that best represent the factor structure of these phenotypes, (ii) to estimate the effects 
of individual SNPs on the latent genetic factor(s), and (iii) to evaluate heterogeneous effects among the 
discovery phenotypes. 

2.1 Hierarchical clustering 

Hierarchical clustering is a form of cluster analysis that aims to identify features of a dataset that are similar 
to one another. It serves as a precursor to factor analysis or structural equation modeling, as its results can be 
used guide model specification decisions in subsequent analyses. To this end, we applied a hierarchical 
clustering algorithm to a genetic correlation matrix of our eight psychiatric phenotypes prior to any form of 
factor analysis. Specifically, we applied the complete-linkage hierarchical clustering algorithm employed by 
the hclust function of R. The algorithm identified two clusters present in the matrix. 
 
The first cluster was comprised of the symptom-level phenotypes (depression, mania, and psychosis), major 
depressive disorder, and bipolar II disorder. The second cluster was comprised of bipolar I disorder, 
schizoaffective disorder, and schizophrenia. Beyond these two clusters, there clear evidence of a positive 
manifold across all items. All point estimates were positive, and all but two of the 28 pairwise genetic 
correlations were significant following Bonferroni correction. 

2.2 Factor analysis 

Factor analysis is a multivariate statistical technique used to explain variance and covariance among sets of 
observed, correlated variables in terms of unobserved latent factors. It is a powerful tool for reducing 
dimensionality of data and accounting for measurement error in observed variables, often used in structural 
equation modeling. In factor analysis of genetic covariance matrices, 𝑘 observed variables are described as 
linear functions of 𝑚 latent variables, such that the model can be expressed as 
 

𝑦 = Λη + 𝜀 
 
where 𝑦 is a 𝑘	 × 	1 vector of observed variables, 𝜀 is a 𝑘	 × 	1 vector of observed variable residuals, η is a 
𝑚	 × 	1 vector of latent variables, and Λ is a 𝑘	 × 	𝑚 matrix of factor loadings that relate the observed variables 
to the latent variables. 
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In the present study, we used the factanal function of R to conduct an exploratory factor analysis with promax 
rotation. Guided by the results described in Supplementary Section 2.1, we tested factor solutions extracting 
up to three latent factors, retaining the highest dimensional solution where each factor explained at least 20% 
of the variance. As the three-factor solution did not meet this criterion (F1 = 43%, F2 = 26%, F3 = 18%), we 
selected the two-factor solution as the best exploratory factor model (Figure 2b).  
 
In this two-factor solution, we found compelling evidence of approximate simple structure. Phenotypes 
principally loaded onto one of two latent genetic factors with negligible cross-loadings. The two correlated 
latent genetic factors explained 81.3% of the total genetic variance across phenotypes. 

2.3 Structural equation modeling 

Structural equation modeling is a statistical framework comprised of a diverse set of models and methods used 
to explain variance and covariance among sets of variables. While the background and many applications of 
structural equation modeling are extensive7,8, the fundamentals as they relate to the Genomic SEM framework 
are briefly reviewed below. 
 
Structural equation models can be represented in two sets of equations: the measurement model, which 
describes how observed variables relate to latent variables, and the structural model, which describes how 
latent variables relate to one another6. As in exploratory factor analysis, 𝑘 observed variables are again 
described as linear functions of 𝑚 continuous latent variables. In confirmatory factor analysis, this is referred 
to as the measurement model, which is still expressed as  
 

𝑦 = Λη + 𝜀 
 
with the same notation as described in Supplementary Section 2.2. 
 
If theory is used to explain associations between latent variables, a structural model can then be specified to 
relate latent variables to each other via directed regression coefficients. The structural model can be expressed 
as  
 

η = Bη + ζ 
 
where B is a 𝑚	 × 	𝑚 matrix of regression coefficients that relate latent variables to one another and ζ is a 
𝑚	 × 	1 vector of latent variable residuals. In this full structural equation model, the observed sample 
covariance matrix is represented by a set of parameters that relates observed variables to latent variables, and 
latent variables to each other in a series of linear equations.   
 
Genomic SEM employs a two-stage SEM approach to model the genetic covariances between a set of 
phenotypes (i.e., the observed phenotypes). Stage 1 consists of estimating the genetic covariance matrix and 
the sampling covariance matrix. Stage 2 consists of fitting a structural equation model that minimizes misfit 
between the model-implied and empirical genetic covariances. 
 
In Stage 1, Genomic SEM uses a multivariable form of LD Score regression to estimate the empirical genetic 
covariance matrix (𝑆) and its associated sampling covariance matrix (𝑉+). Here, 𝑆 is a symmetric matrix of 
order 𝑘 with SNP heritabilities on the diagonal and genetic covariances between phenotypes off the diagonal. 
Comprised of  𝑘∗ = -(-/0)

*
 nonredundant elements, 𝑆 can be written as 
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To obtain unbiased estimates of standard errors and test statistics, Genomic SEM then constructs the 
asymptotic sampling covariance matrix of the LD Score regression estimates, 𝑉+, by using all nonredundant 
elements in the 𝑆 matrix. Here, 𝑉+ is a symmetric matrix of order 𝑘∗where the diagonal elements are sampling 
variances and the off-diagonal elements are sampling covariances. Thus, it can be written as 
 

𝑉! =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑆𝐸(ℎ"#)#

𝑐𝑜𝑣(ℎ"#, 𝜎$!,$")
⋮

𝑐𝑜𝑣(ℎ"#, 𝜎$!,$#)

𝑆𝐸(𝜎$!,$")
#

⋮
𝑐𝑜𝑣(𝜎$!,$" , 𝜎$!,$#)

⋱																									
𝑆𝐸(𝜎$!,$#)

#

⋮ ⋮ ⋮
𝑐𝑜𝑣(ℎ"#, ℎ&#) 𝑐𝑜𝑣(𝜎$!,$" , ℎ&

#) 𝑐𝑜𝑣(𝜎$!,$# , ℎ&
#)

⋱																														 																 														
𝑆𝐸3ℎ&#4

# 																							 															

					⋮ 						⋮ ⋮
𝑐𝑜𝑣(ℎ"#, 𝜎$$,$#) 𝑐𝑜𝑣(𝜎$!,$" , 𝜎$$,$#) 𝑐𝑜𝑣(𝜎$!,$# , 𝜎$$,$#)
𝑐𝑜𝑣(ℎ"#, ℎ'#) 𝑐𝑜𝑣(𝜎$!,$" , ℎ'

#) 𝑐𝑜𝑣(𝜎$!,$# , ℎ'
#)

⋱																									
𝑐𝑜𝑣(ℎ&#, 𝜎$$,$#) 𝑆𝐸(𝜎$$,$#)

#

𝑐𝑜𝑣(ℎ&#, ℎ'#) 𝑐𝑜𝑣(𝜎$$,$# , ℎ'
#) 𝑆𝐸(ℎ'#)#⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
The diagonal elements of 𝑉+ are then estimated with a jackknife resampling procedure following the original 
bivariate version of LD Score regression. 
 
In Stage 2, Genomic SEM uses the 𝑆 and 𝑉 matrices from Stage 1 to estimate the parameters of the specified 
structural equation model using a weighted least squares (WLS) fit function, as detailed in Grotzinger et al. 
(2019). Notably, this method is capable of accounting for differences in GWAS sample size, which is ideal in 
the present study. Furthermore, the off-diagonal elements of 𝑉+ index the extent to which the sampling errors 
across input GWAS are correlated, which means that Genomic SEM, like LD score regression upon which it 
is based, is unbiased and robust to varying degrees of, or even complete, sample overlap. 

2.3.1 Confirmatory factor analysis 

Confirmatory factor analysis is a common application of structural modeling where theoretical models are 
used to explain the observed covariances among a set of observed variables. Here, we tested a series of 
competing models to identify the model that best fit the data, where good fit indicated that the specified latent 
variable structure adequately explained the observed genetic covariances among the set of observed variables. 
 
Guided by the results described in Supplementary Sections 2.1 and 2.2, as well as psychiatric and psychometric 
theory, we tested a series of confirmatory factor models to identify the solution that best explained the observed 
genetic covariances among the set of discovery phenotypes. Specifically, we tested four models: (i) a single 
common factor model (i.e., a p factor), (ii) a correlated factors model (iii) a correlated factors model with 
bipolar II disorder to cross-loading on both factors, and (iv) a correlated factors model with correlated residuals 
between bipolar I disorder and bipolar II disorder. Path diagrams for these models are presented in Figure S2. 
Unit variance identification was used to set the scale of the latent factors.  
 
Model fit was assessed using conventional indices in structural equation modeling: the model χ2 statistic, the 
Akaike information criterion (AIC), the comparative fit index (CFI), and the standardized root mean square 
residual (SRMR). All of these indices retain their standard interpretations within a Genomic SEM framework 
with the exception of the model χ2 statistic 6. In large samples, such as those used here, χ2 tests are overpowered 
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and likely to be significant. As such, the model χ2 statistic was used as a comparative measure of fit to evaluate 
competing models (akin to AIC), rather than a measure of statistical significance. For CFI and SRMR, values 
greater than .90 and less than .08, respectively, were considered reflective of good model fit9.  
 
Common factor model  
As a baseline, we evaluated a common factor model with all eight phenotypes operating as indicators for a 
single latent factor. While easily interpretable, this particular model exhibited poor fit, as indicated by model 
fit indices (χ2(20) = 1630.24, AIC =  1662.24, CFI = .99, SRMR = .20). Inspection of the observed and model 
implied genetic correlation matrices indicated that the common factor model implied that genetic correlations 
between schizophrenia, schizoaffective disorder, bipolar I disorder, and bipolar II disorder were severely 
downwardly biased. Moreover, the genetic correlations between psychiatric symptoms and disorders were 
modestly upwardly biased in the common factor model. 
 
Correlated factors model  
Preliminary results described in Supplementary Sections 2.1 and 2.2 suggested the promise of a two-factor 
model, where phenotypes loaded onto two distinct-but-correlated latent genetic factors. As an initial test of 
this model, we estimated a simple correlated factors model with no cross-loadings and no correlated residuals. 
While this model had better fit than the common factor model, some model fit indices were still suboptimal 
(χ2(19) = 608.97, AIC = 642.97, CFI = .99, SRMR = .11). We next fit a model allowing bipolar II disorder to 
cross-load onto both factors. This model also showed good fit, as indicated by model fit indices (χ2(18) = 
390.93, AIC = 426.93, CFI = .99, SRMR = .08), but the cross-loading resulted in markedly lower loadings for 
bipolar II disorder (.51 and .43 for F1 and F2, specifically). Finally, we fit a correlated factors model that 
estimated the correlation between residual variance in bipolar I disorder and bipolar II disorder. This model fit 
the data best, closely approximating the observed genetic covariance matrix (χ2(18) = 496.16, AIC = 532.16, 
CFI = .99, SRMR = .06).  
 
While all variations of the correlated factors model showed improved fit over the common factor model, we 
identified the model that included correlated residuals as the best fitting model. Notably, this model provided 
a parsimonious and easily interpretable factor structure that simultaneously minimized the standardized 
difference between the observed and predicted genetic correlations. Inspection of the observed and model 
implied genetic correlation matrices indicated that the final correlated factors model fit the data substantially 
better than the common factor model because it appropriately accounted for different patterns of covariance 
by segregating the phenotypes into two separate-but-correlated latent factors (Figure S3). 

2.3.2 Genetic correlation 

Structural equation models can also be used to estimate the genetic correlation between an unobserved latent 
factor and an observed exogenous phenotype not included in the model. Indeed, this method is preferable to 
using bivariate LD score regression, as it based on the genetic covariances directly rather than the estimated 
SNP effects, which may not be mediated by the latent factor(s) (see Supplementary Section 2.5 for more on 
heterogenous SNP effects). To estimate genetic correlations between a latent factor and an observed exogenous 
phenotype, we first created a single-item quasi-latent factor for the exogenous phenotype, and fixed the residual 
variance for the phenotype to zero. We then estimated the correlation between our latent factors and the quasi-
latent factor for the phenotype of interest. 

2.3.3 Multivariable genetic regression 

The approach described in Supplementary Section 2.3.2 can be extended to conduct multivariable genetic 
regression, which yields estimates of genetic associations between two variables after accounting for 
relationships with additional variables in the model (i.e., partial genetic correlations). Here, this is done by 
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regressing the exogenous phenotype onto F1 and F2 while simultaneously estimating the genetic correlation 
between the two latent genetic factors. 

2.4 Multivariate genome-wide association analyses  

After identifying a confirmatory factor model that best explained the observed genetic covariances among the 
phenotypes, we conducted a multivariate GWAS by estimating the individual SNP effects on each latent factor 
in the model. A brief overview of this method is provided below. 
 
To estimate the effect of SNP 𝑗 on F1 and F2, individual SNP effects are included in both the genetic covariance 
matrix and the sampling covariance matrix. This is accomplished by expanding the genetic covariance matrix 
to include covariances between SNP 𝑗 and the latent genetic components of each phenotype, 𝑔0 through  𝑔-. 
 

𝑆 =

⎣
⎢
⎢
⎢
⎡ 𝜎+56

*

𝜎+56,2% ℎ0*

𝜎+56,2$ 𝜎2%,2$ ℎ**

𝜎+56,2& 𝜎2%,2& 𝜎2$,2& ℎ-*⎦
⎥
⎥
⎥
⎤
 

 
The associated sampling covariance matrix, 𝑉+, then includes the following: (i) the sampling variances and 
sampling covariances of the SNP heritabilities and genetic covariances, (ii) the variance of SNP 𝑗 as derived 
from reference panel data, and (iii) the sampling covariances of the SNP-genotype covariances. Finally, 
Genomic SEM is used to estimate 𝑚 models to obtain GWAS summary statistic for the latent factors, where 
𝑚 is the number of SNPs present across all included summary statistics.  
 
Note that unit loading identification is used to set the scale of latent factors for models including SNP effects. 
This is a difference from the structural equation models without SNP effects, where unit variance identification 
is used to facilitate easy interpretation of factor loadings. This is done for two reasons. First, if the variance of 
the factor were set to 1, the inclusion of a SNP as a regressor technically changes the variance of the latent 
factor to be 1 plus the variance explained by the SNP. Second, the use of unit variance identification scales 
SNP effects as if they were for a phenotype that was entirely heritable (i.e., ℎ+56*  = 1). This distinction does 
not change the ratio of effect estimates to standard errors, but it does potentially complicate comparison to 
other GWAS results. Thus, we find that unit loading identification is the most appropriate method to scale 
latent factors in models that include SNP effects. Here, we set the scale of F1 and F2 by fixing the factor 
loadings of psychotic symptoms and schizophrenia, respectively. 

2.5 Heterogeneity tests 

It is possible that SNP effects might vary across each indicator and not act entirely through the common latent 
variable. To evaluate this potential heterogeneity in SNP effects, we computed genome-wide QSNP statistics, 
which are χ2-distributed test statistics estimated for each SNP in the multivariate GWAS. As described by 
Grotzinger and colleagues6, larger values for QSNP reflect a violation of the null hypothesis that the SNP acts 
entirely through the latent factor(s).  

2.6 Effective sample size 

While it can be difficult to estimate effective sample size for a given SNP in a latent factor model, we were 
able to produce reasonable estimates of effective sample size for the overall multivariate GWAS under a set 
of reasonable assumptions. First, we assume that the per-allele effect of SNP 𝑗 on the standardized phenotype 
is very small, such that it follows 
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𝛽# =	
𝑍#

P𝑛# 	× 	2	 ×	𝑀𝐴𝐹# 	"1 − 𝑀𝐴𝐹#+
 

 
where 𝑍 is the Z statistic, n is the unknown effective sample size that we seek to estimate, and MAF is the 
minor allele frequency of SNP j. Note that the variance of SNP j	(𝜎#*) is estimated as 2	 ×	𝑀𝐴𝐹# 	"1 − 𝑀𝐴𝐹#+. 
Therefore, if we know the effect and MAF of that SNP, then we can estimate its effective sample size by 
solving for nj.  
 

𝛽#
𝑍#
=

1

P𝑛# 	× 	𝜎#*
 

 
𝑍#
𝛽#
= P𝑛# 	× 	𝜎#* 

 

U
𝑍#
𝛽#
V
*

= 𝑛# 	× 	𝜎#* 

 

𝑛# =
(𝑍#/𝛽#)*

𝜎#*
 

 
We note that when the phenotype is a latent factor, the choice of scaling the factor will have a nontrivial effect 
on the estimate of nj. Here we scale the latent genetic factors with unit loading identification, such that nj can 
be intuitively interpreted as the effective sample size in the units of the standardized reference phenotype (As 
indicated in 2.4, we set the scale of F1 and F2 by fixing the factor loadings of psychotic symptoms and 
schizophrenia, respectively). If we were to scale the latent genetic factors with unit variance identification, the 
effective sample size would be interpreted relative to a factor that is 100% heritable, and nj would be 
unintuitively very small (because, ceteris paribus, highly heritable phenotypes require smaller sample sizes to 
detect genetic associations).  
 
This formula will typically produce reasonable estimates of 𝑛# when the factor is scaled using a unit loading 
identification strategy, but it can be prone to error for SNPs with low MAF. Here, we set a lower and upper 
MAF limit of approximately 10% and 40%, respectively, when estimating effective N for the overall 
multivariate GWAS results (𝑁788). Following this, we estimate that 𝑁788 is approximately equal to the mean 
nj for m SNPs with a MAF between a and b. This can be expressed as 
 

𝑁788 ≈
1
𝑚 \ 𝑛#

9

:;<=>

 

 
Here, we apply this to the results for the results for F1 and F2 and estimate that the effective N for each 
phenotype is 377,518 and 51,276, respectively. We note that this calculation is robust to sample overlap in the 
multivariate GWAS, as Genomic SEM accounts and corrects for such overlap. 
 
We note that with an effective sample size, it is possible to backout an estimate of genetic variance that is, in 
one sense, conceptually analogous to SNP heritability in that they reflect the scale of SNP effects for a GWAS 
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target. However, as there is no information about phenotypic variance of the latent genetic factors, it should 
not be interpreted as a heritability estimate. Rather, these genetic variance estimates are only useful as an 
additional metric for comparing GWAS results when paired with effective sample size. Here, the latent factors 
F1 and F2 have genetic variance estimates of 6% (SE = .28%) and 56% (SE = 2.29%) respectively. The genetic 
variance estimates for F1 and F2 differ because of the differing SNP heritability estimates of their underlying 
indicators, with lower heritability estimates observed for self-report symptoms than for clinically-defined 
disorders. The greater proportion of non-genetic variance in self-report symptoms might be due to greater 
influence of environmental variation and/or greater unreliability of measurement. 
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