
Reviewer #1 
The authors create a mathematical model to predict dynamics of p53 mRNA and protein 
levels as well as protein levels of select p53 target genes in response to cisplatin induced 
DNA damage. Based on experiments conducted in HepG2 cells and primary human 
hepatocytes (PHH) the authors created a set of virtual PHHs to test this model. Thereby, the 
moderate correlations that the authors found in 50 biological PHH donor samples for p53, 
p21, and BTG2, was resembled in the virtual samples. The negative correlation between p53 
and Mdm2 in the PHH donor samples could not be replicated with the model however. The 
authors conclude that HepG2-based computational modelling can be accurate for some, but 
not all DDR elements. 
To frame our comments, we point out that we are molecular biologists, focussing on in vitro 
and in vivo investigations of the p53-Mdm2 feedback mechanism rather than 
computational/mathematical biologists. Therefore, we comment mainly on the biological 
context of the experiments and their findings. In general, the paper is well written and at 
each necessary point, the authors commit to its shortcomings and limitations, including its 
biological context. As such, the manuscript is well reflected and discussed with the context 
of currently available p53-Mdm2 literature (in HepG2 cells). We are aware that 
computational modelling of real-world problems is a challenging task and it comes along 
with simplifications. And we also believe that meeting these challenges is a valuable starting 
point for future developments. 
Still, from the molecular biological point of view we want to raise the following concerns in 
response to the manuscript: 
 
We thank the reviewer for the complements regarding our clear and fair presentation of our 
work, and for bringing in their experimentalist point of view. 
 
Major concerns 
1. The authors do not provide direct evidence for DNA damage. Given the large disparity in 
gene expression in the response to cisplatin treatment in HepG2 and PHH cells, raises the 
question if DNA damage is inducible to equal extent in both systems. Comparing 
immortalized cell lines with timely limited culturable primary cells could lead to DNA 
damage-independent, but still p53-mediated, cellular responses. Therefore, we suggest 
showing direct evidence for DNA damage in both systems with the same concentrations as 
used in the manuscript i.e., gH2Ax induction, comet assay, 8OH-immunofluorescence or if 
available to provide a reference showing cisplatin-induced DNA damage in HepG2 cells or 
direct experimental evidence. 
 
The reviewer is correct that we did not provide proof for equal extent of DNA damage in 
HepG2 cells and PHHs. Cisplatin is known to cause inter- and intrastrand DNA adducts that 
lead to secondary single stranded and double stranded breaks. Indeed, the extent, timing 
and repair rate of these different DNA damage types can differ between cell types, which 
should be considered when experimentally comparing the amount of damage. In our study, 
we investigated whether the pathway dynamics in HepG2 cells are likely comparable to 
dynamics in PHHs at equal exposure levels to cisplatin, even though the sensitivity to 
cisplatin may differ between the cell types. Nevertheless, it is known that cisplatin inflicts 
DNA damage to both HepG2 and PHH, although different assays are not equally sensitive for 
damage in the different cell types (http://dx.doi.org/10.1007/s00204-020-02736-z, 
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http://dx.doi.org/10.1080/15287394.2020.1822972). In our revised manuscript, we confirm 
the presence of DNA damage in HepG2 cells by quantifying yH2AX induction in this cell line 
(shown in Fig S1A). In addition, we overlayed the cisplatin-induced gene expression of the 
entire S1500+ gene set for both HepG2 cells and PHHs with the whole-genome PHH gene 
expression in the TXG-MAPr. This highlighted an overlap in TP53 and DNA damage 
associated modules (Fig S1E), of which some also have a high eigengene score in the PHH 
TXG-MAPr for etoposide, i.e., another DNA-damaging compound. We also added discussion 
on this issue in our revised manuscript.   
 
2. Although addressed as shortcoming in the text, we are concerned for the predictive 
capacity for CDKN1A, as the technical variability (Fig S3E-H) in the TempO-Seq analysis is 
quite high. How do the authors argue to utilize the data e.g., for CDKN1A with a Pearson 
correlation between 0.23 and 0.32, for a predictive model? 
 
Even though the correlation between the technical replicates for CDKN1A is low, we think 
that it is unlikely that this is due to experimental error. Rather, this low correlation seems 
due to the low overall expression of CDKN1A compared to that of TP53, MDM2 and BTG2. 
Thus, we think it is justified to use the mean expression value, which generates a more 
reliable estimate for gene expression. To confirm our hypothesis that the measurement error 
for lowly expressed genes is relatively high, thus leading to low correlations between 
technical replicates, we now show the correlation plots for technical replicates of the ten 
lowest and highest expressed genes in the dataset and added a figure to illustrate this as 
supplementary material (Fig. S3M).  
 
3. The conclusion of chapter one needs rework given the graphs shown in Figure 2. An 
objective measure (statistical value) for describing the data in Figure 2 (expression patterns 
of TP53, MDM2, CDKN1A and BTG2 in HepG2 compared to PHHs) should be provided, rather 
than merely stating that patterns are “similar”. 
 
We agree with the reviewer that our statement lacked an objective measure. Therefore, we 
have fitted dose-response curves for every gene to be able to compare the EC50 for these 
genes between HepG2 and PHHs and modified Figure 2 accordingly. We have included 
additional text in the Methods and Results section to clarify our approach.  
 
4. The experimental conditions change from 8h and 24h to 48h and beyond. Still the derived 
model predicts dynamics starting at timepoint zero, which was only experimentally obtained 
for mRNA data. We are inconclusive if such fundamentally different biological entities 
(mRNA, protein) experimentally measured at different timepoints should be integrated into 
one model. The authors are aware of pulsatile p53 mRNA regulation (or mRNA regulation in 
general as referenced in the text) and concluded in the first chapters, that PHH p53 mRNA 
levels were non-predictive. We ask to clarify how the TempO-Seq data is reflected in the 
equations. 
 
We think this question is related to a misunderstanding regarding the data on which our 
model is calibrated. We did this only based on time-resolved protein expression data, 
because the transcriptomics data contain too few time points (8h and 24h post cisplatin 
exposure) to constrain a model. Imaging for quantification of protein expression started 
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within one hour after exposure to cisplatin and continued for 65 - 72 hours, and thus our 
measurements contain sufficient data for early and late timepoints. Thus, we use our model 
that describes protein dynamics in HepG2 to generate expected dynamics for sets of virtual 
PHH samples, and compare these to the available mRNA measurements at 8h and 24h 
timepoint in real PHHs. The reviewer rightfully notices that mRNA expression in our model is 
only included for p53, but not MDM2, p21 and BTG2, which was likely the main factor that 
confused the reviewer. To address this along with the comment in point 6 about the missing 
mRNA predictions in our model, we modified the model to include mRNA species for MDM2, 
p21 and BTG2. We adjusted the Methods and Results sections accordingly and think that this 
takes away the unclarity with respect to the data included for model calibration.  
 
5. The authors extend their experimental panel with co treatment of GFP cells with nutlin in 
an attempt to obtain data for p53-Mdm2 protein dynamics. Unfortunately, the timescale of 
the model (0-60h) does not match the provided data in Figure 5C (30-60h). The most 
dynamic phase of protein regulation, according to the provided model fits (0-30h) is 
therefore not covered but would potentially provide valid insight into this dynamic phase. 
Data for nutlin treatment was provided for later timepoints, when the protein abundances 
in the model is already plateauing. Please include the data from the time series for time 
points 0-30h. 
 
The reviewer correctly notices that, in the MDM2-inhibition experiment with Nutlin, the 
earliest measurement of p53 and MDM2 protein expression was at 24 hours and that 
subsequent dynamics were limited. We repeated the experiment to study the early dynamics 
and modified the manuscript accordingly.   
 
6. The authors state in their discussion, p53 as well as Mdm2 mRNA levels have been shown 
to affect the protein levels of their respective counterpart. Therefore, we suggest adapting 
the model to the context of the well-known p53-mdm2 interaction, as we are confident that 
the body of p53-mdm2 literature potentially contains valuable additional information that 
could be included in the model. Potentially, this could strengthen the model in its predictive 
capacity. In fact, Mdm2 protein was previously described to directly affect p53 mRNA levels 
(DOI: 10.1038/ncb1770; DOI 10.1016/j.ccr.2011.11.016) which adds another layer of 
complexity on the p53-mdm2 regulatory mechanism. We suggest including these 
observations into the underlying equations in the model to better reflect known regulatory 
mechanisms. We therefore ask the authors again to consider adapting the model to include 
Mdm2 feedback into the p53 mRNA equation. 
 
We agree with the reviewer that the model does not include possibly relevant feedback 
mechanisms, such as the MDM2 feedback on p53 mRNA levels. As is often the case with 
application of mathematical modeling to experimental data sets, data availability is limited, 
and models of high complexity are prone to overfitting. However, as indicated in our 
response to comment 4, we have added mRNA species for MDM2, p21 and BTG2 (note that 
we needed to fix a subset of parameters to avoid the discussed overfitting problem). Because 
the fit to our experimental protein expression data is already satisfactory (Fig. 3C), we argue 
that the current structure of the model is sufficient to simulate the protein dynamics, and 
any model extension that complicates the structure could lead to overfitting. Nevertheless, 
we also created an alternative model that includes some of the feedback mechanisms 



suggested by the reviewer (Fig. S11). With this model, we were still not able to explain the 
negative correlation between MDM2 and TP53 mRNA. In addition, to improve the match 
between the predicted and measured MDM2 correlations at mRNA level, we altered the 
mathematical expression for MDM2 feedback on p53, but this did not improve the predictive 
capacity either. Both additional model versions are now briefly discussed in the final section 
of the Results, and model details are provided in the Supplement. 
 
Minor concerns 
1. Although the authors address the circumstance that p53 mRNA levels changes within the 
control conditions between 8h and 24h, we see this point critical. Fig 1B clearly indicates a 
time-dependent increase in p53 mRNA levels, which may be explained with difficulties in 
culturing PHHs and associated p53-mediated cell death (apoptosis) over time. How does a 
proliferating cell line (HepG2) and a quiescent state (PHHs) relate to each other? The 
authors partly addressed this difference with citing a paper in chapter 3, dealing with PHH 
stability in culture. However, p53 levels were not analysed in the cited paper. Given that p53 
is involved in cell cycle regulation as well as cell death, we assume this reference as 
insufficient to explain p53 mRNA levels in PHHs. In consequence, we ask to authors to 
discuss this circumstance in more detail with additional literature. 
 
As suggested by the reviewer, we have added additional discussion on PHH culturing and the 
temporal effect of culturing on mRNA expression (lines 598-615). 
 
2. The authors state that the p53 protein levels peaked between 35 hours and 42 hours. 
Anyhow, they do not show data for untreated controls only for cisplatin concentration 1, 
2.5, 5µM. Showing untreated samples would answer the question if there are basal changes 
in DNA damage with culturing time. This also leads to the question whether the confocal 
microscopy data (GFP-protein) is normalized to nuclei counts? 
 
The raw data contains the integrated intensity of the GFP signal, i.e., the sum of all pixel 
values that belong to one cell, per identified cell nucleus or cytoplasm. To get population 
measurements per timepoint, we used the geometric mean of all cell measurements. 
Therefore, additional normalization to nuclei counts was not required. To correct for any 
effects in DMSO control condition we used background subtraction per time point, which 
also removes all dynamics from the DMSO control, i.e., all data points lie on the line y = 0. 
These details were already explained in the Methods, but in the revised manuscript we have 
now also briefly mentioned this in the Results section. Moreover, we now added a figure of 
the unnormalized data, including the dynamics at DMSO showing that there is minimal DNA 
damage-related stress in control conditions, as Fig. S6A.  
 
3. The transcriptional activation of p21 and BTG2 by phosphorylated p53 was adapted to 
Mdm2 responsiveness in the model, which raises the question if this is a valid assumption, 
as the named targets react quite differently in the TempO-Seq analysis and experimental 
data about p53 phosphorylation is missing. We ask the authors to provide transcriptional 
activation data for p21 and BTG2 in either experimental setups or data from literature. 
 
Protein p53 is known to transcriptionally induce the expression of MDM2, CDKN1A and BTG2 
(https://doi.org/10.1016/j.gene.2017.01.018). To corroborate our assumption that 
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phosphorylated p53 is indeed increased upon cisplatin exposure and induces p21 protein 
expression, we included Methods and Results for Western blot experiments (Fig. S1B) in the 
revised manuscript.  
 
4. We observe that, the initial mRNA expression analysis and the later described GFP 
intensities, i.e., protein levels are not very well linked together. We ask the authors to 
comment on whether they normalize protein GFP signals to the respective mRNA levels and 
how experiments from TempO-Seq and GFP-protein overexpression are represented in their 
model, besides setting p53 mRNA levels to 1. 
 
We apologize for the prior unclarity with respect to normalization of the GFP signal and link 
between mRNA and protein expression in the model (see our replies to major point 4 and 
minor point 2). To prevent unclarity for future readers, in the revised manuscript we have 
extended our model with mRNA species for p21, BTG2 and MDM2. Note that we did not 
alter our strategy, i.e., we still only use the protein-GFP expression data to calibrate our 
model and subsequently derive predictions for mRNA expression from the model simulations.  
 
5. Figure 5A shows the two best fits of parameters for the model that the authors found. 
However, we fail to comprehend why p53 protein levels decrease upon DNA damage, while 
phosphorylation of p53 and protein levels of all target genes increase. Given p53’s role in 
DNA damage response, we would expect p53 protein levels to rise. Also, does the increase 
in p53-p take the decrease of total p53 into account in this model? Can this be normalized 
on total p53? 
 
In control conditions, p53 is constantly produced and degraded. However, activation of p53 
by phosphorylation stabilizes p53-p and leads to accumulation of p53-p in the cell. Even 
though p53 is still being produced, the conversion to p53-p is faster than the replenishment 
of p53, leading to a net decrease in unphosphorylated p53. Nevertheless, the reviewer is 
correct that the accumulation of p53-p leads to an overall increase of total p53 levels in the 
cell. To remove any unclarity about the model simulations for different p53 species and total 
p53, we adjusted the panels (now Fig. 4 and Fig. S7A), where we now show total p53 and its 
subspecies. As a side note, for our modified model with mRNA species for all p53 target 
genes we no longer found two fits of similar quality, so we removed this aspect from the 
manuscript. 
 
6. The y-axis limits are quite different in the graphs describing the model fits (Fig 5) and 
nutlin experiments. E.g., in Fig 5C, D the y-axis should start at zero, otherwise differences 
appear greater than they actually are and consequently mislead the reader. 
 
We adjusted the axis limits in the subfigures (now Fig. 4B-C) to start at 0.  
 
7. Figure 6B shows that only the correlations of basal TP53 expression vs p53 protein levels 
after cisplatin treatment lines up between biological PHH samples and virtual samples. We 
ask how the authors ensure that their model is neither overfit nor underfit and discuss this 
accordingly. 
 



With our bootstrap analysis, we show that there is quite some variation to be expected for 
correlations in similar sets of 50 PHH samples. Even though the medians of our model 
predictions and experimental mRNA data are not the same, the predictions do overlap with 
the regions of uncertainty for the PHH samples. Although we cannot know for sure whether 
our model is over- or underfitted, we have kept additions of model components for which we 
have no information at a minimum (see also our reply to major point 6) and fixed several 
parameters to 1, to circumvent identifiability issues. Our model likely needs additional 
factors to reproduce the negative TP53-MDM2 correlation, for which we currently have no 
data. To constrain the dynamics of such an extended model, additional experimental data on 
the extra components is necessary. We have clarified this in the revised manuscript (lines 
630-643). 
 

Reviewer #2 
Heldring et al., use a mixture of in vitro experiments and in silico modeling to study how a 
well described feedback loop governing p53 regulation. They take this data and combine it 
with medium scale gene expression data from PHH samples. Though the authors have both 
RNA and protein datasets the lack of protein data for the PHH donors add complexity to 
their analysis. Overall, this paper both meets a critical need to develop approaches to 
leverage in vitro data to inform patient models and is insufficient to the task. As it stands 
the paper is only a weak fit for PLOS comp. Bio., however, plausible improvements might 
strengthen it considerably. 
 
Major comments 
(1) The computational model is thoughtfully designed, and well explained. Given the 
dominant role of transcription in regulation of downstream p53 targets, I would be 
interested to see if including mRNA species of p21/mdm2/btg2 would enable improved fits 
(obviously at a cost of higher complexity). In general, in addition to examining parameter 
sensitivity it would be useful if the authors looked at the robustness of their model to 
structural variation. 
 
We agree with the reviewer that addition of mRNA species for MDM2, p21 and BTG2 will 
make the model better suited for our purpose. We added the species and modified our 
results and methods sections accordingly. As suggested by the reviewer, we in addition 
attempted altering of the model structure in various ways, i.e., by i) replacing the power 4 in 
the Hill equations with power 1, i.e., a Michaelis-Menten equation (Fig. S7), ii) changing the 
feedback of MDM2 on p53 with a Hill equation of power 4 (Fig. S11A), and iii) by using a 
different model structure for MDM2 and p53 mRNA and protein relations (Fig. S11B-D).  
 
(2) The paper ends with a modeling approach to reconcile their patient data with a model of 
p53/mdm2 activity in response to cisplatin. Their virtual patient simulation is a reasonable 
approach. It would be very valuable to extend this analysis to its logical conclusion in giving 
treatment recommendations. If, for example, we assume high p21 levels are a ‘good’ clinical 
outcome what can we say about cisplatin dosing and the model parameters (and their 
steady state protein concentrations) that could achieve this outcome. 
 
The suggestion of the reviewer touches upon a very interesting broad topic. Individual 
expression dynamics linked to DNA damage susceptibility and adverse outcomes could 



provide valuable insights for the clinic. In our study, our main question is whether pathway 
dynamics in HepG2 cells can be translated to healthy PHHs. We show that relations between 
mRNA expression in model-based virtual samples are comparable to these relations in PHH 
samples. However, it is currently unclear what protein expression levels are associated with 
good prognostic outcome for a patient. For example, we do not know whether having a high 
cisplatin-induced p21 expression is indeed only associated with a good prognostic outcome 
for a patient, because high p21 expression is likely also associated with an increased 
probability for adverse effects in liver or kidney, which occurs in a large fraction of cisplatin-
treated patients. Linking patient-specific expression to clinical outcome thus requires follow-
up analysis, in which expression patterns are associated with a determined outcome and the 
generation of risk profiles. Because these variables are not covered in the TempO-Seq data 
set, our analysis does not allow us to give prognostic predictions on clinical outcome. 
Nevertheless, we have emphasized this in the discussion of our revised manuscript (lines 655-
662). 
 
(3) In figure 1, how can you hierarchically cluster based on one number (p53 or mdm2 
expression)? Do the authors mean they arbitrarily grouped the cell samples? This seems 
essentially descriptive. 
 
The TempO-Seq data contains multiple read-outs per PHH sample, i.e., there are both 
different doses and timepoints. This expression pattern was used to cluster the samples with 
hierarchical clustering. The dendrograms in the heatmaps (Figure 1 and S2) display the 
distance between the samples. This was already described in detail in the Methods, and in 
the revised version we have clarified this further in the Results section. 
 
(4) Looking at 4 genes from a 1500 gene set to determine ‘similarity’ seems very odd (even if 
they are important genes). The authors should use a larger set (either the whole 1500) or 
subsets drawn from published ‘gene-sets’. 
 
We agree with the reviewer that the comparison of the response to cisplatin-induced DNA 
damage should also be studied in a broader context than merely selecting a few genes. 
However, a more extensive study of the entire gene set in PHH samples has already been 
performed in a different study that is currently under review and available on BioRxiv 
(https://doi.org/10.1101/2021.08.26.457742), which was possibly not entirely clear to the 
reviewer. As suggested by the reviewer, we added a comparison between the response to 
cisplatin in HepG2 and PHH using the entire gene set for which we used the PHH gene 
modules available in the TXG-MAPr (Fig. S1E). In the current manuscript, we further 
exploited the extensive gene expression data set by zooming into the DNA damage pathway 
to ask whether mechanistic insights in pathway regulation obtained for HepG2 cells can be 
translated to PHHs. We feel that our approach is a valuable addition on top of the broader 
analysis that has already been performed on the transcriptomics data. In the revised version 
of the manuscript, we have emphasized further that a more extensive bioinformatics 
analysis has been performed and that we here focus only on specific DNA damage 
components (lines 594-595). 
 
(5) In figure 3 the authors seem to say they use p53 expression as proxy of cell 
survival/toxicity (341-343). As the authors later point out, this is a mis-reading of the 
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literature. Instead, the authors could use the expression of cell cycle gene expression (eg 
ccnd1, aurora A, mki67) as one proxy of cell health (although this may be complicated in the 
phh cells), or perhaps the activation of NFKB targets (triggered by cytoplasmic accumulation 
of DNA) such as TNFAIP3. More generally the authors should use their expression data more 
extensively to provide a more complex picture of the overall response of the phh cells to 
cisplatin treatment. 
 
High concentrations of cisplatin are known to induce cell death due to extensive DNA 
damage. For both the TempO-Seq data and protein-GFP expression data, we aimed to 
determine at which concentrations cytotoxicity events were prevalent. Based on the 
enrichment for Gene Ontology (GO) terms associated to cell death, we found that genes 
related to cytotoxicity were upregulated at 10 μM cisplatin or higher (Fig. S4). Similarly, 
propidium iodide (PI) and annexin-V (AnV) staining in HepG2 cells showed increased PI and 
AnV positive cells at 10 μM cisplatin or higher (Fig. S6). As suggested by the reviewer, we 
now provide further support to our assumption by basing cell health proxies also on 
enrichment of cell cycle-associated GO terms. We added the results to Fig. S4 and adjusted 
the manuscript to clarify our methods to determine cytotoxicity (lines 178-181 in the 
Methods and 404-408 in the Results).  
 
Minor comments 
(1) The paper figures are well drawn, but could be compacted considerably, the core point 
of the paper draws very little on data from figures 1-3 (for example figure 3 is basically a 
negative result) and this part could be condensed. 
 
We agree with the reviewer observation that Fig. 1-3 is not the core point of our paper. 
Therefore, we have moved subfigure 3A and 3B to the supplementary material and 
condensed Figure 1-3 into two figures.  
 
(2) Overall in the paper text there is some confusion between RNA and protein 
measurements and what each imply (not on the authors part I believe, but given their 
different measurements its important to be very specific in the text to avoid mis-reading). 
This is critical to this circuit so the authors should clarify this in each section. 
 
We apologize that, despite our efforts to be precise in our wording, the distinction between 
mRNA and protein was not clear. With the addition of mRNA species to the model and 
consequent textual adjustments, we hope to have resolved this issue.  


