
Appendices for “A Bottom-up Approach to Testing Hypotheses

That Have a Branching Tree Dependence Structure, with Error

Rate Control”

by Yunxiao Li, Yi-Juan Hu, and Glen A. Satten

Appendix

A.1 Weights to account for multiplicity

We first find the mathematical form for weight ωj (after omitting the level index l from

ωl,j) for node j at level l. Recall that the p-value at node j is denoted by pj . Let T1, T2, . . . , Tt

represent all subtrees that contain node j. For example, the node N1,1 in Figure 1(a) is

contained in subtrees rooted at N2,1, N3,1 and N4,1, which are denoted by T1, T2 and T3,

respectively. Let p
(−j)
Ts

be the set of p-values of all level-l nodes, excluding node j, that

are contained in subtree Ts. First, each weight ωj always starts with 1 which counts itself.

Then for each subtree Ts, if pj is the (only) maximum p-value, denoted by the expression

pj > p
(−j)
Ts

, then rejecting node j will entail the root node of that subtree to also be rejected

and thus add 1 to ωj . Therefore, we can write ωj as a sum of indicator functions:

ωj = 1 +
t∑

s=1

I
(
pj > p

(−j)
Ts

)
. (A1)

Note that ωj depends on p-values at level l and is thus considered to be random (even given

the detection events below level l).

Now we prove that the sorted weights at any level l of a complete tree are unique regardless

of the ordering of p-values at that level. It is equivalent to prove that, for any h-depth

complete tree, the sorted weights at the leaf level are unique; additionally, we can show that

32

the largest weight is h, which is at the node with the largest p-value. We use mathematical

induction. First, for any 1-depth tree (i.e., a tree consisting of only one node) the properties

hold immediately. Then, assuming the properties hold for any (h−1)-depth tree, we consider

an h-depth tree. If the root node of the h-depth tree has K children, then deleting the root

node would yield K (h − 1)-level subtrees. Suppose that the leaf node Nj in the h-depth

tree has weight ωj (for a particular ordering of p-values). For a complete tree, each leaf node

in the h-depth tree belongs to one of the K (h − 1)-depth subtrees. Suppose that the node

Nj in the (h − 1)-depth subtree has weight ω′
j . By (A1), we have ωj = ω′

j + 1 if Nj has the

largest p-value among all leaf nodes of the h-depth tree, and ωj = ω′
j if otherwise. Because

the largest p-value in the h-depth tree is also the largest in the (h−1)-depth subtree that the

p-value belongs to, the corresponding node has weight (h − 1) in the (h − 1)-depth subtree

and weight h in the h-depth tree. Thus, the sorted weights at the leaf level of the h-depth

tree are obtained from the collection of sorted ω′
js and turning one of the weights (h − 1)

into h, and must be unique regardless of the ordering of p-values. We thus have proved that

the properties hold for any h-depth tree.

A.2 Proof of Theorem 1

Lemma 1 states a property of ωj, which will be useful in the proof of Theorem 1.

Lemma 1. Suppose node j has weight ωj as defined in (A1). Assume that node j is under

the null hypothesis and so its p-value pj follows the uniform distribution. Also assume that

pj is independent of all other p-values at level l. Let B(−j) denote the case that all other

p-values excluding pj belong to a Borel set. For any α ∈ (0, 1), we have

E
[
ωjI
(
B(−j), pj ≤ α

)]
≤

α

1 − α
E
[
ωjI
(
B(−j), pj > α

)]
.

Proof of Lemma 1. Assume that there is no tie among p-values. By the independence as-

sumption of pj and the other p-values and the uniform distribution of pj, we have

33

E
[
I
(
B(−j), pj ≤ α

)]
/α = Pr

(
B(−j)

)
= E

[
I
(
B(−j), pj > α

)]
/(1−α). Due to the linearity of

ωj , it then suffices to show for any subtree Ts that

E
[
I
(
B(−j), pj > p

(−j)
Ts

, pj ≤ α
)]

Pr (pj ≤ α)
≤
E
[
I
(
B(−j), pj > p

(−j)
Ts

, pj > α
)]

Pr (pj > α)
. (A2)

By the mean value theorem, there exist p∗j and p∗∗j , where 0 < p∗j < α < p∗∗j < 1, such that

the left hand side of (A2) becomes

∫ α

0

Pr
(
B(−j), pj > p

(−j)
Ts

∣
∣ pj

)
dF (pj)

/∫ α

0

1dF (pj) = Pr
(
B(−j), p∗j > p

(−j)
Ts

)

and the right hand side becomes

∫ 1

α

Pr
(
B(−j), pj > p

(−j)
Ts

∣
∣ pj

)
dF (pj)

/∫ 1

α

1dF (pj) = Pr
(
B(−j), p∗∗j > p

(−j)
Ts

)
.

The fact that p∗j ≤ p∗∗j gives (A2).

Lemma 2 is essentially the summation by parts formula and will also be used in the proof

of Theorem 1.

Lemma 2. Suppose {a1, . . . , an} and {b1, . . . , bn} are two sets of real numbers. Then,

n∑

k=1

akbk =
n∑

k=1

(ak − ak−1)Bk,

where Bk =
∑n

i=k bi and a0 = 0.

Proof of Theorem 1. This proof is adapted from Gavrilov, Benjamini, and Sarkar (2009)

with modifications for our multi-level, bottom-up procedure. The false selection proportion

34

(FSP) is written as

FSP =

∑L
l=1

∑n∗
l

j=1 ωl,jV
m
l,j(∑L

l=1

∑n∗
l

j=1 ωl,jRl,j

)∨
1
≤

L∑

l=1

∑n∗
l

j=1 ωl,jV
m
l,j

(
∑l

l′=1

∑n∗
l′

j=1 ωl′,jRl′,j)
∨

1

=
L∑

l=1

∑n∗
l

j=1 ωl,jV
m
l,j

(Dl−1 +
∑n∗

l
j=1 ωl,jRl,j)

∨
1

=
L∑

l=1

∑n∗
l

j=1 ωl,jV
m
l,j

Dl−1 + (
∑n∗

l
j=1 ωl,jRl,j

∨
1)

.

The key step to prove Theorem 1 is to show that for every level l

E

[∑n∗
l

j=1 ωl,jVl,j

Dl−1 + (
∑n∗

l
j=1 ωl,jRl,j

∨
1)

∣
∣
∣
∣Gl−1

]

≤ ql, (A3)

where Gl−1 represents detection events below level l. The inequality (A3) does not guarantee

the control of FSR at ql at each level l because of the cumulative effect of Dl−1, which estab-

lishes a dependence between the nodes detected at different levels. However, the inequality

(A3) leads to the control of overall FSR at q:

FSR = E(FSP) ≤
L∑

l=1

E

{

E

[∑n∗
l

j=1 ωl,jVl,j

Dl−1 + (
∑n∗

l
j=1 ωl,jRl,j

∨
1)

∣
∣
∣
∣Gl−1

]}

≤
L∑

l=1

ql = q.

To prove (A3) at level l, we omit the level index l for simplicity of exposition. Thus

we rewrite the level-l p-values to be p1, . . . , pn∗ , ordered p-values p(1) ≤ ∙ ∙ ∙ ≤ p(n∗), and

thresholds defined in (3) α1 ≤ ∙ ∙ ∙ ≤ αn∗ . We use D−1 for Dl−1. We also omit Gl−1 by ac-

knowledging that the ensuing arguments are always conditional on the detection events below

level l. Further, we denote the set
{
p(1) ≤ α1, . . . , p(k) ≤ αk

}
by Ak (k = 1, . . . , n∗), which

represents the case that the first k ordered p-values are each below the first k thresholds.

We introduce more notation related to the weights ω1 . . . , ωn∗ for level-l nodes. We

denote the relative ordering of p-values p1, . . . , pn∗ by O. The weights defined in (A1) are thus

uniquely determined given the detection events at lower levels Gl−1 as well as the ordering O.

Let ω[j] be the weight corresponding to the j-th smallest p-value p(j) and Ck =
∑k

j=1 ω[j] for

35

k = 1, . . . , n∗. Thus, Ck is also deterministic given {Gl−1,O}. Let ω(1) ≤ ω(2) ≤ ∙ ∙ ∙ ≤ ω(n∗)

denote the sorted weights by their own values; note that ω(j) is often different from ω[j]. As

illustrated in Section 2.2.2, ω(j) is deterministic given Gl−1 under Condition (C1), regardless

of the ordering of p-values. Denote ck =
∑k

j=1 ω(j) and ck =
∑n∗

j=k ω(j). Hence, ck ≤ Ck,

ck ≥ Cn∗−k+1, and the threshold αk satisfies

αk

1 − αk

≤
D−1 +

∑k
j=1 ω(j)

∑n∗

j=k ω(j)

ql =
D−1 + ck

ck

ql. (A4)

Now we prove (A3). The left hand side of (A3) can be rewritten as

∑

j∈H0

n∗∑

k=1

E

[
ωjI
(
Ak, p(k+1) > αk+1, pj ≤ αk

)

D−1 + Ck

]

,

where H0 denotes the set of modified null hypotheses at level l, and Ck by definition counts

the number of all rejections that are produced by rejecting the top k smallest p-values.

Replacing the expectation by double expectations that first conditions on O yields

∑

j∈H0

n∗∑

k=1

EO

{

ωjE

[
I
(
Ak, p(k+1) > αk+1, pj ≤ αk

)

D−1 + Ck

∣
∣
∣
∣O

]}

, (A5)

where Ck becomes a constant given O.

Then, we further replace the inner expectation by double expectations that first condi-

tions on pj and apply Lemma 2 with ak = I (pj ≤ αk) /(D−1+Ck), bk = Pr
(
Ak, p(k+1) > αk+1

∣
∣pj ,O

)
,

and n = n∗; note that bn∗ = Pr
(
An∗

∣
∣pj ,O

)
. Thus, (A5) becomes

∑

j∈H0

n∗∑

k=1

EO

{

ωjEpj

[

Pr
(
Ak

∣
∣pj ,O

)
×

(
I (pj ≤ αk)

D−1 + Ck

−
I (pj ≤ αk−1)

D−1 + Ck−1

) ∣∣
∣
∣O

]}

,

36

which, using Ck − Ck−1 = ω[k], can be reorganized as

∑

j∈H0

n∗∑

k=1

EO

{

ωj

[
Pr
(
Ak, αk−1 < pj ≤ αk

∣
∣O
)

D−1 + Ck

−
ω[k] Pr

(
Ak, pj ≤ αk−1

∣
∣O
)

(D−1 + Ck)(D−1 + Ck−1)

]}

. (A6)

Let p
(−j)
(1) ≤ ∙ ∙ ∙ ≤ p

(−j)
(n∗−1) be the ordered p-values after excluding pj . We denote the set

{
p

(−j)
(1) ≤ α1, . . . , p

(−j)
(k−1) ≤ αk−1

}
by B(−j)

k−1 , which represents the case that the first (k − 1) or-

dered p-values after excluding pj are each below the first (k−1) thresholds. We note two facts

that relate Ak and B(−j)
k−1 . First, Ak and {αk−1 < pj} together imply that pj cannot be among

the first (k− 1) smallest p-values and thus the first (k− 1) ordered p-values before and after

excluding pj remain the same set. In addition, for any j ∈ {(k), . . . , (n∗)}, {pj ≤ αk} implies
{
p(k) ≤ αk

}
. Thus we have Pr

(
Ak, αk−1 < pj ≤ αk

∣
∣O
)

= Pr
(
B(−j)

k−1 , αk−1 < pj ≤ αk

∣
∣O
)

.

Second, B(−j)
k−1 is a subset of Ak when pj ≤ αk−1, which yields Pr

(
Ak, pj ≤ αk−1

∣
∣O
)

≥

Pr
(
B(−j)

k−1 , pj ≤ αk−1

∣
∣O
)

. By the two facts, we see that expression (A6) is less than

∑

j∈H0

n∗∑

k=1

EO





ωj




Pr
(
B(−j)

k−1 , αk−1 < pj ≤ αk

∣
∣
∣O
)

D−1 + Ck

−
ω[k] Pr

(
B(−j)

k−1 , pj ≤ αk−1

∣
∣
∣O
)

(D−1 + Ck)(D−1 + Ck−1)









,

which can be reorganized as

∑

j∈H0

n∗∑

k=1

EO

{

ωjEpj

[

Pr
(
B(−j)

k−1

∣
∣
∣pj ,O

)
×

(
I (pj ≤ αk)

D−1 + Ck

−
I(pj ≤ αk−1)

D−1 + Ck−1

)]}

.

After applying Lemma 2 with ak = I (pj ≤ αk) /(D−1+Ck) and bk = Pr
(
B(−j)

k−1 , p
(−j)
(k) > αk

∣
∣pj ,O

)
,

the foregoing expression reduces to

∑

j∈H0

n∗∑

k=1

EO





ωjE




I
(
B(−j)

k−1 , p
(−j)
(k) > αk, pj ≤ αk

)

D−1 + Ck

∣
∣
∣
∣
∣
O









. (A7)

Next, we combine the double expectations in (A7) into one and use ck ≤ Ck to find that

37

(A7) is less than

∑

j∈H0

n∗∑

k=1

(D−1 + ck)
−1 E

[
ωjI
(
B(−j)

k−1 , p
(−j)
(k) > αk, pj ≤ αk

)]
. (A8)

Now the weight ωj is considered random again. According to Lemma 1 with B(−j) =
{
B(−j)

k−1 , p
(−j)
(k) > αk

}
, α = αk, and a null p-value pj , we obtain

E
[
ωjI
(
B(−j)

k−1 , p
(−j)
(k) > αk, pj ≤ αk

)]
≤

αk

1 − αk

E
[
ωjI
(
B(−j)

k−1 , p
(−j)
(k) > αk, pj > αk

)]
.

Using (A4) and replacing
∑

j∈H0
by
∑n∗

j=1, we see (A8) is less than

ql

n∗∑

k=1

(ck)
−1 E

[
n∗∑

j=1

ωjI
(
B(−j)

k−1 , p
(−j)
(k) > αk, pj > αk

)
]

.

We see that B(−j)
k−1 and {pj > αk} imply that pj is not among the top (k − 1) smallest

p-values. For either j = (k) or j ∈ {(k + 1), . . . , (n∗)}, we infer from p
(−j)
(k) > αk and

pj > αk that p(k) > αk. Therefore, I
(
B(−j)

k−1 , p
(−j)
(k) > αk, pj > αk

)
= I

(
Ak−1, p(k) > αk

)
for

j ∈ {(k), . . . , (n∗)} and 0 for j ∈ {(1), . . . , (k − 1)}. Then, the above expression simplifies to

ql

n∗∑

k=1

(ck)
−1 E

[
skI
(
Ak−1, p(k) > αk

)]
≤ ql

n∗∑

k=1

Pr
(
Ak−1, p(k) > αk

)
= ql [1 − Pr (An∗)] ≤ ql.

We complete the proof of (A3).

A.3 Least favorable weights

We calculate the least favorable weights ω̃l = (ω̃l,(1), ∙ ∙ ∙ , ω̃l,(n∗
l)) for level-l nodes using

a recursive algorithm. Recall that a weight ωl,j counts the number of nodes that are simul-

taneously rejected if node j is rejected, which includes node j and some of its ancestors;

here we allow the ancestors to lie at level l + 1 and all the way up to the root of the tree

38

to be counted into the weights. For this reason, the sum of the weights at level l is always

equal to the number of nodes at and above level l, as rejection of all hypotheses at level l

would imply rejection of all hypotheses above level l as well. Our algorithm is built on the

following observation: p-value orderings in which a only a few nodes result in rejection of

many hypotheses lead to thresholds that are more conservative than p-value orderings in

which many nodes each result in rejection of only a few hypotheses.

To develop this intuition into an algorithm, let ω̃
(h)
l (h = 0, 1, 2, . . .) denote the least

favorable set of weights against any possible set of weights ω(l+h), where the subscript (h)

indicates that only ancestors up to (including) level l + h are counted. Trivially, ω̃
(0)
l =

ω
(0)
l = (1, . . . , 1) with 1 for every node at level l when no ancestors are counted, and this

serves as the starting point of the recursive algorithm. At the root node level, denoted by

l + h∗, ω̃
(h∗)
l is the least favorable set of weights ω̃l that we wish to obtain, and is the end

point of the algorithm. We find that ω̃
(h)
l can be derived from ω̃

(h−1)
l by traversing over every

node at level l + h, locating the weights in ω̃
(h−1)
l that correspond to descendent nodes of

that node at level l+h, and adding 1 to the weight having the largest numerical value among

these descendants; if there exist multiple largest elements, randomly pick one and add 1. For

example, to calculate least favorable weights for the bottom level of the tree in Figure 1(b),

we obtain ω̃
(0)
l = (1, 1, 1, 1, 1, 1), ω̃

(1)
l = (1, 2, 1, 1, 1, 2), and ω̃

(2)
l = (1, 2, 1, 1, 1, 3), where

the elements are unsorted and correspond to (N1,1, N1,2, . . . , N1,6), and finally we obtain the

sorted weights ω̃l = (1, 1, 1, 1, 2, 3). Note that the sum of weights ω̃
(h)
l is always larger

than the sum of weights ω̃
(h−1)
l by the number of nodes at level l + h. By incrementing

the largest weight among descendents of each node, this procedure guarantees that every

ω̃
(h)
l (h = 0, 1, . . . , h∗) is the least favorable against any arbitrary ω

(h)
l . Although there is

a random element in our algorithm when two or more nodes share the largest weight, the

sorted weights ω̃l are unique.

A.4 Proof of Theorem 2

39

Proof of Theorem 2. Let ω̃(1) ≤ ω̃(2) ≤ ∙ ∙ ∙ ≤ ω̃(n∗) denote sorted least favorable weights after

omitting the level index l. Denote c̃k =
∑k

j=1 ω̃(j) and c̃k =
∑n∗

j=k ω̃(j). The same arguments

in the proof of Theorem 1 can be used except that we use c̃k in place of ck, c̃k in place of ck,

and the thresholds (5) in place of thresholds (3).

A.5 An algorithm for separate FSR control

Here, we illustrate our proposal by using the microbiome example and assuming an in-

complete phylogenetic tree. We wish to first detect OTUs (level-1 nodes) while controlling

the FSR at some rate q1; then we wish to detect taxa (starting at the species level and con-

tinuing up the phylogenetic tree) while controlling the FSR at some rate q−1. To accomplish

this, we propose a two-stage procedure. At stage 1, we perform the step-down test for OTUs

with thresholds {α1,j , j = 1, 2, . . . , n1} that satisfy

α1,j

1 − α1,j

=

(∑j
k=1 ω̃1,(k)∑n1

k=j ω̃1,(k)

× q1

)
∧ τ0

1 − τ0

.

Note that these are the same thresholds for level 1 as the (one-stage) procedure described

in Section 2.3, if the same value of q1 is used. The use of weights {ω̃1,(k)} to account for

multiplicity allows us to include in our list of detected OTUs all taxa that are automatically

detected after testing OTUs. Thus, the FSR for the OTU level is written as

FSRotu = E




∑n1

j=1 ω1,jV
m
1,j(∑n1

j=1 ω1,jR1,j

)∨
1



 .

At stage 2, we then apply the one-stage procedure proposed in Section 2.3 to the tree

obtained by removing all OTUs as well as those taxa that were detected at stage 1. In this

tree, undetected nodes at level 2 are now the leaves, and the p-values for these new leaves are

calculated by aggregating the p-values from the undetected OTUs. We use the thresholds

40

{αl,j , l = 2, . . . , L, j = 1, . . . , n∗
l } that satisfy

αl,j

1 − αl,j

=

(
D†

l−1 +
∑j

k=1 ω̃l,(k)
∑n∗

l
k=j ω̃l,(k)

× ql

)
∧ τ0

1 − τ0

,

where D†
l−1 =

∑l−1
l′=2

∑n∗
l′

j=1 ωl′,jRl′,j for l ≥ 3 and D†
l−1 = 0 for l = 2. The D†

l−1 differs from

Dl−1 in that D†
l−1 counts the detected nodes starting from the 2nd level. Using D†

l−1 in place

of Dl−1 cuts the dependence between level 1 and the remaining levels and also makes the

thresholds for l ≥ 2 more stringent if qls stay the same as those in the one-stage procedure.

Thus, the FSR we wish to control at the taxa levels is

FSRtaxa = E




∑L

l=2

∑n∗
l

j=1 ωl,jV
m
l,j(∑L

l=2

∑n∗
l

j=1 ωl,jRl,j

)∨
1



 .

Theorem 3 states that this two-stage procedure serves our purpose.

Theorem 3. Under Conditions (C2) and (C3) in Theorem 1, the above two-stage procedure

ensures that FSRotu ≤ q1 and FSRtaxa ≤ q−1 =
∑L

l=2 ql.

Proof of Theorem 3. The OTU-level testing in the two-stage procedure is exactly the same

as the OTU-level testing in the one-stage procedure, so we immediately have FSR otu ≤ q1.

Then we rewrite the FSP among all taxa levels as

FSPtaxa =

∑L
l=2 Vl

(
∑L

l=2 Rl)
∨

1
≤

L∑

l=2

Vl

(
∑l

l′=2 Rl′)
∨

1
=

L∑

l=2

Vl

(D†
l−1 + Rl)

∨
1

=
L∑

l=2

Vl

D†
l−1 + (Rl

∨
1)

.

We note that D†
l−1 is deterministic conditioning on the detection events at lower levels, de-

noted by G†
l−1, which excludes the OTU level. Then we follow the same steps in the proof of

Theorem 2, replacing Dl−1 by D†
l−1 and Gl−1 by G†

l−1 to obtain E
[
Vl/
{

D†
l−1 + (Rl

∨
1)
} ∣∣
∣G†

l−1

]
≤

41

ql for l = 2, . . . , L. Finally,

FSRtaxa = E (FSPtaxa) ≤
L∑

l=2

E

{

E

[
Vl

D†
l−1 + (Rl

∨
1)

∣
∣
∣
∣G

†
l−1

]}

≤
L∑

l=2

ql = q−1,

which implies that FSR among all taxa levels are controlled by q−1. Indeed, this is the same

as applying the one-stage testing at FSR q−1 to the subtree after removing the whole OTU

level and the higher-level taxa that are detected because all of their corresponding OTUs

are detected.

Note that the choice of (q1, q2, . . . , qL) is at the user’s discretion and not necessary to

match those in the one-stage procedure. For example, we can set q1 = q−1 = 5% and choose

ql = q−1nl/
(∑L

l′=2 nl′

)
for l = 2, . . . , L.

42

	Introduction
	Methods
	Simulation Studies
	Inflammatory Bowel Disease (IBD) Data
	Discussion

