| Name                                  | Vendor                    | Catalog Number |  |
|---------------------------------------|---------------------------|----------------|--|
| AKT                                   | Cell Signaling Technology | 9272           |  |
| AKT1                                  | Cell Signaling Technology | 2938           |  |
| AKT2                                  | Cell Signaling Technology | 3063           |  |
| AKT3                                  | Cell Signaling Technology | 14982          |  |
| phospho-AKT Ser 473                   | Cell Signaling Technology | 4060           |  |
| phospho-Akt Thr308                    | Cell Signaling Technology | 13038          |  |
| phospho-AKT1 Ser 473                  | Cell Signaling Technology | 9018           |  |
| phospho-AKT2 Ser 474                  | Cell Signaling Technology | 8599           |  |
| Symmetric Di-Methyl Arginine          |                           |                |  |
| Motif [sdme-RG] MultiMab <sup>™</sup> | Cell Signaling Technology | 13222          |  |
| Rabbit mAb                            |                           |                |  |
| Anti-dimethyl-arginine antibody,      | Sigma Aldrich             | 07 412         |  |
| symmetric, (SYM10)                    | Sigilia-Aldrich           | 07-412         |  |
| DNA-PK                                | Cell Signaling Technology | 38168          |  |
| EGFR                                  | Cell Signaling Technology | 4267           |  |
| phospho-EGFR Tyr 1068                 | Cell Signaling Technology | 3777           |  |
| ErbB3                                 | Cell Signaling Technology | 12708          |  |
| p-ErbB3 Tyr1289                       | Cell Signaling Technology | 4791           |  |
| FGFR4                                 | Cell Signaling Technology | 8562           |  |
| VGFR2                                 | Cell Signaling Technology | 9698           |  |
| p-VGFR2 Tyr 1059                      | Cell Signaling Technology | 3817           |  |
| IGF-1 Receptor beta                   | Cell Signaling Technology | 9750           |  |
| phospho-IGF-1 beta Tyr1316            | Cell Signaling Technology | 28897          |  |
| GSK-3α                                | Cell Signaling Technology | 4818           |  |
| GSK-3β                                | Cell Signaling Technology | 12456          |  |
| phospho-GSK-3α Ser21                  | Cell Signaling Technology | 9316           |  |
| phospho-GSK-3β Ser9                   | Cell Signaling Technology | 5558           |  |
| Flag                                  | Sigma-Aldrich             | F7425          |  |
| anti-HA-Peroxidase                    | Sigma-Aldrich             | 12013819001    |  |
| phospho-(Ser/Thr) Phe                 | Cell Signaling Technology | 9631           |  |
| phospho-Tyr-1000                      | Cell Signaling Technology | 8954           |  |
| p75NTR                                | Cell Signaling Technology | 8238           |  |
| PDK1                                  | Cell Signaling Technology | 3062           |  |
| PP2A A subunit                        | Cell Signaling Technology | 2041T          |  |
| PP2A B subunit                        | Cell Signaling Technology | 2290T          |  |
| PP2A C subunit                        | Cell Signaling Technology | 2259T          |  |
| PRMT5                                 | Santa Cruz Biotechnology  | sc-376937      |  |
| PTEN                                  | Cell Signaling Technology | 9188           |  |
| Rictor                                | Cell Signaling Technology | 9476           |  |
| Phospho-Rictor Thr 1135               | Cell Signaling Technology | 3806           |  |
| PRMT9                                 | Bethyl Laboratories       | A304-189A      |  |
| ZEB1                                  | Cell Signaling Technology | 70512          |  |

Table S1. Antibodies and antibody/lipids-coated beads used in this study

| SNAIL                                                      | Cell Signaling Technology | 3879      |
|------------------------------------------------------------|---------------------------|-----------|
| TWIST1                                                     | Cell Signaling Technology | 69366     |
| SIN1                                                       | Cell Signaling Technology | 12860     |
| Mouse anti-rabbit IgG-HRP                                  | Santa Cruz Biotechnology  | sc-2357   |
| Mouse IgGk BP-HRP                                          | Santa Cruz Biotechnology  | sc-516102 |
| Anti-rabbit IgG, HRP-linked antibody                       | Cell Signaling Technology | 7074      |
| Normal rabbit IgG                                          | Cell Signaling Technology | 2729      |
| Alexa Fluor 488-conjugated goat<br>anti-rabbit             | ThermoFisher              | A32731    |
| Alexa Fluor 594-conjugated goat<br>anti-mouse              | ThermoFisher              | A11032    |
| Mouse monoclonal anti-HA<br>antibody-coated magnetic beads | ThermoFisher              | 88836     |
| Phosphatidylserine agarose beads                           | Echelon Biosciences       | P-B0PS    |

**Table S2. Mouse Blood Chemistry Test** 

| Test | Samples |      |      |        |       |       |
|------|---------|------|------|--------|-------|-------|
| Item | Vehicle |      |      | GSK595 |       |       |
| ALB  | 3.7     | 4.1  | 3.5  | 3.5    | 3.1   | 3.7   |
| ALP  | 37      | 29   | 26   | 61     | 30    | 27    |
| ALT  | 52      | 59   | 44   | 25     | 30    | 27    |
| AMY  | 860     | 1216 | 1564 | 798    | 730   | 795   |
| TBIL | 0.4     | 102  | 0.9  | 0.5    | 1.3   | 0.5   |
| BUN  | 20      | 32   | 53   | 16     | 30    | 15    |
| CA   | 10.9    | 11.4 | 10.4 | 10.5   | 10.7  | 10.9  |
| PHOS | 8       | 8    | 10.6 | 9.8    | 8.9   | 7.7   |
| CRE  | 0.2     | 0.2  | 0.5  | 0.5    | < 0.2 | < 0.2 |
| GLU  | 260     | 185  | 163  | 171    | 200   | 165   |
| TP   | 5.4     | 5.6  | 4.4  | 5.1    | 4.9   | 4.9   |
| GLOB | 1.6     | 1.5  | 0.9  | 1.6    | 1.8   | 1.2   |

ALB: albumin; ALP: alkaline phosphatase; ALT: alanine aminotransferase; AMY: amylase; TBIL: total bilirubin test; BUN: blood urea nitrogen; CA: calcium; PHOS: phosphorus; CRE: creatinine; GLU: glucose; TP: total protein; GLOB: globulin

|                    | Bioluminescent Intensity (total flux, pixel/second) |          |          |          |  |
|--------------------|-----------------------------------------------------|----------|----------|----------|--|
|                    | DN                                                  | ASO      | GSK595   |          |  |
| Cell lines         | Day 0                                               | Day 14   | Day 0    | Day 14   |  |
|                    | 1.15E+07                                            | 2.44E+09 | 3.05E+07 | 1.25E+08 |  |
|                    | 6.95E+07                                            | 3.07E+09 | 9.75E+07 | 2.36E+08 |  |
|                    | 9.43E+06                                            | 9.70E+08 | 1.96E+07 | 1.23E+08 |  |
| CHLA20-iRFP720-LUC | 2.71E+07                                            | 1.30E+09 | 1.66E+07 | 1.26E+08 |  |
|                    | 3.41E+07                                            | 1.03E+09 | 3.62E+07 | 1.39E+08 |  |
|                    | 1.12E+08                                            | 5.06E+09 | 6.02E+07 | 3.49E+09 |  |
|                    | 1.62E+07                                            | 7.73E+09 | 2.55E+07 | 5.10E+08 |  |
|                    | 6.74E+07                                            | 9.01E+09 | 2.12E+07 | 2.01E+08 |  |
|                    | 7.11E+07                                            | 4.20E+09 | 3.13E+07 | 5.54E+08 |  |
|                    |                                                     |          | 4.66E+07 | 2.90E+08 |  |
|                    |                                                     |          |          |          |  |
| NGP-iRFP720-LUC    | 3.45E+07                                            | 1.10E+09 | 2.24E+07 | 5.28E+08 |  |
|                    | 2.18E+07                                            | 9.34E+08 | 9.00E+06 | 1.09E+08 |  |
|                    | 9.15E+06                                            | 1.54E+09 | 8.23E+07 | 2.76E+08 |  |
|                    | 5.35E+07                                            | 1.38E+09 | 1.62E+07 | 4.60E+08 |  |
|                    | 3.03E+08                                            | 7.08E+09 | 1.24E+08 | 2.04E+09 |  |
|                    | 9.75E+07                                            | 6.28E+09 | 7.99E+07 | 5.65E+08 |  |
|                    | 1.26+08                                             | 4.21E+09 | 1.22E+07 | 2.18E+08 |  |
|                    |                                                     |          | 2.25E+07 | 8.60E+08 |  |
|                    |                                                     |          | 7.76E+06 | 1.02E+08 |  |

Table S3. Bioluminescent intensity of xenografts prior to and at the end of treatment

#### **Supplementary Figure 1**



Activated Caspase-3/7

е

DAPI Merge DMSO GSK591

NGP

Fig. S1. PRMT5 inhibition decreases SDMA and induces apoptosis in neuroblastoma cells. a, Immunoblotting of SDMA with Cell Signaling antibody in neuroblastoma cells treated with DMSO or increasing doses of GSK591. b, PRMT5 knockdown efficiency was detected by Western blotting in scramble or PRMT5 knockdown cells in the absence or presence of doxycycline. c, SDMA in control and PRMT5 knockdown cells. d, Western blotting analysis of SDMA using an additional antibody (SYM10) against SDMA in CHLA 20 cells treated with DMSO or GSK591, and SK-N-BE(2) cells transduced with scramble or two shRNAs targeting PRMT5. e, Caspase-3/7 staining in NGP cells treated with DMSO or GSK591. Scale bars, 100  $\mu$ m. All the results shown here were representative of three independent experiments. Uncropped immunoblots were provided in Source Data file.

Supplementary Figure 2







b

**Fig. S2. GSK595 treatment shows efficacy** *in vivo*. **a**, Weekly bodyweight of mice used in this study (n=7-9, Vehicle=7, GSK595=9). Immunoblots of SDMA in CHLA20 (**b**) (n=4) and NGP (**c**) (n=4) xenograft tumors (equal loading control seen in Fig. 3e). Uncropped immunoblots were provided in Source Data file.



NGP

SK-N-BE(2)







#### Supplementary Figure 3 continued

g





f

EGFR

PRMT5

p-AKT 308

p-AKT1 473

Total AKT1

β-Actin

CHLA20

non-transft.

DNSO

GSK591

Vector FOLK

NGP

GSK591

Vector FOLK

KD

- 250

- 150

- 75

- 50

- 75

- 50 - 75

- 50

- 75

- 50 - 50

- 37

non-transft.

DNSO

CHLA 20

NGP

Fig. S3. Screening the impact of PRMT5 inhibition on known upstream regulators of AKT activation. **a**, Immunofluorescence showing the levels of PRMT5, phosphorylated AKT, and total AKT in NGP (left) and SK-N-BE(2) (right) cells treated with DMSO or GS591. Scale bars, 100  $\mu$ m. **b**, The expression or phosphorylation of indicated kinases or phosphatases involved in the regulation of AKT activation in neuroblastoma cells under GSK591 treatment. **c**, Immunofluorescence showing the expression of DNA-PKs in CHLA20 and NGP cells treated with DMSO or GS591. Scale bars, 100  $\mu$ m. **d**, Western blots of PDK1, phospho-PDK1, Rictor and PTEN in CHLA20 and NGP cells treated with DMSO or GSK591 with or without EGF stimulation. **e**, Immunoblots showing the protein levels of phosphorylation of RTKs not affected by GSK591 treatment. **f**, Immunoblots showing the levels of, EGFR, p-AKT Thr308, p-AKT Ser473, and PRMT5 in cells treated with DMSO or GSK591 followed by indicated doses of Erlotinib. **g**, The expression of EGFR, PRMT5, and phosphorylation of AKT1 examined by Western blot in cells either non-transfected or transfected with vector and EGFR, respectively. **a**, **c**, **d**, **f**, and **g**, representative results from three independent experiments. **b** and **e**, representative results from two independent experiments. Uncropped immunoblots were provided in Source Data file.

AKT1

AKT2

AKT3

pan-AKT

β-Actin

CHLA20

NCR

SK.NBER

KD

- 50

50

50

50

37

а







NGP

CHLA 20

**Fig. S4. GSK591 treatment does not affect SDMA on AKT2/3. a**, The expression of AKT isoforms in neuroblastoma cell lines. **b**, Analyzing AKT2 SDMA in CHLA20 and NGP cells treated with DMSO or GSK591. **c**, Western blots of SDMA on AKT3 in CHLA20 and NGP cells treated with DMSO or GSK591. **d**, Western blots showing levels of phosphorylated AKT in control or PRMT9 knockdown cells. **a-c**, representative results from three independent experiments. **d**, representative results from two independent experiments. Uncropped immunoblots were provided in Source Data file.





-

**Fig. S5. PRMT5 depletion reduces tumor metastasis in the kidney. a**, Bioluminescent (upper) and fluorescent imaging (lower) of kidneys harvested from mice described in Fig. 7a. **b**, FACS analysis of iRFP720+ human neuroblastoma cells in the kidneys (n=6). **c**, Bioluminescent (upper) and fluorescent imaging (lower) of femurs harvested from mice described in Fig. 7a. **d**, FACS analysis of iRFP720+ human neuroblastoma cells in the bone marrow isolated from the femur (n=6). **e**, Western blot showing the expression of HA-AKT1 wild type, R15K, and R391K in the absence and presence of MG132. The Western blotting results shown here were representative of two independent experiments. Uncropped immunoblots were provided in Source Data file. *p* values are calculated by two-tailed unpaired Student's *t* test using Microsoft Excel. Error bars represent SD, n.s, not significant.

#### **Supplementary Figure 6. Uncropped Western blots**

## Fig. 1f



Fig. 1g



Fig. 3b



#### Fig. 3c left panel



#### Fig. 3c right panel



#### Fig. 3d



## Fig. 3e left panel



#### Fig. 3e right panel



Fig. 4a



#### Fig. 4a continued



Fig. 4b



Fig. 4c



#### Fig. 4d



Fig. 4e





Fig. 4f



Fig. 5a



Fig. 5b



Fig. 5d



Fig. 5e



Fig. 5f



Fig. 5g



Fig. 6a

Fig. 6b\_Left





## Fig. 6b\_Right



# Fig. 6c



## Fig. 6h



## Fig. 6i



S1a







S1c

S1d



S2b





S2c

S3b



#### S3b continue



S3e



S3f





S3g

S4a



S4b



S4c





S5e

