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Abstract 

Background: Plazaster borealis has a unique morphology, multiple arms with clear distinction 

between disk and arms, that does not follow remarkable characteristic of Echinoderm, penta-

radial symmetry. Though it seems to be related with accelerated evolutionary rate at the 

morphological level, the lack of a reference genome has limited further research in-depth. 

Herein we report the first chromosome-level reference genome of P. borealis.  

Findings: High coverage of long and short read data was used to assemble de novo 561Mb 

reference genome of P. borealis and Hi-C sequencing data was used to scaffold into 22 

chromosomal scaffolds comprising 92.38% of the genome. The genome showed the presence 

of 98.8% of complete eukaryote BUSCO and 98.0% of complete metazoan BUSCO, indicating 

high quality assembly. Through the comparative genome analysis, we identified evolutionary 

accelerated genes related with morphogenesis and regeneration, suggesting their potential role 

in shaping body pattern and capacity of regeneration.  

Conclusion: This first chromosome-level genome assembly of P. borealis provides 

fundamental insights into echinoderm biology, as well as the genomic mechanism underlying 

its unique morphology and regeneration. 

 

Data Description 

Context 

Echinoderms are various invertebrate marine animals that belong to the phylum Echinodermata. 

They have three remarkable characteristics: 1) extensive regenerative abilities in both adult and 

larval forms [1, 2], 2) the water vascular system used for various aspects of animal life [3], 3) 

extraordinary morphological characteristics, penta-radial symmetry [4, 5].  



Penta-radial symmetry was observed in all extant classes of echinoderm. Echinoids (sea urchin) 

and holothurians (sea cucumber) always have five ambulacral grooves, and crinoids have many 

arms in multiples of five that branch out from the five primary brachia [4, 5]. Most species of 

asteroids and ophiuroids are five-armed, but many exceptions are scattered across both time 

and taxa. Extant asteroids are distinguished by 34 families, including 20 families of only five-

armed species, nine of both five-armed and multi-armed species, and five families with 

exclusively multi-armed species [6]. However, most multi-armed forms have arm numbers that 

cannot be divided into five, raising questions about the apparent morphology of echinoderm, 

penta-radial symmetry.  

Plazaster borealis, octopus starfish, is a starfish inhabit in the water surrounded by Korea and 

Japan [7, 8] and belongs to the family Labidiasteridae, one of five exclusively multi-armed 

families [6]. As in figure 1A, it has unique morphology, the number of arms is around 31~40, 

which is a large number among starfishes, and it shows a clear differentiation between arms 

and disk [9]. 

In the previous study of P. borealis, Matsuoka investigated the molecular phylogenetic 

relationship of five species from the order Forcipulatida: Asterias amurensis, Aphelasterias 

japonica, Distolasterias nipon, Coscinasterias acutispina, and Plazaster borealis [10]. P. 

borealis was the most closely related with five armed A. amurensis and distantly related with 

multi-armed C. acutispina. The result suggested that the unique morphology of P. borealis 

might have differentiated from the starfish with standard morphology: five arms and no 

distinction of disk and arm. Furthermore, it shows the possibility of an accelerated evolutionary 

rate at the morphological level in P. borealis. However, the absence of reference genome 

limited advanced research in depth. To understand the genetic basis of the specialized 

morphology of the starfish, we sequenced the genome of P. borealis and carried out 



comparative genomic analyses with the high-quality and well-annotated genome sequences of 

other six echinoderms (Asterias rubens, Acanthaster planci, Patiria miniata, Lytechinus 

variegatus, Parastichopus parvimensis, and Strongylocentrotus purpuratus). 

 

Chromosome-level genome assembly of the octopus starfish 

We estimated the genome size of P. borealis with GenomeScope to be ~497Mb (Supplementary 

Figure 1). Based on this estimation, a comprehensive sequencing data set was generated for the 

P. borealis genome assembly. From the Nanopore sequencing platform, a total of 57.76 Gb 

long read was yielded with 116x coverage. Using the Illumina sequencing platform, 142x 

coverage of Illumina short paired-end read sequencing data and 115x coverage of Hi-C paired-

end reads was generated (Supplementary Table 1). Moreover, we sequenced 25.63 Gb of RNA 

Illumina short paired-end reads and 7.28 Gb of RNA Nanopore long reads to construct 

transcriptome assembly utilized for annotation. 

A total 561Mb of draft P. borealis genome was assembled into 179 contigs with N50 of 11Mb 

(Supplementary Table 2). To obtain chromosomal information, we scaffolded the contigs using 

3D-DNA [11]. The total size of the final assembly was 561Mb comprising 22 chromosome-

level scaffolds with a contig N50 of 24Mb. These 22 chromosome-level scaffolds comprise 

92.48% of the assembly, although the remaining 42 Mb were unanchored and required further 

investigation (Table 1, Supplementary Figure 2). This number is consistent with chromosome 

results of other species of the order Forcipulatida, further supporting the accurate chromosome 

number acquired in the current study.  

 

Completeness of the assembled genome 



The genome completeness was evaluated using BUSCO with the eukaryotic_odb10 and 

metazoan_odb10. Total of 252 (98.8%) core eukaryote genes and 935 (98.0%) core metazoan 

genes were successfully detected in the genome. Each gene sets consisted as following, S: 

97.6%, 97.0%; D: 1.2%, 1.0%; F: 0.8%, 1.2%; and M: 0.4%, 0.8%. (S: single-copy, D: 

duplicated, F: fragmental, M: missed of eukaryotic_odb10 and metabozan_odb10 data set, 

respectively). We also estimated the overall assembly quality by comparing the k-mer 

distribution of the assemblies and the Illumina short read sets using Merqury. The genome 

assembly of P. borealis showed high-quality values (QV > 36) with an error rate of 0.00023 

(Table 1). Additionally, the GC content of P. borealis was 38.89%, which was very similar to 

that of A. rubens (38.76%) and P. ochraceus (39.01%), the species of the order Forcipulatida. 

The assessment results validated the high quality of our final genome assembly. To our 

knowledge, this is the first high-quality chromosome level genome assembly for P. borealis 

and the first reference genome of the family Labidiasteridae. 

 

Annotation of repeats and genes 

 Repetitive elements accounted for 51.05% of the whole genome assembly, and detailed 

percentages of the predominant repetitive element families are summarized in Table 2. We 

annotated a total of 26,836 genes onto the assembled regions. Compared to other starfish, P. 

borealis has a similar average exon length (213 bp) and exon number per gene (7.19), but it 

has a shorter intron length (1,261 bp) than A. rubens. BUSCO benchmarking value of this gene 

set was summarized as C: 92.6%, including S: 90.0%, D: 2.6%, F:4.6%, M: 2.8% (S: single-

copy, D: duplicated, F: fragmental, M: missed of metabozan_odb10 data set). Following a 

standard functional annotation, we observed that 24,248 (96.13%) genes were successfully 

annotated with at least one related functional assignment (Table 3). 



 

Phylogenetic and syntenic relationship 

To understand the phylogenetic location of P. borealis, we used a BLAST-based hierarchical 

clustering algorithm for genome-wide phylogenetic analysis based on protein sequences from 

seven echinoderm genomes. P. borealis was the most closely related to A. rubens (Figure 2), 

consistent with both previous results and taxa [10]. 

Syntenic relationships analyzed by MCscan [12] also proved their relationship. In the genome 

of P. borealis and A. rubens, every chromosome matched each other well that entire 

chromosomes seem to be highly conserved, but an expansion was detected in chromosome 7 

of P. borealis (Figure 3A, 3B). A similar tendency, using Chromeister [13], was observed with 

P. ochraceus and M. glacialis, other species of the order Forcipulatida. Among three genomes, 

A. rubens, P. ochraceus, and M. glacialis, P. ochraceus was the most conserved with P. borealis 

with a score of 0.301, which seems to be influenced by the observed expansion. These results 

suggest that genomes within the Forcipulatida order are remarkably conserved in terms of 

synteny and chromosome, supporting the high quality of the assembled genome.  

 

Gene family evolution in P. borealis 

Based on the assumption that the unique morphology of P. borealis is explained by accelerated 

evolutionary rate [10], we performed comparative genomic analyses among seven echinoderm 

species. As a result, a total of 24,074 families of homologous genes were detected, including 

3,864 gene families that commonly existed in the seven species and 5,382 gene families that 

existed only in starfishes. In addition, we identified 607 gene families unique in P. borealis 



consisting of 2,631 genes and 111 one-to-one orthologous genes between P. borealis and six 

other species. 

Although the genetic mechanism underlying the development of supernumerary arms of 

starfish is elusive, it is expected that genes related to tissue morphogenesis are increased to 

produce excessive arms. To investigate the expanded gene families, we performed expansion 

and contraction analysis of gene families using CAFE. Compared with six echinoderm species, 

286 gene families were expanded, whereas 2,072 gene families were contracted in P. borealis 

(Figure 2). The significantly expanded genes in the genome of P. borealis were significantly 

enriched in categories of Notch and BMP signaling pathway, body pattern specification, 

morphogenesis, and eye development (P<0.02) (Figure 4). Collectively, these expanded gene 

families are likely to play an enhanced role in forming supernumerary arms of P. borealis. It is 

generally accepted that Notch and BMP signaling are evolutionally conserved and play 

multiple roles during animal development, especially in regulating body patterns. The Notch 

signaling pathway is essential for cell proliferation, cell fate decisions, and induction of 

differentiation during embryonic and postnatal development [14-16]. Besides regulating cell-

fate decisions at an individual cell level, cell to cell signaling mechanism of Notch coordinates 

the spatiotemporal patterning in a tissue [17]. In Drosophila melanogaster, Notch functions as 

it is required to specify the fate of the cells that will eventually segment leg and develop leg 

joint [18, 19]. The mechanisms of BMP gradient formation have been studied in various 

animals. BMP2/4 signaling study of sea urchin showed that interaction between BMP2/4 and 

chordin formed the dorsal-ventral gradient and resulted in dorsal-ventral axis patterning [20]. 

Furthermore, as the physical characteristic of starfish, their eyes exist on the end of each arm 

that denotes the development of arm is accompanied with the development of eye. However, 

contracted gene families of P. borealis had no significantly enriched functions, except GTPase 

regulator activity (GO:0030695, p-value=0.005647). Gene repertories of P. borealis showed 



differences in the contents of other species’ expanded and contracted genes mainly enriched in 

terms related to nerve development (Supplementary Table 3). 

We also found gene families unique in P. borealis are enriched for the following gene ontology 

(GO) terms: apoptotic cell clearance, positive regulation of epithelial cell proliferation, 

vascular transport, and activation of JNKK activity (Supplementary Table 4). The enriched 

term, activation of JNKK activity, is involved in the JNK pathway, which promotes apoptosis 

by upregulating pro-apoptotic gene expression [21]. Typically, cell proliferation and death are 

important to achieve shaping tissue which involves changes in cell number, size, shape, and 

position [22]. Based on these findings, the existent of further genes of the Notch pathway, BMP 

pathway and JNK pathway involved in body pattern specification, cell proliferation, and 

apoptosis could indicate enhanced tissue shaping to form many arms.   

The signaling pathways detected through expanded gene families, especially the Notch and 

BMP pathway, also play several key conserved roles in the regeneration of many species. For 

example, in the study of brittle stars, the inhibition of Notch signaling hindered arm 

regeneration and downregulated genes related to ECM component, cell proliferation, apoptosis 

and innate immunity, which are biological processes associated with regeneration [23]. In 

addition, previous studies of echinoderm gene expression and other animals showed that Notch 

and BMP signaling is the principal pathway for tissue regeneration [24, 25]. 

The studies of the metamorphosis of multi-armed starfishes led to propose the ‘Five-Plus’ 

hypothesis [6, 26]. It states that five primary arms generated concurrently develop in a 

controlled unit and supernumerary arms are produced in the separate and independent pathways. 

Although still these pathways are uncertain, Hotchkiss suggested two possibilities, post-

generation of arms in the incompletely developed starfish or intercalated regeneration of arms 

in the adult [6]. The capacity of regeneration is a remarkable feature of all extant classes of 



echinoderms [2]. Thus, it is possible that multi-armed starfishes could transform from five-

rayed forms to multi-rayed forms by growing new arms through regeneration related 

mechanisms. Thus, suggesting that genes in these families may play key roles in the 

biosynthesis and metabolism processes of its unique body plan as well as in regeneration 

processes. 

Using P. borealis as the foreground branch, six other echinoderm species as the background 

branches, we incorporated the branch-site model in the PAML package to detect positively 

selected genes. A total of 14 genes were positively selected in P. borealis (p<0.05, BEB > 0.95), 

and significantly enriched in GO terms related to “lipid metabolism”, “transport of proton”, 

“pyruvate metabolism”, and “Hedgehog signaling pathway” (Figure 5, Supplementary Table 

5). It is worth noting that these positively selected genes also included BMP4, which regulates 

regeneration and tissue specification (Table 4).  

Regeneration is a high-energy-required process that starfishes in the regeneration state increase 

the amount of lipid and energy in the pyloric caeca to use [27]. GPR161 and BMP4 known to 

be critical in regeneration were also detected as positively selected genes. The G-protein 

coupled receptor Gpr161 negatively regulates the Hedgehog pathway via cAMP signaling, 

which is known to participate tissue regeneration process [28, 29]. Additionally, previous 

studies of planarian regeneration indicate that BMP4 is key for tissue specification, especially 

dorsal-ventral polarity, which may explain the distinctive disk of P. borealis [30]. Together with 

those of previous studies, our results further suggest that related genes may have contributed 

to the regeneration and development of the unique body plan of P. borealis, multiple arms. 

Therefore, P. borealis can be potentially regarded as a valuable model to investigate the 

mechanisms underlying supernumerary arm development and regeneration. We believe that 



this high-quality genome will supply a useful and valuable genetic resource for future research 

especially in unique body plan and regeneration biology. 

 

Conclusion 

The first chromosome-level P. borealis genome was assembled and annotated. Twenty-two 

chromosomal scaffolds are constructed with N50 of 24.97 Mb which showed high conservation 

with genomes of three starfish species of the order Forcipulatida. Furthermore, in our study, 

we identified the accelerated evolution of P. borealis in the context of genomics, which may 

explain its multi-armed morphology and regenerative capacity. The availability of the high-

quality genome sequence of P. borealis is expected to provide many insights into the unique 

morphology of multi-armed starfish and their regeneration. Regarding the scientific value of P. 

borealis, the genome and gene inventory resulting from this study will be helpful in future 

research on these critical topics.  

 

Methods 

Sampling and genomic DNA extraction 

Adult specimens of P. borealis were sampled at a depth of 31 meters near Ulleung island, Korea 

(latitude: 37.53390, longtitude: 130.93920) (Figure 1A). P. borealis was dissected with scissors 

to obtain gonad, pyloric caecae, stomach and epidermis of arm. Isolated tissues were frozen on 

dry ice immediately and kept at -80℃ until further processing. The frozen tissue was ground 

into a fine powder with liquid nitrogen using a pestle and mortar for the nucleic acid extraction.  

High molecular weight (HMW) DNA was obtained from gonad following a nuclei isolation 



method [31]. Genomic DNA was obtained from gonad following modified CTAB protocol [32] 

in the presence of 2% PVP (1% of MW 10,000 and 1% of MW 40,000) PolyVinylPyrrolidone 

(Sigma-Aldrich, Burlington, MA, USA). DNA concentration was determined using the Quant-

iT PicoGreen® assay (Invitrogen, Waltham, MA, USA) and the absorbance at 260 nm and 

230nm (A260/A230) was measured in the Synergy HTX Multi-Mode microplate reader 

(Biotek, Rochester, VT, USA). Their quality verified by gel electrophoresis.  

High-throughput sequencing of genomic DNA 

For Nanopore sequencing, short genomic fragments (<10 kb) were removed using a Short Read 

Eliminator Kit (Circulomics, Baltimore, MD, USA). The library was prepared using the ONT 

1D ligation Sequencing kit (SQK-LSK109, Oxford Nanopore Technologies, Oxford, UK) with 

the native barcoding expansion kit (EXP-NBD104) in accordance with the manufacturer’s 

protocol. In brief, genomic DNA was repaired using the NEBNext FFPE DNA Repair Mix 

(New England BioLabs, Ipswich, MA, USA) and NEBNext Ultra II End Repair/dA-Tailing 

Module. The end-prepped DNA was individually barcoded with ONT native barcode by NEB 

Blunt/TA Ligase Master Mix (New England BioLabs). Barcoded DNA samples were pooled in 

equal molar amounts. It was ligated with adapter using the NEBNext Quick Ligation Module 

(New England BioLabs). After every enzyme reaction, the DNA samples were purified using 

AMPure XP beads (Beckman Coulter, Brea, CA, USA). The final library was loaded onto 

MinION flow cell (FLO-MIN106 and FLO-MIN111, R9.4 and R10.3) (Oxford Nanopore 

Technologies) and PromethION flowcell(FLO-PRO002) (Oxford Nanopore Technologies).  

Sequencing was performed on a MinION MK1b and PromethION sequencer with MinKNOW 

software (19.10.1).  

We also used an Illumina platform to generate short high-quality sequencing reads. DNA 

library was prepared using TruSeq DNA PCR-Free (Illumina, San Diego, CA, USA) and 



evaluated the distribution of fragment sizes with TapeStation D1000 (Agilent Technologies, 

Santa Clara, CA, USA). Finally, DNA library was sequenced in the Illumina NovaSeq 6000 

(Illumina) with the length of 150 bp paired-end reads. 

Hi-C technology was also employed for chromosome-level genome assembly. Hi-C library 

construction protocol is as follows. Ground gonad tissue was mixed with 1% formaldehyde for 

fixing chromatin then the nuclei was isolated following a nuclei isolation method [1]. Fixed 

chromatin was digested with HindII-HF (New England BioLabs), the 5’ overhangs filled in 

with nucleotides and biotin-14-dCTP(Invitrogen) and ligated free blunt ends. After ligation, 

the DNA purified and removed biotin from un-Ligated DNA ends. Fragmentation and size 

selection was performed to shear the Hi-C DNA. Hi-C Library preparation is performed using 

ThruPLEX® DNA-seq Kit (Takara Bio USA, Inc, Mountain View, CA, USA). HI-C library 

was evaluated the distribution of fragment sizes with TapeStation D1000 (Agilent Technologies, 

Santa Clara, CA, USA). HI-C library was sequenced in the Illumina NovaSeq 6000 (Illumina) 

with the length of 150 bp paired-end reads. All of the obtained reads were quality controlled 

by trimming adaptor sequences and low-quality reads using Trimmomatic v0.39 [33] for 

Illumina reads and Porechop v0.2.4 [34] (-q 7) and NanoFilt [35] (-k 5000) for Nanopore reads. 

Genome size estimation 

The quality controlled Illumina sequencing data was used for the calculation of the genome 

size. Using the reads, a k-mer map was constructed to evaluate genome size, unique sequence 

ratio, and heterozygosity. For this, jellyfish v2.3.0 [36] was first used to compute the 

distribution of the 21-mer frequencies. The final 21-mer count distribution per genome was 

used within the GenomeScope 2.0 [37].  

Genome assembly and scaffolding with Hi-C data  



Multiple approaches were tried but the best assembly was obtained in combination of 

NextDenovo [38], NextPolish [39] and 3D-DNA [11]. We utilized NextDenovo v2.4.0 to 

assemble the P. borealis genome using only the Nanopore long reads. After the assembly, we 

applied the Illumina short reads to polish the assembled contigs by operating NextPolish v1.1.0. 

All software parameter setting were default. 

To obtain a chromosome-level genome assembly of P. borealis, we employed the Hi-C 

technology to scaffold assembled contigs. Detailed procedures are as follows. (i) The paired-

end Illumina reads were mapped onto the polished assembly using HiC-Pro v3.0.0 [40] with 

default parameters to check the quality of the raw Hi-C reads. (ii) Juicer v1.6 [41] and 3D-

DNA v180419 [11] were applied to cluster the genomic contig sequences into potential 

chromosomal groups. (iii) Juicebox v1.13.01 [42] was used to validate the contig orientation 

and to remove ambiguous fragments with the assistance of manual correction.  

Assessment of the chromosome-level genome assembly 

Two routine methods were employed to assess the completeness of our finally assembled 

genome as follows. (i) Bechmarking Universal Single-Copy Orthologues (BUSCO) v5.2.2 [43] 

assessment: The metazoan_odb10 and eukaryotic_odb10 orthologues were used as the BUSCO 

reference. (ii) QV score and error rate was estimated with Merqury v1.3 [44]. 

RNA extraction and sequencing  

Total RNA was isolated using TRIzol Reagent(Invitrogen) from three tissues of same P. 

borealis, digestive gland, stomach and epidermis of arm following the manufacturer’s protocol. 

Total RNA concentration was determined using the Quant-iT™ RNA Assay Kits (Invitrogen) 

and the absorbance at 260 nm and 280 nm (A260/A280) was measured in the Synergy HTX 

Multi-Mode microplate reader (Biotek). Their quality verified by gel electrophoresis. mRNA 



was isolated using Magnosphere™ UltraPure mRNA purification kit(Takara) according to the 

manufacturer’s instructions.  

cDNA library was prepared using cDNA-PCR Sequencing Kit (SQK-PCS109, Oxford 

Nanopore Technologies) with the PCR Barcoding Kit (SQK-PBK004, Oxford Nanopore 

Technologies) in accordance with the manufacturer’s protocol. In brief, RT and strand-

switching primers were provided by ONT with the SQK-PCS109 kit. Following RT, PCR 

amplification was performed using the LongAmpTaq 2X Master Mix (New England Biolabs) 

and AMpure XP beads (Beckman Coulter) were used for DNA purification. The PCR product 

was then subjected to ONT adaptor ligation using the SQK-PBK004. The final library was 

loaded onto MinION flow cell (FLO-MIN106 and FLO-MIN111, R9.4 and R10.3) (Oxford 

Nanopore Technologies) and sequencing was performed on a MinION MK1b and MinKNOW 

software (19.10.1).  

We also used an Illumina platform to generate short high-quality sequencing reads. Using 

Truseq Stranded mRNA Prep kit, we constructed cDNA library. After evaluating the 

distribution of fragment sizes with BioAnalyzer 2100 (Agilent Technologies, Santa Clara, CA, 

USA), it was sequenced in the Illumina NovaSeq 6000 (Illumina, San Diego, CA, USA) with 

the length of 100 bp paired-end reads. 

Hybrid assembly of transcriptome 

To assemble transcriptome, we selected hybrid approach to restore more known genes and 

discover alternatively spliced isoforms, which can be useful in transcriptome analysis of 

previously unsequenced organism. Therefore, long reads and short reads from three tissues 

were used for assembly. To ensure the accuracy of subsequent analyses, we trimmed the raw 

reads to remove adaptor sequences and low-quality reads. Trimmomatic v0.39 and Porechop 

v0.2.4 were used to trim reads for Illumina and Nanopore reads, respectively. Subsequently, 



the clean reads were assembled using rnaSPAdes v3.14.1 [45] with default parameters and 

transcriptomes with at least 100 amino acids were extracted using TransDecoder [46].  

Annotation of repetitive elements 

Repeatitive elements in the final assembly were annotated using the following two different 

strategies, (i) de novo annotation: RepeatModeler v2.0.1 [47] and LTR_Finder v2.0.1 [48] were 

used to build a local repeat reference. Subsequently, the genome assembly was aligned with 

this reference to annotate the de novo predicted repeat elements using RepeatMasker v4.1.1 

[49]. (ii) Homology annotation: Our genome assembly was searched in the RepBase 

(RepeatMaskerEdition) [50] using RepeatMasker v4.1.1. Finally, these data from the two 

strategies were integrated to generate a nonredundant data set of repetitive elements in the final 

P. borealis genome assembly. 

Gene prediction and function annotation 

Three methods were used to predict the P. borealis gene set from the soft masked P. borealis 

genome. (i) ab initio gene prediction: Augustus v3.4.0 [51, 52], GeneMark-ET v3.62 [53], 

Braker v2.1.5 [54-58] and SNAP v2.51.7 [59] were employed to annotate gene models. (ii) 

Evidence-based gene prediction: Exonerate [60] were utilized to annotate gene models with 

expressed sequence tag (EST) and protein homology dataset. Assembled transcriptome of P. 

borealis were used for EST dataset and protein sequences of A. rubens (GCF_902459465.1) 

from NCBI were used for protein homology dataset. (iii) Consensus gene prediction: 

EVidenceModeler [61] (EVM) combined predicted ab initio gene models and evidence based 

gene models into weighed consensus gene structures. This predicted gene set was searched in 

three public functional databases, including NCBI Nr (nonredundant protein sequences), 

Swiss-Prot [62] and Pfam database [63] to identify the potential function and functional 

domains with BLATP v2.10.0+ [64] and Interproscan5 [65]. 



Gene family expansion and contraction 

We downloaded the protein sets of 6 echinoderm species, Asterias rubens (GCF_902459465.1), 

Acanthaster planci (GCF_001949145.1), Patiria miniata (GCF_015706575.1), Lytechinus 

variegatus (Lvar2.2), Parastichopus parvimensis (Pparv_v1.0), and Strongylocentrotus 

purpuratus (GCF_000002235.5) from NBCI and EchinoBase (http://www.echinobase.org) [66] 

to analyze phylogenetic tree and identify the one-to-one orthologous proteins within the 7 

examined species through OrthoFinder v2.5.2 [67]. Regarding the phylogenetic tree, we used 

CAFE5 [68] to detect gene family expansion and contraction in the assembled P. borealis 

genome with default parameters. GO enrichment using EnrichGO (clusterProfiler v4.0.4) [69] 

was derived with the Fisher’s exact test and chi-square test and then adjusted using the 

Benjamini-Hochberg procedure. 

Genes under positive selection  

Positively selected genes in the P. borealis genome were detected from one-to-one orthologous 

genes, in which the P. borealis was used as the foreground branch, and the A. rubens, A. planci, 

P. miniata, L. variegatus, P. parvimensis and S. purpuratus were used as the background 

branches. To detect positively selected genes, we used BLASTP v2.10.0+ to screen out 115 

one-to-one orthologous genes among 7 species. The multiple alignment was performed by the 

GUIDANCE v2.02 software [70-72] and PAL2NAL v14 [73] was applied to convert protein 

sequence alignments into the corresponding codon alignments. The branch-site model 

incorporated in the PAML package (v4.9j) [74] was employed to detect positively selected 

genes. The null model used in the branch-site test assumed that the comparison of the 

substitution rates at nonsynonymous and synonymous sites (Ka/Ks ratio) for all codons in all 

branches must be <= 1, whereas the alternative model assumed that the foreground branch 

included codons evolving at Ka/Ks > 1. A maximum likelihood ratio test was used to compare 



the two models. P-values were calculated through the chi-square distribution with 1 degree of 

freedom (df=1). The p-values were then adjusted for multiple testing using the false discovery 

rate (FDR) method. Genes were identified as positively selected when the FDR < 0.05. 

Furthermore, we required that at least one amino-acid site possessed a high probability of being 

positively selected (Bayes probability > 95%). If none of the amino acids passed this cutoff in 

the positively selected gene, then these genes were identified as false positives and excluded. 

GO enrichment using EnrichGO (clusterProfiler v4.0.4) [69] was derived with the Fisher’s 

exact test and chi-square test and then adjusted using the Benjamini-Hochberg procedure with 

a cutoff set at p < 0.05.  

 

Data availability 

The final genome assembly and raw data from the Nanopore, Illumina and Hi-C libraries have 

been deposited at NCBI under BioProject PRJNA776097. 
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Figures 

Figure 1: A. Adult Plazaster borealis. Photograph by National Institute of Biological 

Resources (NIBR, https://www.nibr.go.kr) B. Sampling spot of P. borealis studied in this 

research. 

Figure 2: A phylogenetic tree of P. borealis and six other species. This tree was constructed 

using protein sequences of seven species, showing gene family expansion and contraction. The 

number below the branches represents the number of gene families with either expansion (blue) 

and contraction (red). The ratio of expanded and contracted gene families was expressed in the 

pie chart above the branches. The numbers at the node indicate the bootstrap value. The species 



used in the tree are P. borealis, Asterias rubens, Acanthaster planci, Patiria miniata, Lytechinus 

variegatus, Parastichopus parvimensis, and Strongylocentrotus purpuratus. 

Figure 3: Syntenic relationship of P. borealis and species of the order Forcipulatida. A. 

Synteny between Asterias rubens and P. borealis. The syntenic blocks were calculated with 

MCscan. B-D. Syntenic relationship of P. borealis between A. rubens (B), Pisaster ochraceus 

(C), Marthasterias glacialis (D) Genomic sequences were compared with Chromeister based 

on inexact k-mer matching. 

Figure 4: GO enrichment analysis of expanded gene families of P. borealis. 

Figure 5: Results of GO enrichment analysis of positively selected genes. BP: GO Term 

Biological Process (green), CC: GO Term Cellular Component (red), KEGG: Kyoto 

Encyclopedia of Genes and Genomes (blue). 

 

 

 

 

 

 

 

 

 

 



Tables 

Table 1: Plazaster borealis assembly statistics 

 

Table 2: Plazaster borealis repetitive DNA elements 

 

Assembly statistics Value 

Genome size (bp) 561,050,340 

Number of scaffolds 801 

Number of chromosome-scale scaffolds 22 

N50 of scaffolds (bp) 24,975,817 

L50 of scaffolds 10 

Chromosome-scale scaffolds (bp) 518,884,334 

GC content of the genome (%) 38.89 

QV score 36.3457 

Error rate 0.00023 

BUSCO analysis   

    Library Eukaryota Metazoa 

    Complete 252 (98.8%) 935 (98.0%) 

    Complete and single-copy  249 (97.6%) 925 (97.0%) 

    Complete and duplicated 3 (1.2%) 10 (1.0%) 

    Fragmented 2 (0.8%) 11 (1.2%) 

    Missing 1 (0.4%) 8 (0.8%) 

Type 
Number of 

elements 

Length occupied 

(bp) 

Percentage of sequence 

(%) 

DNA 10,734 3,597,965 0.64 

LINE 42,851 3,472,043 0.62 

SINE 60,394 13,931,402 2.48 

LTR 8,277 5,145,127 0.92 

Satellite 9 2,752 0 

Small RNA 20,889 1,464,546 0.26 

Simple repeat 162,149 8,016,020 1.43 

Unclassified 1,294,477 249,314,223 44.44 

Low complexity 25,170 1,365,485 0.24 

Total   51.05% 



Table 3: Plazaster borealis genome annotation statistics 

 

Table 4: Genes with accelerated evolution in the P. borealis.  

Gene H0_lnl H1_lnl 
Likelihood 

ratio 
FDR 

# of positively 

selected sites* 

GPR161 -8827.28 -8798.95 56.66761 2.06E-13 5 

RPL5 -3991.54 -3968.12 46.84587 2.3E-11 1 

RSL24D1 -2215.1 -2192.93 44.35075 6.59E-11 14 

PHB2 -4815.8 -4805.98 19.631658 1.61E-05 4 

NAA10 -4703.42 -4694.3 18.237898 2.92E-05 4 

IQCA1 -9112.13 -9103.79 16.684644 5.88E-05 2 

SLC30A5 -10574.5 -10566.6 15.766218 8.6E-05 3 

BMP10 -8017.18 -8010.17 14.034764 0.000196 4 

STOML2 -5414.16 -5408.06 12.206464 0.000476 1 

ACYP1 -1855.62 -1849.54 12.153438 0.000452 3 

NIPSNAP3A -4951.12 -4946.47 9.296206 0.001968 1 

H0_lnl: log likelihood given H0 (ω does not vary across the branches), H1_lnl: log likelihood 

Statistic Value 

Number of predicted genes 26,836 

Number of predicted protein-coding genes 25,224 

Average gene length 8,948.89 

Number of transcripts 26,737 

Average transcript length (bp) 1,502.90 

Number of exons 192,343 

Average exon length (bp) 213.57 

Average exon per transcript 7.19 

Number of introns 165,606 

Average intron length (bp) 1,261.88 

Number of genes annotated to Swiss-Prot 18,451 

Number of genes annotated to PFAM 18,541 

Number of genes annotated to NR 24,229 

BUSCO analysis  

Complete (%) 884 (92.6%) 

Complete and single-copy (%) 859 (90.0%) 

Complete and duplicated (%) 25 (2.6%) 

Fragmented (%) 44 (4.6%) 

Missing (%) 26 (2.8%) 



given H1, *Number of positively selected sites with a BEB of > 0.95. 
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