
GigaScience

Loop detection using Hi-C data with HiCExplorer
--Manuscript Draft--

Manuscript Number: GIGA-D-21-00069R2

Full Title: Loop detection using Hi-C data with HiCExplorer

Article Type: Technical Note

Funding Information: Bundesministerium für Bildung,
Wissenschaft, Forschung und
Technologie
(031 A538A de.NBI-RBC)

Prof. Dr. Rolf Backofen

Bundesministerium für Bildung,
Wissenschaft, Forschung und
Technologie
(031 L0101C de.NBI-epi)

Dr. Björn Grüning

Deutsche Forschungsgemeinschaft
(CIBSS - EXC-2189 - Project ID
390939984)

Prof. Dr. Rolf Backofen

Abstract: Background: Chromatin loops are an essential factor in the structural organization of
the genome; however, their
detection in Hi-C interaction matrices is a challenging and compute-intensive task. The
approach presented here,
integrated into the HiCExplorer software, shows a chromatin loop detection algorithm
that applies a strict candidate
selection based on continuous negative binomial distributions and performs a Wilcoxon
rank-sum test to detect enriched
Hi-C interactions.
Results: HiCExplorer’s loop detection has a high detection rate and accuracy. It is the
fastest available
CPU implementation and utilizes all threads offered by modern multi-core platforms.
Conclusions: HiCExplorer’s method to detect loops by using a continuous negative
binomial function combined with the donut approach from
HiCCUPS leads to reliable and fast computation of loops. All the loop-calling
algorithms investigated provide differing
results, which intersect by ∼ 50% at most. The tested in-situ Hi-C data contains a large
amount of noise; achieving
better agreement between loop calling algorithms will require cleaner Hi-C data and
therefore future improvements to
the experimental methods which generate the data.

Corresponding Author: Joachim Wolff
Albert-Ludwigs-Universität Freiburg: Albert-Ludwigs-Universitat Freiburg
Freiburg im Breisgau, Baden-Württemberg GERMANY

Corresponding Author Secondary
Information:

Corresponding Author's Institution: Albert-Ludwigs-Universität Freiburg: Albert-Ludwigs-Universitat Freiburg

Corresponding Author's Secondary
Institution:

First Author: Joachim Wolff

First Author Secondary Information:

Order of Authors: Joachim Wolff

Rolf Backofen, Dr.

Björn Grüning, Dr.

Order of Authors Secondary Information:

Response to Reviewers: Suggestions by Editor after consulting external reviewer

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

 - The authors should add to their last figure a comparison of the HiCExplorer and
HICUPS to the Peakachu run on the ICE corrected matrices stating it explicitly in the
figure legend.

Anwer
We did this.

- Please include more comparisons showing what HiCExplorer calls and what is
missed by other tools. Add at least one more locus-by-locus snapshot of loops called
by the tools, including Fit-Hi-C method absent in Figure 4. It would be important to
better illustrate the Venn Diagram results from figure 2.

Anwer
We did this. Please consider the additional new figures in the Supplementary material.

- Another potentially important figure would be to include calls before merging,
displaying several examples of enriched pixels in all the three methods (Fit-Hi-C,
HiCExplorer and HiCCUPS). This could help resolving the issue raised by Wolff et al
and pertaining to the method used to merge significant pixels into a single loop.
Perhaps this should make up an entire small chapter of the paper (depending on the
data).
Anwer
We don’t think intermediate data is important in this comparison. The issue that we
raised with the merging of loops is a different one: We think that all tools should be
compared based on their detected loops and this implies that the merging of loops is
applied by individual tools. What we raised and what we are concerned about is a
sentence in the publication of Peakachu stating they used the intermediate, unmerged
loop candidates and applied for all their self-developed merging tool. This is biasing the
results in a positive way towards Peakachu. However, this is an issue of the Peakachu
publication and does not influence our comparison.

Reviewer #1

Reviewer #1: My main concern for the revised manuscript is the additional
benchmarking the authors performed with Fit-Hi-C and Peackachu. Since Fit-Hi-C is
one of the first algorithms for Hi-C loop prediction (published in 2014) and Peakachu is
the only method that uses the supervised machine learning approach for such
purpose, I suggested that these two software should be recognized. If the authors can
perform a fair benchmarking and find out where the differences come from, the results
would be really interesting.

The authors decided to test the aforementioned methods during the revision.
Unfortunately, I believe there were some errors during the testing.

For Peakachu:

1. Most importantly, the authors used the wrong form of normalized Hi-C files for
Peakachu. Peakachu model was trained and should be used with ICE-normalized Hi-C
matrix. However, based on page 8 in the supplementary file, the input file is
gm12878_KR.cool. The data range for ICE and KR normalization is very different, and
therefore, the model trained in ICE file will not work with KR format and the prediction
will wrong. Therefore, all the following evaluations and descriptions for the Peakachu
prediction are not accurate and needs to be revised (such as Fig. 4, Table S1 ...).

Answer
If your tool is that sensible then one of the following should be considered:
Publish the information that you need an ICE corrected matrix ANYWHERE! It is not
published on your GitHub repository where you provide the models, it is not written in
the paper, nor in the supplementary material! How should someone know this?
ICE and KR are not that different, I suspect a bit that you trained on not upscaled

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

matrices. Can it be that you trained on a matrix with a value range of 0 - 1, as it is after
the correction of ICE and KR if the correction tool does not scale the values back to the
correct value range? If so, please make this information public, because it is quite
common to work on scaled-back interaction data.
Even this is all not true: An observed/expected normalization should be able to catch
most of the differences of ICE / KR correction. In the end, we just search for enriched
interactions, the correction does not matter that much. See the comment of the
external reviewer concerning this!
If the above still is wrong: Then I am sorry to say this, but I assume your model has a
heavy overfitting issue.
I will not revise the results based on the KR corrected matrix. It seems to me that either
you missed important normalization (e.g. obs/exp normalization.) in the pre-processing
or your model has heavy overfitting. Concerning obs/exp normalization: we checked
your publication and supplementary material, we did not find the term
‘observed/expected matrix’ or something similar anywhere. We, therefore, assume you
don’t apply this normalization.

Reviewer #1
2. In the response letter, there is another misunderstanding about merging.
Because Fit-Hi-C predicted too many contacts, the authors of Peakachu merged "the
top 140,000 interactions into 14,876 loops (Fig. 3a, b), with the same pooling algorithm
used by Peakachu." The reason is that if multiple continuous bins on a Hi-C map are
all predicted as loops, the merging/filtering step will use the bin with the most
significant P-value as the chromatin loops (local minimal). As the authors noted, Fit-Hi-
C by default will generate "significant contacts in the 100,000-ends." Therefore, this
merging/filtering step is necessary if we want to compare the loops predicted by each
method. This is also what the author did in this manuscript as well - I am quoting their
own writing here, "This filtering step is necessary to address the candidate peak value
as a singular outlier within the neighborhood." Therefore, I do not understand the
authors are "irritated" by such approach.

Answer
Yes, we merged the significant detected candidates too. However, we used for all
approaches the merging tool provided by the individual tool and not for all tools our
own merging tool. This is a major difference! To use one merging tool, their own
developed one (!!!), is the approach of Peakachu paper and this is what we criticize!
We do not criticize the merging in general. Fit-HiC2 provides its own merging tool, so
does HiCCUPS. Why have you not used it? That would have been a fair comparison!

Reviewer #1
3. The authors of Peakach have released their prediction in 56 Hi-C datasets on
their 3D Genome Browser website
(http://3dgenome.fsm.northwestern.edu/publications.html), including the ones used in
this manuscript. The authors used models trained at different sequencing depths for
different datasets. Therefore, I would suggest the authors use this dataset for a fair
evaluation.
Answer
We included this data. The very high agreement of loops with positions of HiChIP
based H3K27ac and SMC1 confirms our suspicion of heavy overfitting. Your model
does not learn the pattern of loops but the pattern of locations where these two
proteins are present. In contrast to this, your performance considering CTCF with 50%
is low, compared to HiCExplorer or HiCCUPS with 64% and 61%. Also the loci specific
investigation shows that you miss certain clear loops like on chromosome 4 20.55 -
22.55 MB (Supplementary Figure 4) but you detect many loops which are not clearly
visible and would need further orthogonal data to be confirmed, for example, the loops
in the loci chromosome 1 15.00 - 18.00 MB (Supplementary Figure 6). We suggest you
update your published models based on training where the Hi-C interaction matrices
are obs / exp normalized and have different corrections as their base. Please take care
that important and easily visible loops on chromosome 4 20.55 - 22.55 MB are
identified.

Reviewer #1
Regarding Fit-Hi-C, what are the number of peaks the before and after filtering? The

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

author also needs to provide the loop locations so that reviewers can evaluate their
claim independently. This information is critical. This manuscript might be helpful for
the authors to evaluate Fit-Hi-C (Arya Kaul et al. Nature Protocol 2020).

Finally, the authors need to provide all the predicted chromatin loops in the cell lines as
well as loops predicted by other software used in this manuscript as supplementary
materials (loops in Supplementary Table 1).
Answer
We published the data on zenodo.

Reviewer 2

The authors have addressed some of my comments, but the majority of my comments
have not been
satisfactorily addressed. The manuscript would still require major modification before
publication.

Reviewer #2:
I am, of course, fully aware that a figure and its caption belong together, and my
concern
referred to the figure and its caption text as a whole. However, the graphics, even in
their
updated version, do not facilitate the readers’ understanding of the method.
Furthermore, it is
customary in scientific writing that the use of arrows or other markers in the graphics is
accompanied by an explanation in the caption text (i.e. what does each arrow point
to?). Also,
instead of the use of arrows, it would be much more informative to demarcate the
borders of
those areas in the matrices that the authors would like to highlight.
Perhaps, a pragmatic solution could be to delete the confusing graphics altogether and
just
use the caption text on its own as bullet points or numbered steps for the method.
Answer
We don’t think we come here to any agreement with the reviewer. We dropped the
graphic without any replacement. The algorithm itself is already described in the text
and the graphical description was to have additional material to understand it maybe
better. We reject the suggestion to use bullet points because it would be even more
redundant.

Reviewer #2:

As pointed out, some of the methods search for loops genome-wide or only within 8Mb
windows, while others use a custom distance for the loop search space. Currently the
results show loops detected genome-wide for Juicer GPU, within 8Mb for Juicer CPU,
genome-wide for HOMER and within 8Mb and 2Mb for the other methods. Comparison
of
the methods should be restricted to those loops that are shorter than 8Mb/2Mb for all
methods and the genome-wide results could be added in supplementary.
Answer:
We restrict all to 8 MB.

Reviewer #2:

Thank you for extending the section. However, the explanation about the chimeric
reads is
incorrect. Read-pairs are indeed always come from ligation fragments, but chimeric
reads is
a term used for those reads (single end) which overlap with the ligation site, and
therefore
cannot be mapped to the genome without trimming or splitting.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Answer:
We added a sentence.

Reviewer #2:

I am not convinced that a passing introduction of a few methods that are not designed
to
detect loops in Hi-C data will help the inexperienced reader to understand why they are
not
appropriate. By the authors reasoning, several other methods should also be
introduced e.g.
FIREcaller, SIP, Mustache, HiC-DC, HIPPIE.
Answer:
We removed the methods that are criticized in the introduction.

Reviewer #2:

As the authors themselves stated above in their reply to my question about the
motivation
of developing the algorithm. They choose the continuous negative binomial distribution
because the negative binomial allows for overdispersion of the data and the continuous
version of it can be applied to normalized read counts.
What this comment referred to, was the following sentence: “In genome analysis, good
experience has been made with negative binomial functions as proposed, for example,
by
DESeq2.” This does not describe the overdispersion issue which is the main reason for
using
a negative binomial based algorithm. In this case a continuous negative binomial.

Answer:

We never claimed that DESeq2 describes the overdispersion issue. The sentence was
written why we consider a cNB distribution at all and to motivate that it has been
successfully used in other areas of genome analysis. Anyhow, we removed the
sentence to satisfy the reviewer.

Reviewer #2:

In this case, I would suggest comparing the tools for loops detected within 2Mb and
8Mb
and show the full genome results only in the supplementary. See my comment above
about
the consistency of the comparison.

Answer:
We restrict the analysis results to 8Mb and dropped all other results.

Reviewer #1:
Fig 2A is showing the same data as Fig 2A in the Galaxy HiCExplorer publication
(Wolff et al 2020), but the
detected loops indicated are different. What is the reason for that?
Answer:
The algorithm used in the Galaxy HiCExplorer 3 publication was based on HiCExplorer
3.2; with HiCExplorer 3.5
we changed the loop detection algorithm to its current form. For this reason, the detect
loops differ. We changed
the algorithm because we were not happy with the performance in terms of accuracy of
the detect loops and also
on the utilization of the threading of modern CPUs. For comparison of the algorithmic
differences, please

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

compare the manuscript to the bioRxiv publication of the loop detection.
The authors should highlight these changes in current manuscript.
Answer
We added two sentences.

Reviewer #2:
The authors state that some methods are better correlated with CTCF binding sites
than
others based on the proportion of CTCF-bound loops. I did notice that the proportion
was
calculated for each method. However, the difference between these proportions would
have needed to be statistically tested (with two-proportions Z-test) to claim differences
in
the methods’ performance.

Answer
We added the requested z-test for the GM12878 data and the proportions of CTCF
ChIA-PET, RAD21 ChIA-PET, H3K27ac HiChIP and SMC1 HiChIP. Given a p-value
threshold of 0.05 all results are below this threshold for a H0 ‘the proportions are the
same’. Given a p-value threshold of 0.001 only the differences in proportion between
HiCExplorer and HiCCUPS for the CTCF ChIA-PET with 0.00216 and HiCExplorer and
Homer for the SMC1 HiChIP data with 0.00299 are not significant.

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://scicrunch.org/resources
https://scicrunch.org/resources

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/editorial_policies_and_reporting_standards#Availability
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

GigaScience, XXXX, 1–8
doi: xx.xxxx/xxxx
Manuscript in Preparation
Technical Note

T E C H N I C A L N O T E

Loop detection using Hi-C data with HiCExplorer
Joachim Wolff1,*, Rolf Backofen1,2 and Björn Grüning1
1Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106,
79110 Freiburg, Germany and 2Signalling Research Centres CIBSS, University of Freiburg, Schänzlestr. 18,
79104 Freiburg, Germany
*wolffj@informatik.uni-freiburg.de

Abstract
Background: Chromatin loops are an essential factor in the structural organization of the genome; however, their
detection in Hi-C interaction matrices is a challenging and compute-intensive task. The approach presented here,
integrated into the HiCExplorer software, shows a chromatin loop detection algorithm that applies a strict candidate
selection based on continuous negative binomial distributions and performs a Wilcoxon rank-sum test to detect enriched
Hi-C interactions. Results: HiCExplorer’s loop detection has a high detection rate and accuracy. It is the fastest available
CPU implementation and utilizes all threads offered by modern multi-core platforms. Conclusions: HiCExplorer’s
method to detect loops by using a continuous negative binomial function combined with the donut approach from
HiCCUPS leads to reliable and fast computation of loops. All the loop-calling algorithms investigated provide differing
results, which intersect by ∼ 50% at most. The tested in-situ Hi-C data contains a large amount of noise; achieving
better agreement between loop calling algorithms will require cleaner Hi-C data and therefore future improvements to
the experimental methods which generate the data.
Key words: Hi-C, Hi-C loop detection, DNA loops

Introduction

Many algorithms are currently available for loop detection in
Hi-C data. HiCCUPS uses a donut algorithm, which considers
all elements of a Hi-C interaction matrix as peaks and tests
if the region around them is significantly different from the
neighboring interactions. HiCCUPS is part of the software
Juicer1, and the implementation requires a general-purpose
GPU (GPGPU), which imposes a barrier for users without ac-
cess to Nvidia GPUs. However, an experimental CPU-based
implementation has also been released. Algorithms such as
iterative correction and eigenvector decomposition (ICE) [1], or
Knight-Ruiz (KR) [2] are widely used in Hi-C data analysis for
balancing Hi-C matrices, but the loop detection algorithm of
HiCCUPS uses a different approach. HiCCUPS employs a Pois-
son model, which is a distribution for discrete data, to detect
regions of interest. After balancing a Hi-C interaction matrix,

1 https://github.com/aidenlab/juicer

the data is no longer discrete, but continuous. In order to work
with the Poisson distribution, the balancing of the values is re-
verted. This procedure is methodologically questionable, as it
involves manipulation of the data to fit the requirements of a
particular distribution, rather than fitting on the distribution
which is most probable or suitable. Moreover, the Poisson dis-
tribution on the raw Hi-C data tends to have an overdispersion,
which suggests Poisson is not the best choice. HOMER [3] cre-
ates a relative contact matrix per chromosome and scans these
for locally dense regions. HOMER does not support standard
file formats for Hi-C matrices like cool [4], which forces the
user to create all data from scratch, a time-consuming pro-
cess and a potential source of errors and inaccuracies. Chro-
mosight [5] detects loops based on a pattern-matching algo-
rithm. Cooltools2 uses a reimplementation of the HiCCUPS al-
gorithm; Fit-Hi-C [6] detects significant Hi-C contacts and
provides a merging algorithm to detect DNA loops. Peakachu

2 https://github.com/open2c/cooltools

Compiled on: November 5, 2021.
Draft manuscript prepared by the author.

1

Click here to access/download;Manuscript;manuscript_loop.pdf

https://www.editorialmanager.com/giga/download.aspx?id=122743&guid=b7ac2660-8406-4bcb-8821-e09d6f42198c&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=122743&guid=b7ac2660-8406-4bcb-8821-e09d6f42198c&scheme=1

2 | GigaScience, XXXX, Vol. 00, No. 0

[7] uses a random forest approach trained on CTCF or H3K27ac
data. Chromosight, cooltools, Peakachu, and HiCExplorer sup-
port the cooler file format. HOMER, Fit-Hi-C, and Peakachu do
not utilize parallelization techniques to improve runtime, run-
ning only on a single core.

Here we present an algorithm that can detect Hi-C loops. It
is based on a continuous negative binomial distribution and is
highly parallelized, assigning one thread per chromosome and
parallelizing further using multiple threads within a chromo-
some. This approach makes full use of the resources available
in the last generation of multi-core CPU platforms.

Methods

According to Rao [8], most of the anchor points of detected
loops lie within a range of 2 Mb. This insight can be used to
decrease the search space in a biologically meaningful way and
also to reduce the computational burden, while at the same
time maintaining a low memory footprint. Moreover, interac-
tion pairs with genomic distances which are too close to each
other, corresponding to points in the Hi-C matrix close to the
main diagonal, already have high interaction counts. It is, in
many cases, unlikely that these pairs contribute enrichments
in the context of their neighborhood. The high interaction
count can explain this observation between two loci; they are
closer in one-dimensional space and close to the main diag-
onal. Specialized algorithms like FastHiC should be used to
detect intra-TAD enrichments. A general problem for Hi-C
interactions with few absolute counts is determining whether
their interactions are true interactions or noise. These artifacts
cannot be corrected by the commonly-used Hi-C interaction
matrix correction algorithms such as iterative correction and
eigenvector decomposition (ICE) [1], or Knight-Ruiz (KR) [2].
These algorithms perform a matrix balancing and correct for
an uneven distribution of the interaction counts per genomic
position. The correction algorithms are unable to distinguish
and therefore filter true interactions from noise. All values be-
low a given threshold are discarded, and noise is removed to
account for these known problems in the Hi-C interaction data.

Algorithm

A strict candidate selection is critical to reducing the computa-
tional complexity of the loop detection algorithm. A maximum
loop size can be defined to restrict the search space to take the
previously-mentioned observation from Rao [8] into account.
In Hi-C, the primary data structure is the symmetrical n × n
interaction count matrix (ICM):

ICM =

ic00 · · · ic0n... · · ·

...
icn0 · · · icnn

 (1)

The relative genomic distance is given by:

d = |i – j| for ici,j (2)

where ici,j is an element of Hi-C interaction matrix ICM.
As a first step, the interaction matrix ICM is transferred to

an observed vs. expected matrix M∗ to normalize the differing
interaction heights per genomic distance. Each element m of

M∗ is defined as:

m∗
i,j = icmi,jexpd

(3)

Different methods are offered to adjust differences in the
samples introduced. Hi-C is, in comparison to techniques like
RNA-seq, a two-dimensional approach; all reads are chimeric.
The term chimeric in the context of Hi-C should be understood
as reads which are ligated from two different locations in the
genome. This is achieved by fixation of spatially close DNA
fragments with formaldehyde, followed by digestion and liga-
tion to create chimeric reads. These events should, in theory,
happen uniformly in the whole genome; however, whether this
is the case depends on the particular sample and genome stud-
ied. Therefore, three different ways to compute the expected
value are offered. Note that the observed/expected matrix nor-
malization step was not included in the initial version of this
publication released on bioRxiv [9].

First, only non-zero contacts are considered:

exp_nonzerod =
∑ ici,j

|non – zero interactions d| (4)

Second, all contacts are considered:

exp_with_zerod =
∑ ici,j

|all interactions d| (5)

And third, similar to HOMER’s normalization, a correction
for different occurring ligation events is offered:

exp_ligationd = exp_nonzeroi,j ∗
∑(rowICM(i)) ∗∑(rowICM(j))∑(ICM) (6)

Candidate selection per genomic distance
To detect enriched Hi-C interactions, the observed/expected
normalized Hi-C data is fitted per genomic distance d indepen-
dently to a continuous negative binomial distribution. Supple-
mentary Figure 1 shows the value density distribution of differ-
ent genomic distances and provides evidence for the chosen dis-
tribution assumption. The negative binomial function, rather
than the Poisson distribution, is used because the raw data of
the genomic distances of chromosome 1 of GM12878 cell line at
10 kb indicate overdispersion [10] in a majority of the distances
(80.1%); therefore, the negative binomial distribution with an
additional free parameter is the better choice (Supplementary
Figure 2).

Xd ∼ cNBd(rd, pd) ∀d = |i – j| (7)
Gamma functions must replace the factorial in the binomial

coefficient as used by edgeR [11, 12] to make the discrete nega-
tive binomial function continuous:

(k + r – 1
k

) = (k + r – 1)!
(k!) ∗ (k + r – 1 – k)! = (k + r – 1)!

(k!) ∗ (r – 1)! (8)

The gamma function is defined for any n ∈ N:

Γ(n) = (n – 1)! (9)
Moreover, the gamma function is defined for any n ∈ R>0:

Γ(n) =
∫∞
0 xn–1 ∗ e–xdx (10)

Wolff et al. | 3

With Equation (9), the binomial coefficient can be reformu-
lated as:

(k + r – 1
k

) = Γ(k + r)
Γ(k + 1) ∗ Γ(r) (11)

which leads to the probability mass function for a ’continu-
ous negative binomial distribution’ with ∀k ∈ R>0 and ∀r ∈ R>0:

f(k, r, p) = Γ(k + r)
Γ(k + 1) ∗ Γ(r)pk(1 – p)r (12)

The p-value of observing a specific observed vs. expected
value at the genomic distance d is given by the continuous neg-
ative binomial cumulative density function:

pvalue of m∗
i,j = P(x ≥ m∗

i,j) =
1 – CDFd(m∗

i,j) if m∗
i,j > 0.

1 if i = 0. (13)

Only the observed vs. expected values with p-values smaller
than an individual threshold per genomic distance are accepted
as candidates; these candidates are further filtered to remove
candidates with too few absolute interactions. To reduce the
amount of data to fit, the user can remove observed vs. ex-
pected values below a threshold before the continuous nega-
tive binomial function is fitted. Moreover, an option to remove
candidates by their interaction height is also provided.
Loop peak detection
The entire neighborhood needs to be considered to detect en-
riched regions in a Hi-C interaction matrix. A neighborhood
is a square of size n with the candidate element in its center.
An enriched region needs to have an enriched interaction count
in relation to the elements in its neighborhood. The neighbor-
hood concept comes with a few issues: first, within a single
neighborhood, there can be multiple candidate loops detected
from different but adjacent genomic distances. Second, if a
candidate is significant for its genomic distance, it is not nec-
essarily an enriched value for its neighborhood. Third, a single
enriched interaction in a neighborhood is possible, but is likely
to be a false positive. Meaningful enriched interactions appear
in groups and form a peak in the two-dimensional space. All
candidates in one neighborhood are pooled together to handle
the first issue, only the candidate with the highest observed vs.
expected value for one neighborhood is considered a represen-
tative of its neighborhood; all others are removed. The neigh-
borhood is split into a peak and a background region to cover
the second and third issues by considering the square around
the candidate as the peak region and the neighborhood’s re-
maining elements as the background. The neighborhood is fur-
ther divided into the vertical region left and right from the peak,
the horizontal region above and below the peak, and the bottom
left corner; this is a similar approach to HiCCUPS [8]. The peak
and neighborhood square sizes are defined by their inradius
values, peakWidth and windowSize. All candidates which fulfil
the condition mean(background) ≥ mean(peak) are rejected as
a loop. This filtering step is necessary to address the situa-
tion where a candidate peak value is a singular outlier within
the neighborhood. Furthermore, the Wilcoxon rank-sum test
is used, with the H0 hypothesis that the background and peak
regions have the same distribution with significance level p. As
background, the vertical and horizontal area mentioned above,
and the bottom left corner, are independently tested against
the peak region. Note in the initial version of this publication
released on bioRxiv [9] only the peak vs. the entire neighbor-
hood region was tested. The filter steps described guarantee

that only neighborhoods with a centering peak value are con-
sidered.

Analyses

The algorithm was tested on various cell types published by
Rao 2014 [8] to verify the chromatin loop detection algorithm
results: GM12878, K562, IMR90, HUVEC, KBM7, NHEK, and
HMEC. First, the parameter setting for HiCExplorer is in-
vestigated, and second, the loop detection results of several
algorithms are compared. HiCExplorer’s implementation is
tested against the HiCCUPS algorithm from the Juicer soft-
ware, HOMER’s loop detection, chromosight, cooltools’ call-
dots, Fit-Hi-C, and Peakachu. The algorithms of GOTHIC,
cLoops, and FastHiC are not considered, due to the differing
focus of these algorithms. The detected chromatin loop loca-
tions are correlated with binned protein peak locations of the
11-zinc finger protein CTCF identified by ChIP-Seq. CTCF is a
known loop binding factor [8] although not all peaks need to
have CTCF attached [13], especially in the case of a gene or a
polycomb-mediated loop [14]. In order to test the algorithms
mentioned above, the detected chromatin loops were accepted
as true if CTCF was detected at both loci, otherwise rejected.
CTCF was matched to the GM12878, HMEC, HUVEC, K562, and
NHEK cell samples; for IMR90 and KBM7, no CTCF from the
same source is provided. A downside of ChIP-Seq is the one-
dimensionality. In addition, therefore, two-dimensional data
for CTCF, H3K27ac, SMC1, and RAD21 created by HiChIP and
ChIA-PET were tested for the GM12878 data set to investigate
how one-dimensionality affects the results.

HiCExplorer parameters

The parameters of HiCExplorer have an influence on the results
of the algorithm. First, the threshold for the observed/expected
values is negatively correlated with the number of detected
loops. A threshold of 0.5 results in 12331 loops, a threshold
of 1 in 12008, but a threshold of 1.5 and 2 results in 9147 and
6099 detected loops, respectively. The stricter the threshold,
the more accurate the loops; however, the number of detected
loops is lower. The p-value for the continuous negative bino-
mial functions has the same effect: the stricter the threshold,
the fewer loops are detected, but they become more accurate,
as measured by CTCF correlation. Choosing good values for the
peak window size and the neighborhood window size parame-
ters presents some difficulty. The peak window size should be
the smaller of the two, and the two values should not be too
similar. A peak window size of 4 and a neighborhood window
size of 5 leads to 2380 loops, but if the peak window size is
reduced to 2, 9147 loops are detected. Increasing the two pa-
rameters by the same amount, to a peak window size of 4 and
neighborhood size of 7, such that the same difference between
the values is maintained, leads to a lower number of detected
loops, 7269, with an equal level of accuracy, 0.70 vs. 0.69. The
threshold for the peak region and the neighborhood test has
an expected effect on loop detection. The stricter it is set, the
fewer loops are detected, but the accuracy increases. The dif-
ferent methods provided for computing the expected value do
not contribute to significant differences in the results. Sup-
plementary Figure 3 and Supplementary Table 6 show the ex-
pected value based on all interactions (Equation 4) has the best
accuracy (CTCF ChIP-Seq 0.71; CTCF ChIA-PET 0.64), the ex-
pected value based on the non-zero interactions (Equation 5)
has the highest number of detected loops (14144) and provides
more absolute correlated loop locations (CTCF ChIP-Seq 9352;
CTCF ChIA-PET 7808). Last, the correction for ligation events

4 | GigaScience, XXXX, Vol. 00, No. 0

5917 61493886

6485

129 275293

HiCExplorer HiCCUPS

Homer

(a) HOMER

3070 4260675

52145

2976 2164
3504

HiCExplorer HiCCUPS

chromosight

(b) Chromosight

5682

2339217

1576

364

4085
3962

HiCExplorer HiCCUPS

cooltools

(c) cooltools

5884 59644042

7025

162 460137

HiCExplorer HiCCUPS

Fit-Hi-C

(d) Fit-Hi-C

5894 62253977

11726

152 199202

HiCExplorer HiCCUPS

Peakachu

(e) Peakachu

4005 4871848

9312

2041 1553
3331

HiCExplorer HiCCUPS

Peakachu provided

(f) Peakachu (author data)
Figure 1. Intersection of detected loops of HiCExplorer, HiCCUPS and either HOMER, chromosight, cooltools, Fit-Hi-C or Peakachu. HiCExplorer, HiCCUPS, and
cooltools have the highest relative intersection. Chromosight has the most intersected loops, but detects many false positives, predicting six times more interactions.
Homer, Fit-Hi-C, and Peakachu have only a minor intersection. Last, the loop results of Peakachu, as published by the authors (subfigure f), shows a higher overlap
with the detected loops of HiCExplorer and HiCCUPS compared to the results we computed.

6 4 2 0 2 4 6 6
4

2
0

2
4

6

2.0 2.5 3.0 3.5 4.0

(a) HiCExplorer

6 4 2 0 2 4 6 6
4

2
0

2
4

6

2 3 4 5 6

(b) HiCCUPS

6 4 2 0 2 4 6 6
4

2
0

2
4

6

1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4

(c) HOMER

6 4 2 0 2 4 6 6
4

2
0

2
4

6

1.2 1.4 1.6 1.8 2.0

(d) Chromosight

6 4 2 0 2 4 6 6
4

2
0

2
4

6

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

(e) Cooltools

6 4 2 0 2 4 6 6
4

2
0

2
4

6

0 5 10 15 20 25 30 35

(f) Fit-Hi-C

6 4 2 0 2 4 6 6
4

2
0

2
4

6

0.9 1.0 1.1 1.2 1.3 1.4 1.5

(g) Peakachu
Figure 2. Aggregated loop locations of detected loops on GM12878, 10 kb resolution for the different detection algorithms. Aggregation is performed with
HiCExplorer’s hicAggregateContacts.

as proposed by the HOMER (Equation 6) software shows the
lowest accuracy (CTCF ChIP-Seq 0.58; CTCF ChIA-PET 0.48).
The results depend on the data: the fewer reads a Hi-C ma-
trix has, the sparser it is, and the fitted distributions are more
biased towards zero. In this case, interactions with a lower in-
teraction count have a lower p-value and are more likely to be
detected. However, excluding the zero contacts from the dis-
tribution can lead to a bias in the other direction; interaction
values that should be detected have a p-value which is too high
and are therefore excluded from the computation.

For other cell lines published by Rao 2014, the situation is
comparable (Supplementary Table 1). The number of detected
loops ranges between 3000 and 10000 loops. The non-zero
values and implicitly the read coverage per bin help to explain
this different detection behavior; the higher the read coverage,
the more regions are detected (see Supplementary Tables 1, 4,
and 5). The candidate selection approach via the definition of a
neighborhood makes the algorithm sensitive to the Hi-C in-
teraction matrix’s resolution. The lower the resolution, the
smaller the neighborhood needs to be. Otherwise, the chances
of having elements in the neighborhood, peaks or TADs, or
even the main diagonal, are too high. At the same time, de-
creasing the size of the neighborhood creates another issue:
the number of elements in the peak and background regions
becomes too low. This leads to non-significant test results and
to the insight that firstly, the neighborhood size should be ad-
justed to the bin resolution of the Hi-C matrix, and secondly,
that a neighborhood should contain at least around 250 - 300

elements to produce valuable results.

Comparison to state-of-the-art approaches

In the following section the detected loops by different tools
on the Hi-C interaction matrices of the cell lines GM12878,
HMEC, HUVEC, IMR90, K562, KBM7 and NHEK (by [8]) with
the Knight-Ruiz correction [2] are compared. The search dis-
tance is restricted to 8 MB if the tool allows this; the results
are post-processed for all others. The tools compared are: HiC-
Explorer, HiCCUPS, HOMER, chromosight, cooltools, Fit-Hi-C,
and Peakachu.
Detected loop comparison

The detection rate is comparable for all tools and cell lines
(Supplementary Table 1), except for chromosight and Peakachu.
Chromosight detects significantly more loops with a very low
p-value; however, as the loops’ visualization (Figure 3c, chro-
mosome 1 18.00 - 22.00 MB)) indicates, most detected loops
are in very noisy regions, and it is questionable what exactly
chromosight is detecting. This is supported by the analysis
of additional regions, see Supplementary Figure 4c (chromo-
some 4 20.55 - 22.55 MB), 6c (chromosome 1 15.00 - 18.00 MB)
and 8c (chromosome 10 90.00 - 92.00 MB). On the other hand,
Peakachu detects much fewer loops than the other algorithms
considered. After correspondence with the authors, it became
clear that the models provided were trained on ICE-corrected

Wolff et al. | 5

18.00 18.50 19.00 19.50 20.00 20.50 Mbp 21.00
1

18.00

18.50

19.00

19.50

20.00

20.50 Mbp

21.00

1

101

102

103

(a) HiCExplorer
18.00 18.50 19.00 19.50 20.00 20.50 Mbp 21.00

1

18.00

18.50

19.00

19.50

20.00

20.50 Mbp

21.00

1

101

102

103

(b) HiCCUPS
18.00 18.50 19.00 19.50 20.00 20.50 Mbp 21.00

1

18.00

18.50

19.00

19.50

20.00

20.50 Mbp

21.00

1

101

102

103

(c) chromosight

18.00 18.50 19.00 19.50 20.00 20.50 Mbp 21.00
1

18.00

18.50

19.00

19.50

20.00

20.50 Mbp

21.00

1

101

102

103

(d) cooltools
18.00 18.50 19.00 19.50 20.00 20.50 Mbp 21.00

1

18.00

18.50

19.00

19.50

20.00

20.50 Mbp

21.00

1

101

102

103

(e) Peakachu
18.00 18.50 19.00 19.50 20.00 20.50 21.00 21.50 Mbp 22.00

1

18.00

18.50

19.00

19.50

20.00

20.50

21.00

21.50 Mbp

22.00

1

101

102

103

(f) Peakachu
Figure 3. Plot of chr1 18 - 22 Mb on GM12878, with the detected loops highlighted from each software. HiCExplorer, HiCCUPS, and cooltools show similar results.
Chromosight detects many loops in noisy regions and lacks specificity. The four loops of Peakachu show a general issue of this algorithm: The first two loops (18
Mb region) are in a region without enrichment, and the two others slightly miss the enriched interactions by a few kilobases. HOMER and Fit-Hi-C do not detect
any loop in the area. Plots are produced using HiCExplorer hicPlotMatrix.

matrices, whereas we have used Knight-Ruiz corrected matri-
ces. For this reason, the loops detected by Peakachu, as pub-
lished by the authors, have also been taken into considera-
tion. Nonetheless, a detailed analysis of loop loci shows that
Peakachu misses important loops, regardless of whether the
KR data or the author’s own results are considered. For exam-
ple, the region chromosome 4 20.55 - 22.55 Mb contains four
visible loops: Peakachu on KR detects two of them, and misses
one completely. Additionally, two locations are detected that
slightly miss a loop (Supplementary Figure 4e). The Peakachu
results provided by the authors miss two loops and detect the
two others successfully (Supplementary Figure 4f). Supple-
mentary Figure 6e shows another issue of Peakachu on KR
data. Many loops are detected at the border of a faulty region;
it seems the machine learning approach did not have access
to this kind of data in training. The data provided by the au-
thors of Peakachu do not have this kind of issue, but overall,
while the provided data contain more correct locations, the de-
tection sometimes detects too many loops, for example, in the
region chromosome 10 90 - 92 Mb (Supplementary Material 8f).
The third problematic tool is Fit-Hi-C. The number of detected
loops is at first sight comparable to the other tools; the loci-
specific analysis cannot confirm this. The regions chromosome
1 15 - 22 MB (Figure 3 and Supplementary Figure 6h), chromo-
some 4 20.55 - 22.55 MB (Supplementary Figure 4h) or chro-
mosome 10 90.00 - 92.00 MB have no loops detected by Fit-Hi-
C, while the other tools are able to detect loops in these regions.
In comparison, the regions where Fit-Hi-C does detect loops
are eye-opening. The regions chromosome 1 13.00 - 14.00 MB
(Supplementary Figure 5) and chromosome 1 142.00 - 144.00
MB contain mostly very sparse or even faulty Hi-C data. Fit-Hi-
C detects an overwhelming amount of enriched pixels in these
regions and returns these as loops. While it might be true that

these pixels are enriched in a local context, they are far from
being a loop. The pattern of the accumulated loop locations
(Figure 2) confirms that the detected pattern is usually a single
enriched interaction. The other tools detect only very few or no
loops in the regions chromosome 1 13.00 - 14.00 MB and chro-
mosome 1 142.00 - 144.00 Mb. The intersection between the
detected peaks of HiCExplorer, HiCCUPS, HOMER, chromosight,
cooltools, Fit-Hi-C, and Peakachu is quite different (Figure 1).
HiCExplorer, with a search distance of 8 Mb, shares ∼ 46%
of its loops with HiCCUPS. HiCExplorer has the highest inter-
section of detected loops with chromosight, but chromosight
also provides the highest number of detected loops. The inter-
section of detected loops with cooltools is similar to HiCCUPS;
the number of intersecting loops with HOMER, Fit-Hi-C, and
Peakachu is lower. HiCCUPS and cooltools show the highest
intersecting numbers, chromosight profits from its high detec-
tion rate, while HOMER shares only a few hundred loops with
HiCCUPS, similar to its intersection with HiCExplorer. The in-
tersection of Fit-Hi-C and Peakachu with HiCExplorer and HiC-
CUPS is very low, and the results of the Peakachu publication
cannot be confirmed. Concerning Peakachu, it can be assumed
that the performance is directly connected to the trained mod-
els and its inadequate generalization ability. In the publication
describing Peakachu, the authors write they have used a proba-
bility threshold for a pixel between 90% and 97%. However, to
detect a similar number of loops to have comparability, we had
to use a score of 68%. For Fit-Hi-C, the authors of Peakachu
have used a threshold of 10–5, while we used 0.01 to enable
detection of a few thousand loops.
Loop location correlation to protein locations

The detected loops are correlated with CTCF and cohesin factors
(Supplementary Table 2) to investigate the amount of inter-

6 | GigaScience, XXXX, Vol. 00, No. 0

secting locations. This correlation is computed because it was
shown that at the anchor points of loops, the proteins CTCF and
cohesin are involved as loop binding factors [8, 14]. However,
the loop structures representing gene or polycomb-mediated
loops do not have CTCF at their anchor points, and the corre-
lation can only be as good as the quality of the ChIP-Seq data
from which it is derived. This measurement is, therefore, only
an indicator of the accuracy of the detection.

The number of loops detected by HiCExplorer are compa-
rable to HiCCUPS. On the GM12878 cell line and correlated to
ChIA-PET based CTCF locations, HiCExplorer detects a similar
amount of loops compared to HiCCUPS (6540 vs. 6564) but is
more specific (0.64 vs. 0.61). Cooltools (5467 loops) and the
loops provided by the Peakachu authors (8174 loops) have a
similar relative value of 54% and 50%. Based on our computa-
tions, the loops detected with Peakachu have a match at only
686 loop locations and a relative value of 5%. The correlation
for the other three tools is also low. Chromosight has 7205
loops correlated, a share of only 11%, Homer has 1349 loops
and a share of 18%, and last, Fit-Hi-C has only 163 correlated
loop locations with a share of 2%.

The correlation of locations for ChIA-PET RAD21, a cohesin
subfactor, has overall significantly lower correlations. HiC-
Explorer has 2577 loops (25%), HiCCUPS 2385 loops (22%),
cooltools 1781 loops (17%), and the loop locations provided by
the Peakachu authors 2554 (15%). All other tools have a mea-
ger share of correlated locations of < 3%. As a second source of
information, data from HiChIP experiments is also considered.
The correlation values are overall much higher: for the histone
H3K27ac, the highest correlation is achieved by the author-
provided Peakachu results with 96%, followed by HiCCUPS
with 92%, cooltools with 85% and HiCExplorer reaching only
fourth place with 86%. The results of the other tools are also
much higher than the results of CTCF and RAD21; for example,
Fit-Hi-C had only 2% matches with RAD21, but has 29% with
H3K27ac. The correlation based on SMC1, a cohesin subfac-
tor, created with HiChIP indicates the same: again, the author-
provided Peakachu results are the highest with 99% followed
by HiCCUPS (96%), cooltools (94%), HiCExplorer (91%) and
Homer (90%). The correlation of the low performing Fit-Hi-
C 2 is 34% higher compared to other proteins, but is also low
compared to all other tools. Last, the proportions of the de-
tected locations of the different tools were tested for significant
differences. A two-sided proportion z-score test was used, and
given the H0 ’the proportion is equal’, the H0 was rejected for
all datasets and tools, under a p-value of 0.05 (Supplementary
Table 3).
Averaged loop structure comparison
The accumulated contacts of all detected loop locations on
GM12878, displayed as a 3D plot in Figure 2, shows that all al-
gorithms detect enriched regions, but the neighborhood struc-
ture is very different. HiCExplorer detects a sharp peak with
an enriched direct neighborhood, while HiCCUPS and Fit-Hi-C
have a very sharp peak with almost no neighborhood signal.
HOMER and Chromosight detect broader peaks with a highly
enriched neighborhood, and cooltools has a sharp peak and
a neighborhood structure that is slightly more enriched than
HiCCUPS and slightly less than HiCExplorer. Finally, Peakachu
detects a sharp peak and has a neighborhood plateau on one
side, similar to the other algorithms, but a sharp cliff on the
other side. The visualizations indicate that a broad peak detec-
tion as provided by HOMER and Chromosight, or a very sharp
peak with no neighborhood signal, have a low correlation to
CTCF-based loops. The visualization of Peakachu’s loop loca-
tions with the sharp cliff can be interpreted as locations with a
TAD border. This can be explained in the context of a learned
model based on CTCF locations, because CTCF is present at both

loop locations and TAD boundaries.
Runtime and memory usage
The runtime and memory performance is a crucial factor in de-
termining the quality of an algorithm, as well as its implemen-
tation. The performance was measured on the Hi-C interac-
tion matrices of the cell lines by Rao [8] discussed above, with
a 10 kb resolution for the tools HiCExplorer, HiCCUPS, Homer,
chromosight, cooltools, Fit-Hi-C 2, and Peakachu. The mea-
sures was computed on an AMD 3700X with 128 GB memory
and an Nvidia GTX 1070. For a fair comparison, the CPU im-
plementations are considered, but for completeness, it should
be mentioned that the GPU implementation of HiCCUPS with
the search space restriction mode of 8 MB active was over all
datasets the fastest approach.

On the 8 Mb search distance range, HiCExplorer is the
fastest CPU implementation, except for GM12878 cell lines
where the CPU-based version of HiCCUPS is faster. HiCExplorer
is ∼ 44% faster than chromosight (4:25 min vs. 6:22 min) on
GM12878 with a 8 Mb search distance, and uses only 6.7 GB
memory, while chromosight consumes 39 GB. Moreover, HiC-
Explorer is two times faster than cooltools if only loop detection
is considered; if the necessary computation of expected values
is added, it is almost 3.5 times faster (Supplementary Table 8).
When considering the somewhat theoretical measure of single-
core performance, Chromosight is the fastest algorithm (Sup-
plementary Table 9); nonetheless, modern CPUs support up to
64 cores / 128 threads, and data analysis software should use
the offered resources as well as possible. For this reason, HiC-
Explorers’ hicDetectLoop supports parallelization by chromo-
somes as well as intra-chromosomal parallelization. The data
structure allows this: each chromosome can be computed in-
dependently, as can each genomic distance normalization, dis-
tribution fitting, and p-value computation. For example, if
23 threads are used to compute each chromosome in parallel,
and for each chromosome thread, ten other threads compute
all intra-chromosomal computations in parallel, a total of 230
parallel threads are used. Not all threads are used at the same
time; therefore, a good utilization is achieved. However, mod-
ern CPUs with core/thread counts of 64 / 128 can be fully uti-
lized with this approach. Two of the algorithms, Fit-Hi-C and
Peakachu, provide only a single-core implementation. Their
runtimes are by far the slowest, taking 4:46 hours and 7:03
hours on the GM12878 data, and consume at the same time a
high amount of memory. HOMER is, in all scenarios, the third
slowest algorithm and also consumes the most memory. How-
ever, HOMER is also the only algorithm without any search
space restriction parameter, so that all searches are performed
genome-wide. This has the side effect that, for example, the
GM12878 dataset could only be computed using a single core,
because the memory consumption was already around 100 GB.
The approach chosen by the developers of HOMER to not sup-
port any binary file format to store and access the Hi-C inter-
action matrix, such as Juicer’s hic or the cooler [4] file format
supported by many of the other investigated tools, results in a
computation based on text files and raw data, and contributes,
apart from the lack of a search space restriction, to the very
poor runtime and memory performance.

Discussion

The search space of an algorithm is the dominant factor de-
termining its accuracy and performance. Therefore, pruning it
should be the primary goal when optimizing newly designed
algorithms. In theory, brute force solutions which apply no
restrictions to the search space, like HiCCUPS, can detect all
possible enriched regions, but the result is an implementation

Wolff et al. | 7

with very demanding hardware requirements. HiCCUPS solves
this by utilizing massively parallel computational resources via
GPGPU. On the other hand, HOMER also applies no limitations
to the search space, yet detects a lower number of loops, and
those which are detected have a significantly lower correlation
over all samples to CTCF localization. HOMER does support a
parallel computation per chromosome, like HiCExplorer but is
significantly slower than all other solutions and uses signifi-
cantly more memory per core. HOMER’s poor runtime perfor-
mance can be explained by the fact that computation is per-
formed on raw data, while all other approaches use precom-
puted interaction matrices. Chromosight is a fast detection ap-
proach and provides the fastest single-core performance; how-
ever, it lacks specificity and detects many loops that should
be considered noise, even though these loops may be provided
with a high significance. Cooltools, with its reimplementation
of the HiCCUPS approach, provides a genome distance search
which makes it faster and more flexible. The results are good,
but it is unclear why they are not more similar to Juicer’s
HiCCUPS results, given that the same algorithm is used. An
overview of the properties of all algorithms is provided in Sup-
plementary Table 10.

The divergence between the Peakachu results based on our
computations and the data published by the authors is high.
Given that the machine learning-based model of Peakachu is
trained using the locations of certain proteins, it is unsurpris-
ing that the H3K27ac and SMC1 locations have very high corre-
lation values. Our understanding is that the published trained
model does not detect loop locations themselves, but rather the
locations of SMC1 and H3K27ac. Moreover, the poor perfor-
mance on the KR corrected matrix used indicates heavy over-
fitting and a poor generalization ability onto different kinds of
input matrices. Another explanation could be the lack of pre-
processing to normalize the input data. The idea of training a
model using the locations of proteins known to be correlated
with loops is sensible, but is limited by the fact that not all loop
locations have CTCF and cohesin at their anchors. Overall, the
model is an interesting approach; nonetheless, the published
model requires a more diverse training data to improve perfor-
mance on varying input datasets.

Furthermore, it could be shown that the sparsity and thus
the read coverage of a Hi-C interaction matrix significantly
influences the detection of peaks in their neighborhood. The
sparser a Hi-C interaction matrix is, the more likely that the
possible valid regions detected by the continuous negative bi-
nomial distribution filtering are rejected by the Wilcoxon rank-
sum test. The large number of differences between the de-
tected loops and the high correlation rates to CTCF can be ex-
plained in multiple ways. The correlation to CTCF has its roots
in biology. Not all loops have CTCF as a binding protein at
its anchors; gene-loops or polycomb-mediated loops lack it.
All the algorithms detect enrichments in the Hi-C data, which
are interpreted as loops, but may also have other explanations.
The enrichments can also be noise in the data, or interactions
which are unrelated to CTCF. Secondly, the Hi-C data is cre-
ated with in-situ Hi-C and has a higher noise level than newer
approaches like Arima Hi-C3. Detections of loops in noisy ar-
eas is responsible for the low intersection values for the pre-
dictions of the competing algorithms, in particular for chro-
mosight, which detects more noise than loops.

3 https://arimagenomics.com/

Availability of source code and requirements

HiCExplorer is licensed under GPLv3 and is available on
Github (https://github.com/deeptools/HiCExplorer/) or as a
conda package in the Bioconda channel [15]. HiCExplorer is
implemented in Python 3.6, 3.7. and 3.8 for Linux and macOS.

Availability of supporting data and materials

Hi-C data: GSE63525; Rao et al. [8]. CTCF for: Gm12878 from
GSM935611; Hmec from GSM749753; Huvec from GSM749749;
K562 from GSM733719 and Nhek from GSM733636. CTCF
ChIA-PET (GSM1872886); H3K27ac HiChIP (GSE101498), SMC1
HiChIP (GSE80820), and RAD21 ChIA-PET (GSM1436265). Re-
sult files are available via DOI: 10.5281/zenodo.5648500

Declarations

Competing Interests

The author(s) declare that they have no competing interests.

Funding

German Federal Ministry of Education and Research [031 A538A
de.NBI-RBC awarded to R.B.]; German Federal Ministry of
Education and Research [031 L0101C de.NBI-epi awarded to
B.G.]. R.B. was supported by the German Research Foundation
(DFG) under Germany’s Excellence Strategy (CIBSS - EXC-2189
- Project ID 390939984).

Author’s Contributions

JW: Designed and implemented the presented algorithm and
wrote the manuscript. RB: contributed to the manuscript. BG:
contributed to the manuscript.

Acknowledgements

We thank Simon Bray and Anup Kumar for proofreading the
manuscript.

References

1. Imakaev M, Fudenberg G, McCord RP, Naumova N,
Goloborodko A, Lajoie BR, et al. Iterative correction
of Hi-C data reveals hallmarks of chromosome orga-
nization. Nature Methods 2012 sep;9(10):999–1003.
http://www.nature.com/doifinder/10.1038/nmeth.2148,
[PubMed:22941365] [PubMed Central:PMC3816492]
[doi:10.1038/nmeth.2148].

2. Knight PA, Ruiz D. A fast algorithm for matrix balancing.
IMA Journal of Numerical Analysis 2013;33(3):1029–1047.
[doi:10.1093/imanum/drs019].

3. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo
P, et al. Simple Combinations of Lineage-Determining
Transcription Factors Prime cis-Regulatory Elements
Required for Macrophage and B Cell Identities. Molecular
Cell 2010 may;38(4):576–589. https://www.sciencedirect.
com/science/article/pii/S1097276510003667?via{%}3Dihub,
[PubMed:20513432] [PubMed Central:PMC2898526]
[doi:10.1016/j.molcel.2010.05.004].

4. Abdennur N, Mirny LA. Cooler: scalable storage for Hi-C

http://www.nature.com/doifinder/10.1038/nmeth.2148
http://www.ncbi.nlm.nih.gov/pubmed/22941365
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3816492
http://dx.doi.org/10.1038/nmeth.2148
https://doi.org/10.1093/imanum/drs019
https://www.sciencedirect.com/science/article/pii/S1097276510003667?via{%}3Dihub
https://www.sciencedirect.com/science/article/pii/S1097276510003667?via{%}3Dihub
http://www.ncbi.nlm.nih.gov/pubmed/20513432
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2898526
http://dx.doi.org/10.1016/j.molcel.2010.05.004

8 | GigaScience, XXXX, Vol. 00, No. 0

data and other genomically labeled arrays. Bioinformatics
2020;36(1):311–316.

5. Matthey-Doret C, Baudry L, Breuer A, Montagne R,
Guiglielmoni N, Scolari V, et al. Computer vision for pattern
detection in chromosome contact maps. Nature communi-
cations 2020;11(1):1–11.

6. Kaul A, Bhattacharyya S, Ay F. Identifying statistically sig-
nificant chromatin contacts from Hi-C data with FitHiC2.
Nature protocols 2020;15(3):991–1012.

7. Salameh TJ, Wang X, Song F, Zhang B, Wright SM, Khun-
sriraksakul C, et al. A supervised learning framework for
chromatin loop detection in genome-wide contact maps.
Nature communications 2020;11(1):1–12.

8. Rao SSP, Huntley MH, Durand NC, Stamenova EK. A 3D
Map of the Human Genome at Kilobase Resolution Reveals
Principles of Chromatin Looping. Cell 2014;159(7):1665–
1680. http://dx.doi.org/10.1016/j.cell.2014.11.021,
[PubMed:25497547] [PubMed Central:PMC5635824]
[doi:10.1016/j.cell.2014.11.021].

9. Wolff J, Backofen R, Gruening B. Loop detection using Hi-C
data with HiCExplorer. bioRxiv 2020;.

10. Cameron AC, Trivedi PK. Regression-based tests for
overdispersion in the Poisson model. Journal of economet-
rics 1990;46(3):347–364.

11. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconduc-
tor package for differential expression analysis of digital
gene expression data. Bioinformatics 2010;26(1):139–140.

12. McCarthy DJ, Chen Y, Smyth GK. Differential expres-
sion analysis of multifactor RNA-Seq experiments with
respect to biological variation. Nucleic acids research
2012;40(10):4288–4297.

13. Andrey G, Schöpflin R, Jerković I, Heinrich V, Ibrahim DM,
Paliou C, et al. Characterization of hundreds of regula-
tory landscapes in developing limbs reveals two regimes
of chromatin folding. Genome research 2017;27(2):223–
233. [PubMed:27923844] [PubMed Central:PMC5287228]
[doi:10.1101/gr.213066.116].

14. Bonev B, Cavalli G. Organization and function of the
3D genome. Nature Reviews Genetics 2016;17(11):661.
[PubMed:28704353] [doi:10.1038/nrg.2016.147].

15. Grüning B, Dale R, Sjödin A, Chapman BA, Rowe J,
Tomkins-Tinch CH, et al. Bioconda: sustainable and
comprehensive software distribution for the life sciences.
Nature methods 2018;15(7):475. [PubMed:29967506]
[doi:10.1038/s41592-018-0046-7].

http://dx.doi.org/10.1016/j.cell.2014.11.021
http://www.ncbi.nlm.nih.gov/pubmed/25497547
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5635824/
http://dx.doi.org/10.1016/j.cell.2014.11.021
http://www.ncbi.nlm.nih.gov/pubmed/27923844
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5287228
https://doi.org/10.1101/gr.213066.116
http://www.ncbi.nlm.nih.gov/pubmed/28704353
http://dx.doi.org/10.1038/nrg.2016.147
http://www.ncbi.nlm.nih.gov/pubmed/29967506
https://doi.org/10.1038/s41592-018-0046-7

Manuscript

Click here to access/download
Supplementary Material

supplementary_material_loop.pdf

https://www.editorialmanager.com/giga/download.aspx?id=122744&guid=eb9b5dc3-750c-4ce4-81d1-4f688ba6f682&scheme=1

