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Abstract
Background: Chromatin loops are an essential factor in the structural organization of the genome; however, their
detection in Hi-C interaction matrices is a challenging and compute-intensive task. The approach presented here,
integrated into the HiCExplorer software, shows a chromatin loop detection algorithm that applies a strict candidate
selection based on continuous negative binomial distributions and performs a Wilcoxon rank-sum test to detect enriched
Hi-C interactions. Results: HiCExplorer’s loop detection has a high detection rate and accuracy. It is the fastest available
CPU implementation and utilizes all threads offered by modern multi-core platforms. Conclusions: HiCExplorer’s
method to detect loops by using a continuous negative binomial function combined with the donut approach from
HiCCUPS leads to reliable and fast computation of loops. All the loop-calling algorithms investigated provide differing
results, which intersect by ∼ 50% at most. The tested in-situ Hi-C data contains a large amount of noise; achieving
better agreement between loop calling algorithms will require cleaner Hi-C data and therefore future improvements to
the experimental methods which generate the data.
Key words: Hi-C, Hi-C loop detection, DNA loops

Introduction

Many algorithms are currently available for loop detection in
Hi-C data. HiCCUPS uses a donut algorithm, which considers
all elements of a Hi-C interaction matrix as peaks and tests
if the region around them is significantly different from the
neighboring interactions. HiCCUPS is part of the software
Juicer1, and the implementation requires a general-purpose
GPU (GPGPU), which imposes a barrier for users without ac-
cess to Nvidia GPUs. However, an experimental CPU-based
implementation has also been released. Algorithms such as
iterative correction and eigenvector decomposition (ICE) [1], or
Knight-Ruiz (KR) [2] are widely used in Hi-C data analysis for
balancing Hi-C matrices, but the loop detection algorithm of
HiCCUPS uses a different approach. HiCCUPS employs a Pois-
son model, which is a distribution for discrete data, to detect

1 https://github.com/aidenlab/juicer

regions of interest. After balancing a Hi-C interaction matrix,
the data is no longer discrete, but continuous. In order to work
with the Poisson distribution, the balancing of the values is re-
verted. This procedure is methodologically questionable, as it
involves manipulation of the data to fit the requirements of a
particular distribution, rather than fitting on the distribution
which is most probable or suitable. Moreover, the Poisson dis-
tribution on the raw Hi-C data tends to have an overdispersion,
which suggests Poisson is not the best choice. HOMER [3] cre-
ates a relative contact matrix per chromosome and scans these
for locally dense regions. HOMER does not support standard
file formats for Hi-C matrices like cool [4], which forces the
user to create all data from scratch, a time-consuming pro-
cess and a potential source of errors and inaccuracies. Chro-
mosight [5] detects loops based on a pattern-matching algo-
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rithm. Cooltools2 uses a reimplementation of the HiCCUPS al-
gorithm; Fit-Hi-C [6] detects significant Hi-C contacts and
provides a merging algorithm to detect DNA loops. Peakachu
[7] uses a random forest approach trained on CTCF or H3K27ac
data. Chromosight, cooltools, Peakachu, and HiCExplorer sup-
port the cooler file format. HOMER, Fit-Hi-C, and Peakachu do
not utilize parallelization techniques to improve runtime, run-
ning only on a single core.

Here we present an algorithm that can detect Hi-C loops. It
is based on a continuous negative binomial distribution and is
highly parallelized, assigning one thread per chromosome and
parallelizing further using multiple threads within a chromo-
some. This approach makes full use of the resources available
in the last generation of multi-core CPU platforms.

Methods

According to Rao [8], most of the anchor points of detected
loops lie within a range of 2 Mb. This insight can be used to
decrease the search space in a biologically meaningful way and
also to reduce the computational burden, while at the same
time maintaining a low memory footprint. Moreover, interac-
tion pairs with genomic distances which are too close to each
other, corresponding to points in the Hi-C matrix close to the
main diagonal, already have high interaction counts. It is, in
many cases, unlikely that these pairs contribute enrichments
in the context of their neighborhood. The high interaction
count can explain this observation between two loci; they are
closer in one-dimensional space and close to the main diag-
onal. Specialized algorithms like FastHiC should be used to
detect intra-TAD enrichments. A general problem for Hi-C
interactions with few absolute counts is determining whether
their interactions are true interactions or noise. These artifacts
cannot be corrected by the commonly-used Hi-C interaction
matrix correction algorithms such as iterative correction and
eigenvector decomposition (ICE) [1], or Knight-Ruiz (KR) [2].
These algorithms perform a matrix balancing and correct for
an uneven distribution of the interaction counts per genomic
position. The correction algorithms are unable to distinguish
and therefore filter true interactions from noise. All values be-
low a given threshold are discarded, and noise is removed to
account for these known problems in the Hi-C interaction data.

Algorithm

A strict candidate selection is critical to reducing the computa-
tional complexity of the loop detection algorithm. A maximum
loop size can be defined to restrict the search space to take the
previously-mentioned observation from Rao [8] into account.
In Hi-C, the primary data structure is the symmetrical n × n
interaction count matrix (ICM):

ICM =

ic00 · · · ic0n... · · ·

...
icn0 · · · icnn

 (1)

The relative genomic distance is given by:

d = |i – j| for ici,j (2)
where ici,j is an element of Hi-C interaction matrix ICM.

2 https://github.com/open2c/cooltools

As a first step, the interaction matrix ICM is transferred to
an observed vs. expected matrix M∗ to normalize the differing
interaction heights per genomic distance. Each element m of
M∗ is defined as:

m∗
i,j = icmi,jexpd

(3)

Different methods are offered to adjust differences in the
samples introduced. Hi-C is, in comparison to techniques like
RNA-seq, a two-dimensional approach; all reads are chimeric.
The term chimeric in the context of Hi-C should be understood
as reads which are ligated from two different locations in the
genome. This is achieved by fixation of spatially close DNA
fragments with formaldehyde, followed by digestion and liga-
tion to create chimeric reads. These events should, in theory,
happen uniformly in the whole genome; however, whether this
is the case depends on the particular sample and genome stud-
ied. Therefore, three different ways to compute the expected
value are offered. Note that the observed/expected matrix nor-
malization step was not included in the initial version of this
publication released on bioRxiv [9], but was described in the
authors dissertation [10].

First, only non-zero contacts are considered:

exp_nonzerod =
∑ ici,j

|non – zero interactions d| (4)

Second, all contacts are considered:

exp_with_zerod =
∑ ici,j

|all interactions d| (5)

And third, similar to HOMER’s normalization, a correction
for different occurring ligation events is offered:

exp_ligationd = exp_nonzeroi,j ∗
∑(rowICM(i)) ∗∑(rowICM(j))∑(ICM) (6)

Candidate selection per genomic distance

To detect enriched Hi-C interactions, the observed/expected
normalized Hi-C data is fitted per genomic distance d indepen-
dently to a continuous negative binomial distribution. Supple-
mentary Figure 1 shows the value density distribution of differ-
ent genomic distances and provides evidence for the chosen dis-
tribution assumption. The negative binomial function, rather
than the Poisson distribution, is used because the raw data of
the genomic distances of chromosome 1 of GM12878 cell line at
10 kb indicate overdispersion [11] in a majority of the distances
(80.1%); therefore, the negative binomial distribution with an
additional free parameter is the better choice (Supplementary
Figure 2).

Xd ∼ cNBd(rd, pd) ∀d = |i – j| (7)
Gamma functions must replace the factorial in the binomial

coefficient as used by edgeR [12, 13] to make the discrete nega-
tive binomial function continuous:

(k + r – 1
k

) = (k + r – 1)!
(k!) ∗ (k + r – 1 – k)! = (k + r – 1)!

(k!) ∗ (r – 1)! (8)

The gamma function is defined for any n ∈ N:

Γ(n) = (n – 1)! (9)
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Moreover, the gamma function is defined for any n ∈ R>0:
Γ(n) =

∫∞
0 xn–1 ∗ e–xdx (10)

With Equation (9), the binomial coefficient can be reformu-
lated as:

(k + r – 1
k

) = Γ(k + r)
Γ(k + 1) ∗ Γ(r) (11)

which leads to the probability mass function for a ’continu-
ous negative binomial distribution’ with ∀k ∈ R>0 and ∀r ∈ R>0:

f(k, r, p) = Γ(k + r)
Γ(k + 1) ∗ Γ(r)pk(1 – p)r (12)

The p-value of observing a specific observed vs. expected
value at the genomic distance d is given by the continuous neg-
ative binomial cumulative density function:

pvalue of m∗
i,j = P(x ≥ m∗

i,j) =
1 – CDFd(m∗

i,j) if m∗
i,j > 0.

1 if i = 0. (13)

Only the observed vs. expected values with p-values smaller
than an individual threshold per genomic distance are accepted
as candidates; these candidates are further filtered to remove
candidates with too few absolute interactions. To reduce the
amount of data to fit, the user can remove observed vs. ex-
pected values below a threshold before the continuous nega-
tive binomial function is fitted. Moreover, an option to remove
candidates by their interaction height is also provided.
Loop peak detection
The entire neighborhood needs to be considered to detect en-
riched regions in a Hi-C interaction matrix. A neighborhood
is a square of size n with the candidate element in its center.
An enriched region needs to have an enriched interaction count
in relation to the elements in its neighborhood. The neighbor-
hood concept comes with a few issues: first, within a single
neighborhood, there can be multiple candidate loops detected
from different but adjacent genomic distances. Second, if a
candidate is significant for its genomic distance, it is not nec-
essarily an enriched value for its neighborhood. Third, a single
enriched interaction in a neighborhood is possible, but is likely
to be a false positive. Meaningful enriched interactions appear
in groups and form a peak in the two-dimensional space. All
candidates in one neighborhood are pooled together to handle
the first issue, only the candidate with the highest observed vs.
expected value for one neighborhood is considered a represen-
tative of its neighborhood; all others are removed. The neigh-
borhood is split into a peak and a background region to cover
the second and third issues by considering the square around
the candidate as the peak region and the neighborhood’s re-
maining elements as the background. The neighborhood is fur-
ther divided into the vertical region left and right from the peak,
the horizontal region above and below the peak, and the bottom
left corner; this is a similar approach to HiCCUPS [8]. The peak
and neighborhood square sizes are defined by their inradius
values, peakWidth and windowSize. All candidates which fulfil
the condition mean(background) ≥ mean(peak) are rejected as
a loop. This filtering step is necessary to address the situa-
tion where a candidate peak value is a singular outlier within
the neighborhood. Furthermore, the Wilcoxon rank-sum test
is used, with the H0 hypothesis that the background and peak
regions have the same distribution with significance level p. As

background, the vertical and horizontal area mentioned above,
and the bottom left corner, are independently tested against
the peak region. Note in the initial version of this publication
released on bioRxiv [9] only the peak vs. the entire neighbor-
hood region was tested. The filter steps described guarantee
that only neighborhoods with a centering peak value are con-
sidered.

Analyses

The algorithm was tested on various cell types published by
Rao 2014 [8] to verify the chromatin loop detection algorithm
results: GM12878, K562, IMR90, HUVEC, KBM7, NHEK, and
HMEC. First, the parameter setting for HiCExplorer is in-
vestigated, and second, the loop detection results of several
algorithms are compared. HiCExplorer’s implementation is
tested against the HiCCUPS algorithm from the Juicer soft-
ware, HOMER’s loop detection, chromosight, cooltools’ call-
dots, Fit-Hi-C, and Peakachu. The algorithms of GOTHIC,
cLoops, and FastHiC are not considered, due to the differing
focus of these algorithms. The detected chromatin loop loca-
tions are correlated with binned protein peak locations of the
11-zinc finger protein CTCF identified by ChIP-Seq. CTCF is a
known loop binding factor [8] although not all peaks need to
have CTCF attached [14], especially in the case of a gene or a
polycomb-mediated loop [15]. In order to test the algorithms
mentioned above, the detected chromatin loops were accepted
as true if CTCF was detected at both loci, otherwise rejected.
CTCF was matched to the GM12878, HMEC, HUVEC, K562, and
NHEK cell samples; for IMR90 and KBM7, no CTCF from the
same source is provided. A downside of ChIP-Seq is the one-
dimensionality. In addition, therefore, two-dimensional data
for CTCF, H3K27ac, SMC1, and RAD21 created by HiChIP and
ChIA-PET were tested for the GM12878 data set to investigate
how one-dimensionality affects the results.

HiCExplorer parameters

The parameters of HiCExplorer have an influence on the results
of the algorithm. First, the threshold for the observed/expected
values is negatively correlated with the number of detected
loops. A threshold of 0.5 results in 12331 loops, a threshold
of 1 in 12008, but a threshold of 1.5 and 2 results in 9147 and
6099 detected loops, respectively. The stricter the threshold,
the more accurate the loops; however, the number of detected
loops is lower. The p-value for the continuous negative bino-
mial functions has the same effect: the stricter the threshold,
the fewer loops are detected, but they become more accurate,
as measured by CTCF correlation. Choosing good values for the
peak window size and the neighborhood window size parame-
ters presents some difficulty. The peak window size should be
the smaller of the two, and the two values should not be too
similar. A peak window size of 4 and a neighborhood window
size of 5 leads to 2380 loops, but if the peak window size is
reduced to 2, 9147 loops are detected. Increasing the two pa-
rameters by the same amount, to a peak window size of 4 and
neighborhood size of 7, such that the same difference between
the values is maintained, leads to a lower number of detected
loops, 7269, with an equal level of accuracy, 0.70 vs. 0.69. The
threshold for the peak region and the neighborhood test has
an expected effect on loop detection. The stricter it is set, the
fewer loops are detected, but the accuracy increases. The dif-
ferent methods provided for computing the expected value do
not contribute to significant differences in the results. Sup-
plementary Figure 3 and Supplementary Table 6 show the ex-
pected value based on all interactions (Equation 4) has the best
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Figure 1. Intersection of detected loops of HiCExplorer, HiCCUPS and either HOMER, chromosight, cooltools, Fit-Hi-C or Peakachu. HiCExplorer, HiCCUPS, and
cooltools have the highest relative intersection. Chromosight has the most intersected loops, but detects many false positives, predicting six times more interactions.
Homer, Fit-Hi-C, and Peakachu have only a minor intersection. Last, the loop results of Peakachu, as published by the authors (subfigure f), shows a higher overlap
with the detected loops of HiCExplorer and HiCCUPS compared to the results we computed.
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Figure 2. Aggregated loop locations of detected loops on GM12878, 10 kb resolution for the different detection algorithms. Aggregation is performed with
HiCExplorer’s hicAggregateContacts.

accuracy (CTCF ChIP-Seq 0.71; CTCF ChIA-PET 0.64), the ex-
pected value based on the non-zero interactions (Equation 5)
has the highest number of detected loops (14144) and provides
more absolute correlated loop locations (CTCF ChIP-Seq 9352;
CTCF ChIA-PET 7808). Last, the correction for ligation events
as proposed by the HOMER (Equation 6) software shows the
lowest accuracy (CTCF ChIP-Seq 0.58; CTCF ChIA-PET 0.48).
The results depend on the data: the fewer reads a Hi-C ma-
trix has, the sparser it is, and the fitted distributions are more
biased towards zero. In this case, interactions with a lower in-
teraction count have a lower p-value and are more likely to be
detected. However, excluding the zero contacts from the dis-
tribution can lead to a bias in the other direction; interaction
values that should be detected have a p-value which is too high
and are therefore excluded from the computation.

For other cell lines published by Rao 2014, the situation is
comparable (Supplementary Table 1). The number of detected
loops ranges between 3000 and 10000 loops. The non-zero
values and implicitly the read coverage per bin help to explain
this different detection behavior; the higher the read coverage,
the more regions are detected (see Supplementary Tables 1, 4,
and 5). The candidate selection approach via the definition of a
neighborhood makes the algorithm sensitive to the Hi-C in-
teraction matrix’s resolution. The lower the resolution, the
smaller the neighborhood needs to be. Otherwise, the chances
of having elements in the neighborhood, peaks or TADs, or
even the main diagonal, are too high. At the same time, de-
creasing the size of the neighborhood creates another issue:

the number of elements in the peak and background regions
becomes too low. This leads to non-significant test results and
to the insight that firstly, the neighborhood size should be ad-
justed to the bin resolution of the Hi-C matrix, and secondly,
that a neighborhood should contain at least around 250 - 300
elements to produce valuable results.

Comparison to state-of-the-art approaches

In the following section the detected loops by different tools
on the Hi-C interaction matrices of the cell lines GM12878,
HMEC, HUVEC, IMR90, K562, KBM7 and NHEK (by [8]) with
the Knight-Ruiz correction [2] are compared. The search dis-
tance is restricted to 8 MB if the tool allows this; the results
are post-processed for all others. The tools compared are: HiC-
Explorer, HiCCUPS, HOMER, chromosight, cooltools, Fit-Hi-C,
and Peakachu.
Detected loop comparison

The detection rate is comparable for all tools and cell lines
(Supplementary Table 1), except for chromosight and Peakachu.
Chromosight detects significantly more loops with a very low
p-value; however, as the loops’ visualization (Figure 3c, chro-
mosome 1 18.00 - 22.00 MB)) indicates, most detected loops
are in very noisy regions, and it is questionable what exactly
chromosight is detecting. This is supported by the analysis
of additional regions, see Supplementary Figure 4c (chromo-
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Figure 3. Plot of chr1 18 - 22 Mb on GM12878, with the detected loops highlighted from each software. HiCExplorer, HiCCUPS, and cooltools show similar results.
Chromosight detects many loops in noisy regions and lacks specificity. The four loops of Peakachu show a general issue of this algorithm: The first two loops (18
Mb region) are in a region without enrichment, and the two others slightly miss the enriched interactions by a few kilobases. HOMER and Fit-Hi-C do not detect
any loop in the area. The subplot (e) is based on the authors computations and (f) is based on the loops as they have been published by the authors of Peakachu
in [7]. Plots are produced using HiCExplorer hicPlotMatrix.

some 4 20.55 - 22.55 MB), 6c (chromosome 1 15.00 - 18.00 MB)
and 8c (chromosome 10 90.00 - 92.00 MB). On the other hand,
Peakachu detects much fewer loops than the other algorithms
considered. After correspondence with the authors, it became
clear that the models provided were trained on ICE-corrected
matrices, whereas we have used Knight-Ruiz corrected matri-
ces. For this reason, the loops detected by Peakachu, as pub-
lished by the authors, have also been taken into considera-
tion. Nonetheless, a detailed analysis of loop loci shows that
Peakachu misses important loops, regardless of whether the
KR data or the author’s own results are considered. For exam-
ple, the region chromosome 4 20.55 - 22.55 Mb contains four
visible loops: Peakachu on KR detects two of them, and misses
one completely. Additionally, two locations are detected that
slightly miss a loop (Supplementary Figure 4e). The Peakachu
results provided by the authors miss two loops and detect the
two others successfully (Supplementary Figure 4f). Supple-
mentary Figure 6e shows another issue of Peakachu on KR
data. Many loops are detected at the border of a faulty region;
it seems the machine learning approach did not have access
to this kind of data in training. The data provided by the au-
thors of Peakachu do not have this kind of issue, but overall,
while the provided data contain more correct locations, the de-
tection sometimes detects too many loops, for example, in the
region chromosome 10 90 - 92 Mb (Supplementary Material
8f). The third problematic tool is Fit-Hi-C. The number of de-
tected loops is at first sight comparable to the other tools; the
loci-specific analysis cannot confirm this. The regions chro-
mosome 1 15 - 22 MB (Figure 3 and Supplementary Figure 6h),
chromosome 4 20.55 - 22.55 MB (Supplementary Figure 4h) or
chromosome 10 90.00 - 92.00 MB have no loops detected by
Fit-Hi-C, while the other tools are able to detect loops in these

regions. In comparison, the regions where Fit-Hi-C does de-
tect loops are eye-opening. The regions chromosome 1 13.00 -
14.00 MB (Supplementary Figure 5) and chromosome 1 142.00 -
144.00 MB contain mostly very sparse or even faulty Hi-C data.
Fit-Hi-C detects an overwhelming amount of enriched pixels
in these regions and returns these as loops. While it might be
true that these pixels are enriched in a local context, they are
far from being a loop. The pattern of the accumulated loop lo-
cations (Figure 2) confirms that the detected pattern is usually
a single enriched interaction. The other tools detect only very
few or no loops in the regions chromosome 1 13.00 - 14.00 MB
and chromosome 1 142.00 - 144.00 Mb. Supplementary Fig-
ure 7 indicates HiCExplorer and HiCCUPS also have issues in
noisy regions. An explanation is how loops are detected: Both
tools detect first outliers and later consider the backgrounds
with the loop regions based on statistical tests. Regions which
are noisy, but to the statistical test show two different distri-
butions do pass the criterion of detection. This behaviour is
present also for the most of the other tools and is considered by
us a weakness of statistical based approaches. The intersection
between the detected peaks of HiCExplorer, HiCCUPS, HOMER,
chromosight, cooltools, Fit-Hi-C, and Peakachu is quite dif-
ferent (Figure 1). HiCExplorer, with a search distance of 8
Mb, shares ∼ 46% of its loops with HiCCUPS. HiCExplorer has
the highest intersection of detected loops with chromosight,
but chromosight also provides the highest number of detected
loops. The intersection of detected loops with cooltools is simi-
lar to HiCCUPS; the number of intersecting loops with HOMER,
Fit-Hi-C, and Peakachu is lower. HiCCUPS and cooltools show
the highest intersecting numbers, chromosight profits from its
high detection rate, while HOMER shares only a few hundred
loops with HiCCUPS, similar to its intersection with HiCEx-
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plorer. The intersection of Fit-Hi-C and Peakachu with HiCEx-
plorer and HiCCUPS is very low, and the results of the Peakachu
publication cannot be confirmed. Concerning Peakachu, it can
be assumed that the performance is directly connected to the
trained models and its inadequate generalization ability. In the
publication describing Peakachu, the authors write they have
used a probability threshold for a pixel between 90% and 97%.
However, to detect a similar number of loops to have compara-
bility, we had to use a score of 68%. For Fit-Hi-C, the authors
of Peakachu have used a threshold of 10–5, while we used 0.01
to enable detection of a few thousand loops.
Loop location correlation to protein locations
The detected loops are correlated with CTCF and cohesin factors
(Supplementary Table 2) to investigate the amount of inter-
secting locations. This correlation is computed because it was
shown that at the anchor points of loops, the proteins CTCF and
cohesin are involved as loop binding factors [8, 15]. However,
the loop structures representing gene or polycomb-mediated
loops do not have CTCF at their anchor points, and the corre-
lation can only be as good as the quality of the ChIP-Seq data
from which it is derived. This measurement is, therefore, only
an indicator of the accuracy of the detection.

The number of loops detected by HiCExplorer are compa-
rable to HiCCUPS. On the GM12878 cell line and correlated to
ChIA-PET based CTCF locations, HiCExplorer detects a similar
amount of loops compared to HiCCUPS (6540 vs. 6564) but is
more specific (0.64 vs. 0.61). Cooltools (5467 loops) and the
loops provided by the Peakachu authors (8174 loops) have a
similar relative value of 54% and 50%. Based on our computa-
tions, the loops detected with Peakachu have a match at only
686 loop locations and a relative value of 5%. The correlation
for the other three tools is also low. Chromosight has 7205
loops correlated, a share of only 11%, Homer has 1349 loops
and a share of 18%, and last, Fit-Hi-C has only 163 correlated
loop locations with a share of 2%.

The correlation of locations for ChIA-PET RAD21, a cohesin
subfactor, has overall significantly lower correlations. HiC-
Explorer has 2577 loops (25%), HiCCUPS 2385 loops (22%),
cooltools 1781 loops (17%), and the loop locations provided by
the Peakachu authors 2554 (15%). All other tools have a mea-
ger share of correlated locations of < 3%. As a second source of
information, data from HiChIP experiments is also considered.
The correlation values are overall much higher: for the histone
H3K27ac, the highest correlation is achieved by the author-
provided Peakachu results with 96%, followed by HiCCUPS
with 92%, cooltools with 85% and HiCExplorer reaching only
fourth place with 86%. The results of the other tools are also
much higher than the results of CTCF and RAD21; for example,
Fit-Hi-C had only 2% matches with RAD21, but has 29% with
H3K27ac. The correlation based on SMC1, a cohesin subfac-
tor, created with HiChIP indicates the same: again, the author-
provided Peakachu results are the highest with 99% followed
by HiCCUPS (96%), cooltools (94%), HiCExplorer (91%) and
Homer (90%). The correlation of the low performing Fit-Hi-
C 2 is 34% higher compared to other proteins, but is also low
compared to all other tools. Last, the proportions of the de-
tected locations of the different tools were tested for significant
differences. A two-sided proportion z-score test was used, and
given the H0 ’the proportion is equal’, the H0 was rejected for
all datasets and tools, under a p-value of 0.05 (Supplementary
Table 3).

Non-intersected loops
The two previous sections investigated the intersection of

loops between different tools and their correlation to structural
proteins. The intersection of all detected loops between HiCEx-

plorer and HiCCUPS is 46%, and both tools have a high cor-
relation to structural proteins for their detected loops. How-
ever, the non-intersecting detections have not been investi-
gated. The above-discussed correlation to structural protein lo-
cations indicates that the loops detected by either HiCExplorer
or HiCCUPS have a high match to the positions of structural
proteins. The situation is similar for the unique detect loops
of either HiCExplorer or HiCCUPS. The correlation of unique
loops to ChIA-PET based CTCF locations shows a lower match-
ing than all detected locations, 0.49 to 0.64 for HiCExplorer and
0.46 to 0.61 for HiCCUPS. A similar pattern is present for the
other proteins: ChIA-PET RAD21 0.15 to 0.25 for HiCExplorer
and 0.11 to 0.22 for HiCCUPS; HiChIP H3K27ac 0.78 to 0.86 and
0.89 to 0.92; HiChIP SMC1 0.85 to 0.91 and 0.93 to 0.96. The
lower correlations for the uniquely detect loops of HiCExplorer
and HiCCUPS indicate a higher false detection if a loop is not
detected by both tools; however, the correlations are still on a
high level. The unique detect loops are in their large majority
of high value for the investigation of DNA loop structures.
Averaged loop structure comparison
The accumulated contacts of all detected loop locations on
GM12878, displayed as a 3D plot in Figure 2, shows that all al-
gorithms detect enriched regions, but the neighborhood struc-
ture is very different. HiCExplorer detects a sharp peak with
an enriched direct neighborhood, while HiCCUPS and Fit-Hi-C
have a very sharp peak with almost no neighborhood signal.
HOMER and Chromosight detect broader peaks with a highly
enriched neighborhood, and cooltools has a sharp peak and
a neighborhood structure that is slightly more enriched than
HiCCUPS and slightly less than HiCExplorer. Finally, Peakachu
detects a sharp peak and has a neighborhood plateau on one
side, similar to the other algorithms, but a sharp cliff on the
other side. The visualizations indicate that a broad peak detec-
tion as provided by HOMER and Chromosight, or a very sharp
peak with no neighborhood signal, have a low correlation to
CTCF-based loops. The visualization of Peakachu’s loop loca-
tions with the sharp cliff can be interpreted as locations with a
TAD border. This can be explained in the context of a learned
model based on CTCF locations, because CTCF is present at both
loop locations and TAD boundaries.
Runtime and memory usage
The runtime and memory performance is a crucial factor in de-
termining the quality of an algorithm, as well as its implemen-
tation. The performance was measured on the Hi-C interac-
tion matrices of the cell lines by Rao [8] discussed above, with
a 10 kb resolution for the tools HiCExplorer, HiCCUPS, Homer,
chromosight, cooltools, Fit-Hi-C 2, and Peakachu. The mea-
sures was computed on an AMD 3700X with 128 GB memory
and an Nvidia GTX 1070. For a fair comparison, the CPU im-
plementations are considered, but for completeness, it should
be mentioned that the GPU implementation of HiCCUPS with
the search space restriction mode of 8 MB active was over all
datasets the fastest approach.

On the 8 Mb search distance range, HiCExplorer is the
fastest CPU implementation, except for GM12878 cell lines
where the CPU-based version of HiCCUPS is faster. HiCExplorer
is ∼ 44% faster than chromosight (4:25 min vs. 6:22 min) on
GM12878 with a 8 Mb search distance, and uses only 6.7 GB
memory, while chromosight consumes 39 GB. Moreover, HiC-
Explorer is two times faster than cooltools if only loop detection
is considered; if the necessary computation of expected values
is added, it is almost 3.5 times faster (Supplementary Table 8).
When considering the somewhat theoretical measure of single-
core performance, Chromosight is the fastest algorithm (Sup-
plementary Table 9); nonetheless, modern CPUs support up to
64 cores / 128 threads, and data analysis software should use
the offered resources as well as possible. For this reason, HiC-
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Explorers’ hicDetectLoop supports parallelization by chromo-
somes as well as intra-chromosomal parallelization. The data
structure allows this: each chromosome can be computed in-
dependently, as can each genomic distance normalization, dis-
tribution fitting, and p-value computation. For example, if
23 threads are used to compute each chromosome in parallel,
and for each chromosome thread, ten other threads compute
all intra-chromosomal computations in parallel, a total of 230
parallel threads are used. Not all threads are used at the same
time; therefore, a good utilization is achieved. However, mod-
ern CPUs with core/thread counts of 64 / 128 can be fully uti-
lized with this approach. Two of the algorithms, Fit-Hi-C and
Peakachu, provide only a single-core implementation. Their
runtimes are by far the slowest, taking 4:46 hours and 7:03
hours on the GM12878 data, and consume at the same time a
high amount of memory. HOMER is, in all scenarios, the third
slowest algorithm and also consumes the most memory. How-
ever, HOMER is also the only algorithm without any search
space restriction parameter, so that all searches are performed
genome-wide. This has the side effect that, for example, the
GM12878 dataset could only be computed using a single core,
because the memory consumption was already around 100 GB.
The approach chosen by the developers of HOMER to not sup-
port any binary file format to store and access the Hi-C inter-
action matrix, such as Juicer’s hic or the cooler [4] file format
supported by many of the other investigated tools, results in a
computation based on text files and raw data, and contributes,
apart from the lack of a search space restriction, to the very
poor runtime and memory performance.

Discussion

The search space of an algorithm is the dominant factor de-
termining its accuracy and performance. Therefore, pruning it
should be the primary goal when optimizing newly designed
algorithms. In theory, brute force solutions which apply no
restrictions to the search space, like HiCCUPS, can detect all
possible enriched regions, but the result is an implementation
with very demanding hardware requirements. HiCCUPS solves
this by utilizing massively parallel computational resources via
GPGPU. On the other hand, HOMER also applies no limitations
to the search space, yet detects a lower number of loops, and
those which are detected have a significantly lower correlation
over all samples to CTCF localization. HOMER does support a
parallel computation per chromosome, like HiCExplorer but is
significantly slower than all other solutions and uses signifi-
cantly more memory per core. HOMER’s poor runtime perfor-
mance can be explained by the fact that computation is per-
formed on raw data, while all other approaches use precom-
puted interaction matrices. Chromosight is a fast detection ap-
proach and provides the fastest single-core performance; how-
ever, it lacks specificity and detects many loops that should
be considered noise, even though these loops may be provided
with a high significance. Cooltools, with its reimplementation
of the HiCCUPS approach, provides a genome distance search
which makes it faster and more flexible. The results are good,
but it is unclear why they are not more similar to Juicer’s
HiCCUPS results, given that the same algorithm is used. An
overview of the properties of all algorithms is provided in Sup-
plementary Table 10.

The divergence between the Peakachu results based on our
computations and the data published by the authors is high.
Given that the machine learning-based model of Peakachu is
trained using the locations of certain proteins, it is unsurpris-
ing that the H3K27ac and SMC1 locations have very high corre-
lation values. Our understanding is that the published trained
model does not detect loop locations themselves, but rather the

locations of SMC1 and H3K27ac. Moreover, the poor perfor-
mance on the KR corrected matrix used indicates heavy over-
fitting and a poor generalization ability onto different kinds of
input matrices. Another explanation could be the lack of pre-
processing to normalize the input data. The idea of training a
model using the locations of proteins known to be correlated
with loops is sensible, but is limited by the fact that not all loop
locations have CTCF and cohesin at their anchors. Overall, the
model is an interesting approach; nonetheless, the published
model requires a more diverse training data to improve perfor-
mance on varying input datasets.

Furthermore, it could be shown that the sparsity and thus
the read coverage of a Hi-C interaction matrix significantly
influences the detection of peaks in their neighborhood. The
sparser a Hi-C interaction matrix is, the more likely that the
possible valid regions detected by the continuous negative bi-
nomial distribution filtering are rejected by the Wilcoxon rank-
sum test. The large number of differences between the de-
tected loops and the high correlation rates to CTCF can be ex-
plained in multiple ways. The correlation to CTCF has its roots
in biology. Not all loops have CTCF as a binding protein at
its anchors; gene-loops or polycomb-mediated loops lack it.
All the algorithms detect enrichments in the Hi-C data, which
are interpreted as loops, but may also have other explanations.
The enrichments can also be noise in the data, or interactions
which are unrelated to CTCF. Secondly, the Hi-C data is cre-
ated with in-situ Hi-C and has a higher noise level than newer
approaches like Arima Hi-C3. Detections of loops in noisy ar-
eas is responsible for the low intersection values for the pre-
dictions of the competing algorithms, in particular for chro-
mosight, which detects more noise than loops.

Availability of source code and requirements

Project name: HiCExplorer
Project home page: https://github.com/deeptools/
HiCExplorer/
Operating system(s): Linux / MacOS
Programming language: Python
Other requirements: Python 3.6 and higher
License: GPLv3
RRID: SCR_022111
biotools ID: https://bio.tools/hicexplorer

Availability of supporting data and materials

The following identifier are NCBI GEO accession numbers.
Hi-C data: GSE63525; Rao et al. [8]. CTCF for:

Gm12878 from GSM935611; Hmec from GSM749753; Huvec
from GSM749749; K562 from GSM733719 and Nhek from
GSM733636. CTCF ChIA-PET (GSM1872886); H3K27ac HiChIP
(GSE101498), SMC1 HiChIP (GSE80820), and RAD21 ChIA-PET
(GSM1436265). Result files are available via Zenodo [16].
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