

Supplementary Information for

Adolescent development of multiscale structural wiring and functional interactions in the human connectome.

Bo-yong Park, Casey Paquola, Richard A. I. Bethlehem, Oualid Benkarim, Neuroscience in Psychiatry Network (NSPN) Consortium, Bratislav Mišić, Jonathan Smallwood, Edward T. Bullmore, Boris C. Bernhardt

[†]A complete list of investigators from the Neuroscience in Psychiatry Network (NSPN) Consortium can be found in the Supporting Information.

Bo-yong Park Email: <u>boyong.park@inha.ac.kr</u> Boris C. Bernhardt Email: boris.bernhardt@mcgill.ca

This PDF file includes:

Figures S1 to S12

Other supplementary materials for this manuscript include the following:

Neuroscience in Psychiatry Network (NSPN) Consortium author list

A. Yeo parcellation

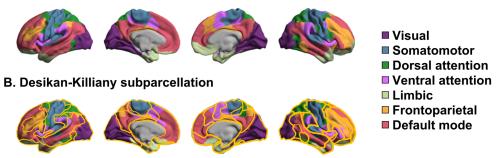
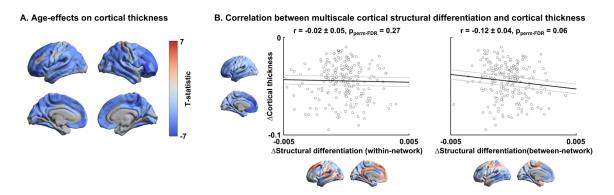



Fig. S1. Remapping of the Yeo-7 parcellation to the subparcellation of the Desikan-Killiany atlas used for this study. (A) Intrinsic functional networks based on Yeo, Krienen, et al. (1). (B) Parcels of the 200 node Desikan-Killiany subparcellation were assigned to each of these networks, and the boundaries of the Yeo 7-networks are shown with lines.

Fig. S2. Cortical thickness effects. (A) The t-statistics of the identified regions that showed significant age-related changes in cortical thickness. **(B)** Linear correlations between time-related changes in cortical thickness and within/between-network structural differentiation.

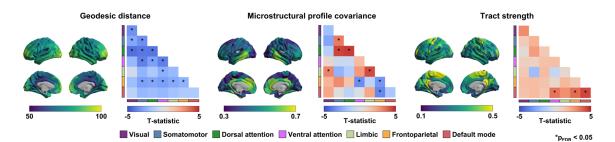
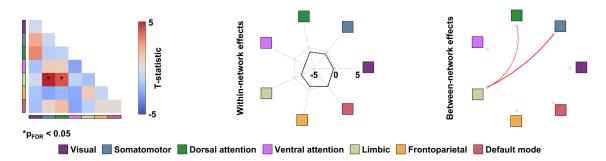
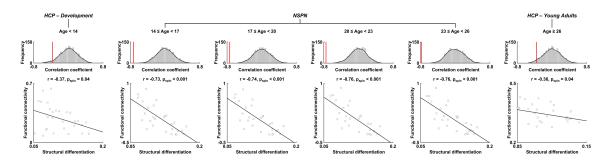
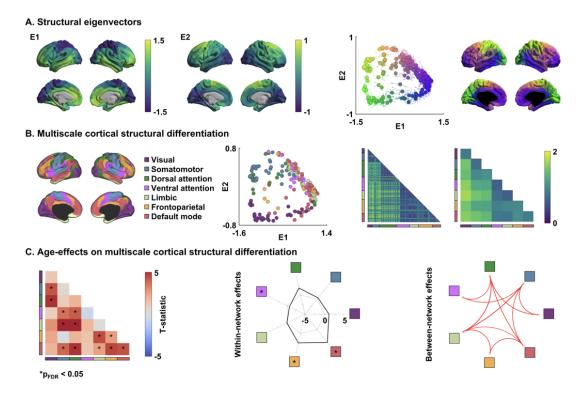




Fig. S3. Age-effects on each cortical wiring feature. The spatial maps of geodesic distance, microstructural profile covariance, and tract strength are shown on the brain surface. The t-statistics of age-related changes on each cortical feature within- and between-networks, with significant ($p_{FDR} < 0.05$) results marked with asterisks. *Abbreviation:* FDR, false discovery rate.


Fig. S4. Age-effects on multiscale cortical structural differentiation after controlling for mean structural differentiation. The t-statistics of age-effects are reported in the matrix, and within- and between-network effects are represented with radar and circular plots, respectively. For details, see *Fig. 1*.


Fig. S5. Association between functional connectivity and structural differentiation during development. Cross-sectional structure-function coupling between functional connectivity and structural differentiation at different age bins. The histogram indicates a null distribution of correlation coefficients generated based on 1,000 spin tests, and the actual r-value is represented with a red bar.

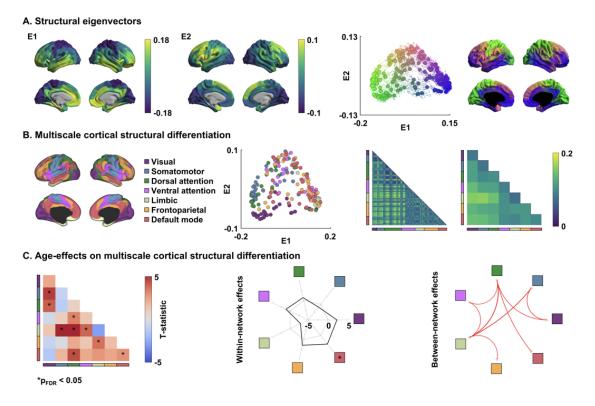

Fig. S6. Inter-individual differences in structure-function coupling. (A) The scatter plots show cross-sectional structure-function coupling between the connections that showed significant age-effects on both structural differentiation and functional connectivity, which are marked with 1 and 2. (B) We reported the results of longitudinal structure-function coupling.

Fig. S7. Structural eigenvectors and age-effects on multiscale cortical structural differentiation using different parcellation scales. (A) Results using 100 and **(B)** 300 parcellations. Two eigenvectors (E1, E2) estimated from the cortical wiring features (top) and t-statistics of age-effects within- and between-networks (bottom) are reported. For details, see *Fig. 1*.

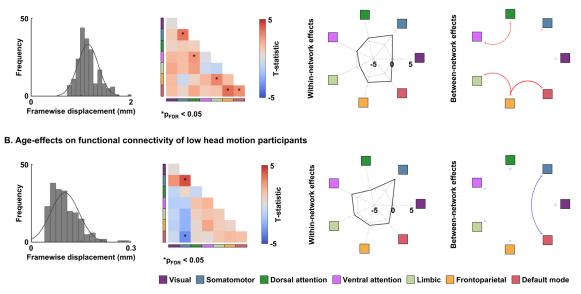


Fig. S8. Structural eigenvectors derived using principal component analysis and ageeffects on multiscale cortical structural differentiation. (A) Two eigenvectors (E1, E2) estimated from the cortical wiring features. **(B)** The structural differentiation summarized based on functional communities. **(C)** The t-statistics of age-effects on structural differentiation withinand between-networks. For details, see *Fig. 1*.

Fig. S9. Structural eigenvectors and age-effects on multiscale cortical structural differentiation using Schaefer 200 parcellation. (A) Two eigenvectors (E1, E2) estimated from the cortical wiring features. **(B)** The structural differentiation summarized based on functional communities. **(C)** The t-statistics of age-effects on structural differentiation within- and between-networks. For details, see *Fig. 1*.

A. Age-effects on multiscale cortical structural differentiation of low head motion participants

Fig. S10. Age-effects on structural and functional measures based on participants with low head motion. (A) Age-effects on structural differentiation and (B) functional connectivity. The histograms indicate frequency of framewise displacement. For details, see *Fig. 1* and *2*.

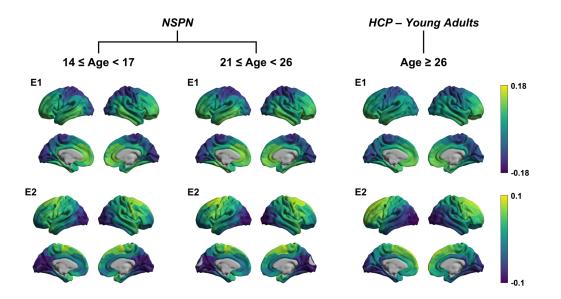
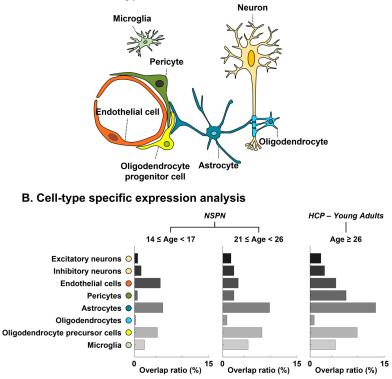



Fig. S11. Structural eigenvectors of different age bins. We estimated two eigenvectors (E1, E2) from cortical wiring features using (A) younger (age < 17) and (B) older (age \ge 21) adolescence from the *NSPN* dataset, and (C) those using the *HCP* – *Young Adults* dataset. *Abbreviations:* NSPN, the Neuroscience in Psychiatry Network; HCP, Human Connectome Project.

A. Schema of cell-types

Fig. S12. Transcriptomic analysis. (A) Schema of different cell types and **(B)** overlap ratio between cell-type specific genes and the genes associated with multiscale cortical wiring of younger (age < 17) and older (age \ge 21) adolescence from the *NSPN* dataset, and young healthy adults from the *HCP* – *Young Adults* database. *Abbreviations:* NSPN, the Neuroscience in Psychiatry Network; HCP, Human Connectome Project.

Neuroscience in Psychiatry Network (NSPN) Consortium author list

Principal investigators:

Edward Bullmore (CI from 01/01/2017)^{1,2,3}; Raymond Dolan^{4,5}; Ian Goodyer (CI until 01/01/2017)¹; Peter Fonagy⁶; Peter Jones¹

NSPN (funded) staff:

Michael Moutoussis^{4,5}; Tobias Hauser^{4,5}; Sharon Neufeld¹; Rafael Romero-Garcia^{1,2}; Michelle St Clair¹; Petra Vértes^{1,2}; Kirstie Whitaker^{1,2}; Becky Inkster¹; Gita Prabhu^{4,5}; Cinly Ooi¹; Umar Toseeb¹; Barry Widmer¹; Junaid Bhatti¹; Laura Villis¹; Ayesha Alrumaithi¹; Sarah Birt¹; Aislinn Bowler⁵; Kalia Cleridou⁵; Hina Dadabhoy⁵; Emma Davies¹; Ashlyn Firkins¹; Sian Granville⁵; Elizabeth Harding⁵; Alexandra Hopkins^{4,5}; Daniel Isaacs⁵; Janchai King⁵; Danae Kokorikou^{5,6}; Christina Maurice¹; Cleo McIntosh¹; Jessica Memarzia¹; Harriet Mills⁵; Ciara O'Donnell¹; Sara Pantaleone⁵; Jenny Scott¹; Beatrice Kiddle¹; Ela Polek¹

Affiliated scientists:

Pasco Fearon⁶; John Suckling¹; Anne-Laura van Harmelen¹; Rogier Kievit^{4,7}; Sam Chamberlain¹

¹Department of Psychiatry, University of Cambridge, United Kingdom

²Behavioural and Clinical Neuroscience Institute, University of Cambridge, United Kingdom ³ImmunoPsychiatry, GlaxoSmithKline Research and Development, United Kingdom ⁴Max Planck University College London Centre for Computational Psychiatry and Ageing Research,

University College London, UK

⁵Wellcome Centre for Human Neuroimaging, University College London, United Kingdom ⁶Research Department of Clinical, Educational and Health Psychology, University College London,

United Kingdom

⁷Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, United Kingdom

SI References

1. B. T. T. Yeo, *et al.*, The organization of the human cerebral cortex estimated by intrinsic functional connectivity. *J. Neurophysiol.* **106**, 1125–1165 (2011).