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Web Appendix 1

Variance Estimators of the ATT estimator

Assume we observe n independent and identically distributed (i.i.d.) copies of (L,A,Y) denoted
by (L;,A;,Y;) for i = 1,...,n. Evaluating the IPW ATT estimator AT T in equation 1 of the main
text first entails estimating the inverse probability weights W; for i = 1,...,n. The weights are

estimated by fitting the logistic regression model
logit{P(A=1|L)} = o+l L (1)

where L represents a (column) vector of J measured pre-exposure variables and ¢ is a parame-
ter vector of length J. Let o = (o, OclT ) and let & be the maximum likelihood estimator (MLE)
of & obtained by fitting model 1. Letting i(L; &) = P(A = 1|L) /P(A = 0|L) = exp(ap + a! L),
the estimated weight for individual i is given by W; = W(A;,Li;&) = Ai + (1 — Ap)h(Li; &).
Below the large sample properties of ATT are considered under the following identification
conditions: stable unit treatment value assumption [1]; positivity [2], i.e., P(A=0|L=1) >0
for all I where dFy(I) > 0 and Fy, is the CDF of L given A = 1; partial conditional exchange-
ability [3], i.e., YO 1L A|L; and correct specification of the model for A|L.

The asymptotic distribution of the IPW ATT estimator in equation 1 of the main text can be

derived using standard estimating equation theory. In particular, let

Va(Ai,Li, o) {Ai—e(Lia)}(1,L])"
v(Yi, A Lo, 1) = |y (Y, A Lo, i) | = W (A, Li; 0)Ai(Y; — W)
WO(YHAHLH(X).U') W(Alel’a)(l _At)(Yl_.uO)

where i = (U1, o), Wg denotes the J + 1 vector of score functions from the log likelihood cor-
responding to model 1 above, e(L;;a) = P(A; = 1|L;) = h(Li; @) /{1 +h(L;; o) } is the propen-
sity score, and W; = W(A;,Li;0) = A;+ (1 — A;)h(L;; @) [4]. The functions y; and yy corre-

spond to the first and second ratios of the ATT estimator in equation 1, respectively.

Let & = (o, af , 1, 1o)" and let £ = (G, &, i, 1), where £ solves the estimating equa-
tions Y; w(Y;,A;, Ly, o, i) = 0 and ATT = {1 — [ip is the ATT estimator in equation 1 of the
main text. Then under suitable regularity conditions [5]

V(€ —&) =4 N,V (£))
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where V(&) = A(5)"'B(E){A(E) ™'} with B(E) = E{y(Y,A,L,E)y(Y,A,L )T} A(E) =
E{—y(Y,A,L,E)}, and W(Y,A,L,E) = dw(Y,A,L,E)/IET. Tt follows from the Delta method

that ATT is consistent and asymptotically normal, i.e.,
Jn (A/T\T —ATT) < N(0,).

where ¥ = Vg(&)TV(E)Vg(&) is the asymptotic variance of the ATT estimator, Vg(&)T =
(0,0;, 1,—1), and Oy is the O vector of length J. Let ¥ denote a consistent estimator for X
obtained by substituting \7(5) for V(&) where the expectations in V are replaced by their em-
pirical counterparts and é is substituted for £. Then in large samples the variance of ATT can

be approximated by 3 /n, the stacked estimating equations (SEE) variance estimator.

Now suppose instead that the weights W; are assumed known and need not be estimated. Let
ATT denote the estimator in equation 1 from the main text where W is replaced with W;. Then

ATT  is consistent for ATT and asymptotically normal with asymptotic variance
«_ =2 1 2 0 2 . .
= p? [E{AY — w)*} + E{(Y — po)*h(Lis at)e(Li; ) }] - )

where p; = P(A = 1), as shown in the next section of Web Appendix 1. Let $* represent an
estimator for £* obtained by substituting p;, Ui, and the expectations in equation 2 with their
empirical counterparts, where « is assumed known. Then £*/n denotes the naive variance
estimator discussed in the Methods section of the main text. In Web Appendix 1 it is also

shown that
X=X+ p (e +en —2en) (3)

and the explicit forms of cy,,, k,m € {1,2} are given. In general, the sign of the second term

on the right side of the equality of equation 3 can be either positive or negative.

Derivation and Relationship of ¥ and **

Continuing with the case introduced above where the weights W; = W (A;,L;; &) are assumed

known, let

I YivAith W/lAl Yl_
v (Yi,A;, L) = wi< W = i)
W (Y, Ai Li, 1) Wi(1—A:)(Yi — o)



where U is as defined previously. Let f1*

= (f1f, i) where I* solves the estimating equations
Zil//*<Y,',Al',Ll',‘u) =0and A/T\T* = ‘ai‘

— [1. Following the same logic used for X above, X* =
T
(1,-1) V() (1,-1) " where V*(s) = A*()~'B*(1){A* ()"} and

. dyi/dm i /dug
A =-£| " )
vy /dm Iy /dug

(B 0
0 E[(l—A)EA'_éiZH

=pih

where I denotes a 2 x 2 identity matrix, and

*2 Kok
B* (1) = E L4 Yiv¥o
i 6‘2

i(Yi— ) 0 )
\ (Yi—k0)2(P(Ai=1]L:))?
E [(1 —A) T P lA=ol)? ]

] 0
( E [(Yio — to)?h(Li; a)e(L;; a)] )

Then V*(u) = p, “2B* (), which results in the expression for £* from equation 2.

Returning to the usual case where the weights W; are unknown and need to be estimated, again

consider the vector of estimating functions y/(Y;,A;, L;, o, it ) defined in Web Appendix 1 above.

Using block notation, the components of V(&) may be expressed as

Oy, /00 Wy, /d0 | OWey /Ol W,/ Lo

A(g):—E al//061/8050 al//m/aal al//al/a.ul 81//a1/8u0 _ an 0(J+1)><2
dyi/day  dyi/dan | dyi /o dyi /g ay A*(u)
dyp/doy  dyp/dar | dyp/d  dyy/dLo

Yo  VYa Ve | VoW VYo Yo
B(&) —F Vo Voo VYo, l//g;l Yoy V1 VYo, Yo . bll bgl
ViVe, WIVL | W wiw by1 by
YoVa, W0 ng Yoy ll/g




where Yy, Wq, correspond to the score functions for the intercept and the J covariates, respec-
tively, from the logistic regression model 1 in Web Appendix 1, and in general 0,,, denotes
an m x n zero matrix and 0,, denotes a column vector of m zeros. Note by = B*(u) for all

o € R/*!, and recall that A*(u) = p1b.
Next note

1

AE) ! = ap 0p+1)x2
[ S T
py ana;;  pp b

and aj; = b1 [6, Lemma 7.3.11], implying

—1 T -1 -1 -1.T
vo- [ v ) (e B ) (@l eald
—pilanay!  pi'h bu bn ) \ Oy pi'k
ay pylay (—ax +ba)T

py (—axi +ba)ay! prH{(aar —bar)ay (azr —bar)T —barap bl + b}

By the Delta method, £ = Vg(&)7V(&)Vg(&) where Vg(&)T = (0,07,1,—1). Let c be the

2 x 2 matrix ¢ = (ap; — b21)a1_11 (aa1 —by)T — b21a1_11bgl, with elements c¢11,c12,¢21,¢22. Then
-1 1,1 T
ap Py ayy (—az1 +bap)
~1 ~1 -2
py (—az1 +ba)ay, py“(c+bn)

= p 2 [E{A( = m)?} + E{(Y? — o) h(Liz o)e(Liz @)} +eni + e — ciz = a1

> =vVg(&) Vs(8)

=X+ p;2(c11 +ex —2c12)

where the last equality follows from the derivation above of *, and c¢1, = ¢, because V(&) is

symmetric.
Next note
- 0 07
T\ B A k(L @)} —E{(1 - A) (Y- po)h(Li )17}
o[ EAG—m)—eia) E{AY;— ) (1 —e(Li )L}

—E{(1—A) (Y — po)h(Liza)e(Lizc)}  —E{(1—Ai)(Y; — to)h(Li; &)e(Liz )L }

where e(L;; ) and h(L;; ) are as defined previously.



Assuming the propensity score model 1 from Web Appendix 1 and conditional exchangeability,

the expectations above can be expressed

E [Ai(Yi— m){1 —e(Lisa) }(1,L])] = E [Ai(Y! — p){1 = P(A; = 1|L) (1, L] )]

=EL [Eyl\L(Yil — ) P(Ai = 1|Li){1 - P(A; = 1|L))} (LL?)}

and similarly E{(1 ~ A)(Y; — o)h(Li@)(1,LT)} = Er{Eyo (¥ — o) P(A; = 1/L)(1,LT)}
and E{(1— A))(Yi — po)e(Lis a)h(Liz o) (1,L7 )} = Er{Eyoy, (v — o) P(A; = 1L)2(1,L])}.

Likewise, a;; can be written

E(vg)  E(WeVo)"
E (Yoo Way ) E(‘Valll’gl)

a =

where

E(yg,) = E{Ai—24,P(A; = 1|L;) + P(A; = 1|L)*}

= E[P(A; = 1|L){1 — P(A; = 1|L;)}]

with similar derivations for E (Wy, W, ) = EL[P(A; = 1|L;){1 — P(A; = 1|L;) } L;] and E (g, wgl) =
EL[P(A; = 1|L){1 — P(A; = 1|L;) }L:.LT).

Using the results above, explicit values for each element of the ¢ matrix can be calculated
for given distributions of L, A|L, Y°|L, and Y!|L. This is demonstrated in the Asymptotic
Calculations section of the main text for four example scenarios. The R code used for these

calculations is included below in Web Appendix 2.

Expected value of ATT weights

The expected value of the weights proposed by Sato and Matsuyama [4] equals
P(A; = llLi)}
P(A; =0|L;)
P(A; = I\Li)]
P(A; =0|L;)

= p1 +EL[P(A; = 1|L;)] = 2p;

EIW] = Exs [Ai+ (1-4))

=p1+EL |:EA|L(1 —A,')



Web Appendix 2

The code below was written for the R environment in R version 3.6.3 [7].

Asymptotic Calculations

First set the values of the parameters from scenario (i) in the main text.

EL <- 0.5 ; a0 <- -1 ; al <- -2
ba <- -1 ; bL <- -1.5 ; baL <- 1.5 ; sdY <- 0.5

From these defined values we can solve for the other needed quantities.

EA_L1 <- exp(a0 + al) / (1 + exp(al + al))
EA_LO <- exp(a0) / (1 + exp(a0))

EY1_L1 <- ba + bL + bal #no intercept term
EY1_1LO <- ba

EYO_L1 <- bL

EYO_LO <- O

VarYO_L <- sdY~2

VarY1_L <- sdY~2

EA <- EA_LO*(1-EL) + EA_L1x(EL)
EL_A1 <- (1/EA) * EA_L1 * EL
mu0 <- bL * EL_A1

mul <- ba + bL*EL_A1 + baL+*EL_A1
ATT <- mul-mu0

These values can be plugged in to calculate the elements of the a;;, by, and al_ll matrices.



## Calculate required expectations for (a2l - b21),

## D21, and all~{-1} matrices

a21_b21.1 <- (EY1_LO - mul)+*EA_LO*(1-EA_LO)*(1-EL) +
(EY1_L1 - mul)*EA_L1%(1-EA_L1)*EL

a21_b21.2 <- (EYO_LO - muO)+EA_LO*(1-EA_LO)*(1-EL) +
(EYO_L1 - muO)+*EA_L1*(1-EA_L1)*EL

a21_b21.3 <- (EY1_LO - mul)+*EA_LO*(1-EA_LO)*0*(1-EL) +
(EY1_L1 - mul)*EA_L1x(1-EA_L1)*1xEL

a21_b21.4 <- (EYO_LO - muO)*EA_LO*(1-EA_LO)*0*(1-EL) +
(EYO_L1 - muO)+EA_L1x(1-EA_L1)*1+EL

a21_b21 <- matrix(c(-a21_b21.1, -a21_b21.2, -a21_b21.3, -a2l_b21.4),

nrow=2, ncol=2)

b21.2 <- (EYO_LO - muO)*(EA_LO"2)*(1-EL) +
(EYO_L1 - muO)*(EA_L1°2)+EL

b21.4 <- (EYO_LO - mu0)*(EA_LO"2)*0*(1-EL) +
(EYO_L1 - muO)+*(EA_L1°2)*1*EL

b21 <- matrix(c(a21_b21.1, -b21.2, a21_b21.3, -b21.4),

nrow=2, ncol=2)

all_1 <- EA_LO*(1-EA_LO)*(1-EL) + EA_L1*(1-EA_L1)=*EL
all_2 <- EA_LO*(1-EA_LO)*0*(1-EL) + EA_L1*(1-EA_L1)*1+EL
all_3 <- EA_LO*(1-EA_LO)*(0"2)*(1-EL) + EA_L1*(1-EA_L1)*(1"2)*EL

all <- matrix(c(all_1, al1_2, all_2, all_3),

nrow=2, ncol=2)

all_inv <- solve(all)

What remains is simply using matrix algebra to calculate values of the constant and X*.



## Calculate constant

c <- a21_b21 %x% all_inv %% t(a21_b21) - b21 %*} all_inv %*} t(b21)
c_scaled <- (1/EA~2)*c # (1/P(4=1)°2) * ¢

gg <- cbind(c(1, -1))

constant <- t(gg) ’*% c_scaled %*) gg

## Calculate Sigma* and Sigma

EYO_mu02_LO0 <- (VarYO_L + EYO_LO"2) - 2*muO*EYO_LO + mu0~2
EYO_mu02_L1 <- (VarYO_L + EYO_L1°2) - 2*muO*EYO_L1 + mu0~2
EY1 mu12 L0 <- (VarY1i_L + EY1_LO0"2) - 2*mul*EY1_LO + mul~2
EY1l mu12 L1 <- (VarY1_L + EY1_L1°2) - 2*mul*EY1_L1 + mul~2

b22_1 <- (EA_LO*EY1_mul2_LO0)*(1-EL) + (EA_L1*EY1_mul2_L1)=EL
b22_2 <- ((EA_LO"2/(1-EA_LO))*EYO_mu0O2_L0)*(1-EL) +
((EA_L172/(1-EA_L1))*EYO_mu02_L1)*EL

Sig_star <- (b22_1 + b22_2)/(EA"2)
Sig <- Sig_star + constant

SD_ratio <- sqrt(Sig)/sqrt(Sig_star)
df <- data.frame(cbind(ATT, constant, Sig_star, Sig, SD_ratio))

colnames(df) <- c("ATT", "Constant", "Sigma~*", "Sigma", "SD Ratio")

print (df)

## ATT Constant Sigma™* Sigma SD Ratio
## 1 -0.7751385 1.635956 2.263171 3.899128 1.312578

These results are presented in the first row of Table 2.



Simulated Data Analysis

Using the population parameters defined above, we can simulate an example data set of 1000

individuals. After generating L, A, and Y, the ATT weights are computed as in the main text.

set.seed(42)
n <- 1000

L <- rbinom(n, 1, prob = EL)

1p <- exp(a0 + alxL)

A <- rbinom(n, size = 1, prob = 1lp/(1+1lp))

Y <- rnorm(n, mean = ba*A + bL*L + balL*AxL, sd = sdY)

psmod <- glm(A ~ L, family = binomial(link = "logit"))

wt.att <- ifelse(A == 0, exp(psmod$linear.predictors), 1)

dat <- data.frame(cbind(L, A, Y, wt.att))

The following are helper functions defined for use within the geex function m_estimate,
which will allow us to compute the standard errors for the stacked estimating equations (SEE)

and naive variance estimators.

estfun <- function(data, model){
L <- model.matrix(model, data=data)
A <- model.response(model.frame(model, data=data))

Y <- data$y

function(theta){
p <- length(theta)
pl <- length(coef (model))
lp <- L %x% thetal[l:p1]

rho <- plogis(1lp)
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IPW <- ifelse(A == 1, 1, exp(1lp))

score_eqns <- apply(L, 2, function(x) sum((A - rho) * x))
cel <- TIPWx(A==1)*(Y - thetalp-1])
ce0 <- IPW*(A==0)*(Y - thetalp]l)

c(score_eqns,
cel,

ce0)

estfun_nolr <- function(data){
A <- data$A
Y <- data$y

IPW <- datad$wt.att

function(theta){
cel <- IPWx(A==1)*(Y - thetal[l])
ce0 <- IPW+(A==0)*(Y - thetal[2])

c(cel,

ce0)

Fitting the weighted linear regression model yields the estimated counterfactual means, from

which we can compute the estimated ATT.

fit <- geeglm(Y ~ A, data = dat, std.err = ’san.se’,
weights = wt.att, id=1:nrow(dat),

corstr="independence")

11



mul_hat <- mean(fit$fitted.values[fit$dat$A==1])

muO_hat <- mean(fit$fitted.values[fit$dat$A==0])

ATT_Est <- fit$coefficients[2] # = mul_hat - muO_hat

Finally, the geex package is used to estimate the SEs of the estimated ATT using both the SEE
and the naive estimators. The naive SEs are also computed with the geeglm function to check

the output from m_estimate.

## Accounting for weight estimation
results <- m_estimate(
estFUN = estfun,

data = dat,

roots = c(coef(psmod), mul_hat, muO_hat),
compute_roots = FALSE,

outer_args = list(model = psmod))

## b22 + [1/P(A=1)"2]c

vcov_sEE <- vcov(results) [3:4, 3:4]

## Assuming weights are known
results_nolr <- m_estimate(

estFUN = estfun_nolr,

data dat,

c(mul_hat, muO_hat),

roots

compute_roots = FALSE)

## b22

vcov_GEE <- vcov(results_nolr)

## Naive Variance from geeglm for comparison

vcov_geeglm <- (summary(fit)$coefficients[2,2])"2

12



Sig_est <- t(gg) %*% vcov_sEE J*, gg
Sig_star_est <- t(gg) %*/ vcov_GEE 7*% gg

df <- data.frame(cbind(ATT_Est, sqrt(Sig_est),
sqrt(Sig_star_est), sqrt(vcov_geeglm)))
colnames(df) <- c("Est ATT", "Est SEE SE",

"Est Naive SE (geex)", "Est Naive SE (geeglm)")

print(df)
## Est ATT Est SEE SE Est Naive SE (geex) Est Naive SE (geeglm)
## A -0.7543794 0.05830972 0.04407246 0.04407246

The SE estimates from geeglm and from geex when weights are assumed known are the same.
All estimates resemble the results presented in Table 3, but do not match exactly since this code

was only run on one example data set and the Table 3 results are averaged over 1000 data sets.

Note that when performing the analysis for a large number of simulated data sets or, e.g., a large
genomics data set such as METSIM with hundreds or thousands of individuals and outcomes,
there may be a practical need to run the code for analyzing these data sets simultaneously on a

computing cluster.

Web Appendix 3

Varied Sample Size Results for Simulation Study Scenarios (i)-(iv)

The main simulation study was repeated with sample sizes n = 500 and n = 2000. The results,
given in Web Table 1 below, are similar to those reported in Table 3. For scenario (iv) the
SEE estimator tends to underestimate the variability of the ATT estimator for the sample sizes

considered, resulting in confidence interval coverage slightly below the nominal level. We note
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however that the relative bias of the SEE estimator decreases as the sample size increases (0.12
for n = 500, 0.10 for n = 1000, and 0.09 for n = 2000). The empirical sandwich estimator has
been shown in other settings to underestimate the true variance when the sample size is small

[8, 9, 10], in which case bias-corrected variance estimators might be considered.

Web Table 1: Empirical standard error, average estimated standard error using the SEE and
naive variance estimates, 95% confidence interval coverage, and ASE ratio (SEE/Naive) with

sample sizes of 500 and 2000 for each simulated scenario.

SEE Naive

Scenario n ESE ASE Coverage ASE Coverage ASE Ratio
(1 500 0.09 0.09 0.95 0.07 0.87 1.31
2000 0.04 0.04 0.95 0.03 0.86 1.31

@) 500 0.05 0.05 0.95 0.09 1.00 0.56
2000 0.03 0.03 0.96 0.05 1.00 0.56

(i) 500 0.09 0.09 0.95 0.09 0.92 1.10
2000 0.05 0.05 0.96 0.04 0.94 1.10

(iv) 500 0.15 0.14 0.93 0.21 1.00 0.64
2000 0.08 0.07 0.93 0.11 0.99 0.65

ASE = average estimated standard error; ESE = empirical standard error; SEE = stacked estimating equations.

Bootstrap SE Results
Simulation Study Scenarios (i)-(iv)

The main simulation study and METSIM data analysis were repeated using the bootstrap to
estimate the SE. For each data set, the bootstrap SE estimate was computed using the following
steps: (1) a simple random sample with replacement of size 1000 was drawn from the original
data; (2) ATT was computed; (3) steps (1) and (2) were repeated B = 50 times, and then the
standard deviation of the B = 50 estimates of the ATT was computed. Results of the simulation
study are presented in Web Table 2 and the METSIM data analysis results are displayed in Web
Figure 1.

14



Web Table 2: Empirical standard error, average estimated standard error using bootstrap vari-

ance estimates, and 95% confidence interval coverage for each simulated scenario.

Bootstrap
Scenario ESE ASE Coverage
(i) 0.06 0.06 0.95
(i) 0.04 0.04 0.94
(iii) 0.07 0.07 0.95
(iv) 0.12 0.10 0.92

ASE = average estimated standard error; ESE = empirical standard error.

METSIM Analysis
(A) 1,500 ®)  0.007
0.006
1,000 millll 0.005
£ ' g
2 30.004
% 0.003
500
0.002
0.001
%2702 0 02 04 0
log(Boot / SEE)

Web Figure 1: (A) Ratio of estimated standard errors (SEs) computed using the bootstrap
estimator (B = 50) and £, for the average treatment effect in the treated of each gene in the
Metabolic Syndrome in Men (METSIM) data analysis. Vertical dashed line at zero denotes
equality of the two SE estimates. (B) P-values (unadjusted) for both methods of SE estimation,
for each of the top 50 genes as ranked by either method (66 genes depicted in total). Boot =

bootstrap; SEE = stacked estimating equations.
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Risk Ratio Simulations

The causal risk ratio in the treated is defined as u; /g, and can be consistently estimated by
the ratio of Hajek estimators from equation 2 of the main text. Two binary outcome scenarios,
(v) and (vi), are defined in Web Table 3 and the corresponding asymptotic calculations are
included in Web Table 4. The asymptotic calculations were determined as in Web Appendix
1, except that Vg(&)T = (0,07,1/po, —1 /). A simulation study of 1000 data sets with
n=1000 was conducted for each scenario, and the results are presented in Web Table 5. The
ratio estimator variance is consistently estimated using SEE in both cases, with the ASE closely
approximating the ESE and Wald CIs achieving nominal coverage. On the other hand, the naive
variance estimator over- and under-estimates the ratio estimator variance in scenarios (v) and

(vi), respectively, resulting in Wald CIs that are conservative and anti-conservative.

Web Table 3: Distribution of L, exposure A, and potential outcome Y in two different scenarios

for the CRRT, along with the marginal probability of exposure and the CRRT.

Scenario L PA=1|L=1) P(Y*=1|L=1) p; CRRT
(v) Bern(0.2) 0.6+0.21 0.354+0.6/ 0.64 1
(vi) Bern(0.5) 044027 095-084a—-0.65[+14al 05 1

Bern(7) = Bernoulli distribution with expectation 7; CRRT = causal risk ratio in the treated;
p1 = marginal probability of exposure.

Web Table 4: The asymptotic variance of the CRRT estimator when weights are unknown (X)

and known (X*), and the ratio (Unknown / Known) of the asymptotic standard deviations.

Scenario X ¥* SD Ratio
V) 3.04 4.88 0.79
(vi) 5.00 3.50 1.19

CRRT = causal risk ratio in the treated; SD = stndard deviation.
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Web Table 5: Empirical standard error, average estimated standard error using the SEE and
naive variance estimates of the causal risk ratio in the treated estimator, 95% confidence interval

coverage, and ASE ratio (SEE/Naive) for two simulated scenarios.

SEE Naive
Scenario ESE ASE Coverage ASE Coverage A/SE Ratio
(v) 0.06 0.06 0.94 0.07 0.99 0.79
(vi) 0.07 0.07 0.95 0.06 0.91 1.19

ASE = average estimated standard error; ESE = empirical standard error; SEE = stacked estimating equations.

Covariate Overlap Simulation Studies

The main simulation study for scenarios (iii) and (iv) was repeated so that there was less over-
lap in the covariate distributions. In particular, to create low overlap, the parameter ¢ in the
propensity score model was changed to -2.5 to decrease the amount of overlap in the distribu-
tion of L for A =0 and A = 1. Web Figure 2 shows the empirical distribution of the covariate L
by exposure A for data sets simulated under the original parameterization (denoted by "High"
overlap) as well as the low overlap parameterization. The simulation study results in Web Ta-
ble 6 show the SEE and naive variance estimators are both biased and the corresponding Wald
confidence intervals fail to cover at the nominal level when there is not sufficient covariate
overlap. The bootstrap estimator described above in Web Appendix 3 yielded similar results,
with ASE = 0.12 and coverage 0.79 for scenario (iii) Low and ASE =0.18 and coverage 0.74

for scenario (iv) Low.
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Web Table 6: Empirical standard error, average estimated standard error using the SEE and
naive variance estimates, 95% confidence interval coverage, and ASE ratio (SEE/Naive) for

low and high overlap cases of each simulated scenario.

SEE Naive

——

Scenario ESE ASE Coverage ASE Coverage ASE Ratio

(iii) Low  0.17 0.12 0.77 0.12 0.77 0.99
(iii) High  0.07 0.07 0.95 0.06 0.93 1.10
(iv) Low 030 0.18 0.75 0.22 0.84 0.83
(iv) High 0.11 0.10 0.94 0.15 1.00 0.65

ASE = average estimated standard error; ESE = empirical standard error; SEE = stacked estimating equations.
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Web Figure 2: Distribution of L by exposure A in low and high covariate overlap cases for

Scenarios (iii) and (iv).
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