

Figure S1. Isolation and HA binding of 315-19-1D12 antibody, related to Figure 1

(A) B cell sorting plot of the PBMCs collected from a human donor two weeks after the vaccine boost. In red is the cell from which the 315-19-1D12 genes were amplified and sequenced that showed binding to both H7 and H3 HAs. (B) Binding measurement of 1D12 antibody to Group 1 HA. (C) Binding measurement of 1D12 antibody to Group 2 HA. Error bars in (B) and (C) represent SD of the antibody tested in duplicate, representative of two independent experiments.

G Density at 2.76 Å

Figure S2. EM supporting data and HA-Fab binding data, related to Figure 1

(A) Workflow of data processing is shown. (B) Representative 2D class averages calculated from selected particles. (C) Three-D reconstruction of electron density map. (D) Superposition of refined coordinates with the cryo-EM reconstructed density map. (E) FSC curves of the 3D reconstructions with horizontal blue line indicating FSC_{0.143}. (F) The angular distribution plot is shown indicating no preferred orientation issues. (G) A section of representative electron density at 2.76 Å superimposed on the refined coordinates.

A Heavy and light chain sequences of inferred germline and mature 1D12 (Kabat)

Heavy QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYLHWVRQAPQQLEWMGRINPDTGGTNYAQKFQGRVSMTRDMSISTHYMELSRLTSDDTAVYYCATKRGAVTAMVYYYFYGMDVWGQGTTVTVSS

 $\texttt{igl} \ \texttt{divmt} \texttt{QSPLSLpvtpgepasiscrss} \texttt{QSLL} \texttt{SNGYNYLDWYLQKPGQSPQLLIYLGSNR \texttt{ASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQALQTPPGLTFGGGTK \texttt{VE}IK \texttt{VE$

В	Antibody	HV	HD	HJ	HV identity (%)	CDR H3	LV	LJ	LV identity (%)	CDR L3
	315-019-1D12	HV1-2	HD2-21	HJ6	96.6	KRGAVTAMVYYYFYGMDV	KV2-28	KJ4	96.6	MQALRTPPGLT

С Summary of germline and mature 1D12 binding K_D

Octet binding curves of germline-reverted 1D12 0.10 0.10 H9 HK99 H3 HK68 ΗА Germline-reverted Mature 0.08 0.06 H1 SI06 NB NB E 0.04 0.02 H1 CA09 NB NB Group 1 H2 CAN05 NB NB 350 H5 VN04 NB NB 0.10 H3 TX12 H9 HK99 NB 23.0 nM 0.08 0.06 0.04 H3 HK68 NB 14.1 nM E 0.04 Group 2 H7 AN13 0.02 H3 TX12 NB 32.3 nM -0.02 H7 AN13 NB 34.4 nM

Antibody	Specificity	Classes	VH	CDR H3	VL	CDR L3	Epitope, Structure and Sequence	1D12 Class
MED18852	STEM	VH6-1	IGHV6-1	CARSGHITVFGVNVDAFDMW	IGKV1-39	CQQSRTF	MEDI8852 fits VH6-1 sequence signature	-
315-55-1E08	STEM	-	IGHV4-31	CARVPFYYDTRGVFYGNAEGGFEIW	IGKV1-17	CLQHNSYQWTF	1E08 uses different VH and VL pair	-
315-55-1E11	STEM	-	IGHV4-4	CAAGRLDYSDTTGYYKPPPLDYW	IGKV2-30	CMQGTHWPLTF	1E11 uses different VH and VL pair	-
3E1	STEM	-	IGHV4-4	CAREEHITFGGVIVRYW	IGKV1-5	CQQYNSYPWTF	3E1 uses different VH and VL pair	-
FI6v3	STEM	-	IGHV3-30	CAKDSQLRSLLYFEWLSQGYFDYW	IGKV4-1	CQQHYRTPPTF	FI6v3 uses different VH and VL pair	-
Mab3.1	STEM	-	IGHV3-30	CARDLGGYFIRGIMDVW	IGKV1-12	CQQANSFPLTF	Mab3.1 uses different VH and VL pair	-
315-23-1C09	STEM	-	IGHV3-30	CAKDPAFIEMAFHW	IGLV1-47	CAAWDNSLSAHYVF	1C09 uses different VH and VL pair	-
315-53-1A07	STEM	-	IGHV3-30	CTRAIGTTDAFDIW	IGLV1-51	CGTWDRSLSAMVF	1A07 uses different VH and VL pair	-
CR9114	STEM	VH1-69	IGHV1-69	CARHGNYYYYSGMDVW	IGLV1-44	CAAWDDSLKGAVF	CR9114 fits IGHV1-69 sequence signature	-
CR6261	STEM	VH1-69	IGHV1-69	CAKHMGYQVRETMDVW	IGLV1-51	CATWDRRPTAYVVF	CR6261 fits IGHV1-69 sequence signature	-
310-33-1F04	HEAD	-	IGHV3-23	CAKGPASTWQLDPSHHYNGMDVW	IGKV1-17	CLQHISYPLTF	1F04 binds HA head region	-
5J8	HEAD	-	IGHV4-38-2	CARHVRSGYPDTAYYFDKW	IGLV3-21	CQVWDISTDQAVF	5J8 binds HA head region	-
C05	HEAD	-	IGHV3-23	CHMSMQQVVSAGWERADLVGW	IGKV1-33	CQQYDGLPFTF	C05 binds HA head region	-
F005-126	HEAD	-	IGHV1-18	CARVEGVRGVMGFHYYPMDVW	IGLV1-40	CQSYDSSLSGSVF	F005-126 binds HA head region	-
F045-092	HEAD	-	IGHV1-69	CAGPSITESHYCLDCAAKDYYYGLDVW	IGLV1-44	CASWDDSLNGVVF	F045-092 binds HA head region	-
315-09-1B12	STEM	VH1-18 +QxxV	IGHV1-18	CARGLLQGAVILDSYHYALDFW	IGKV3-20	CQQYDTSPRWTF	315-09-1B12 fits VH1-18+QxxV sequence signature	-
CR8020	STEM	CR8020	IGHV1-18	CAREPPLFYSSWSLDNW	IGKV3-20	CQQYGTSPRTF	CR8020 uses different VH and VL pair	-
CR8043	STEM	CR8043	IGHV1-3	CARGASWDARGWSGYW	IGKV4-1	CHQYYTAPWTF	CR8043 uses different VH and VL pair	-
315-53-1A09	STEM	-	IGHV3-11	CARTRLGDIVQAPGVIGYYYGMDVW	IGKV1-39	CQQSHETPLTF	1A09 uses different VH and VL pair	-
CT149	STEM	VH1-18 +QxxV	IGHV1-18	CARDKVQGRVEVGSGGRHDYW	IGKV3-20	CQQFSVSPWTF	CT149 fits VH1-18+QxxV sequence signature	-

υ	CI	assification of	of influenza an	tibodie	es from pu	blished	papers and t	this paper
---	----	-----------------	-----------------	---------	------------	---------	--------------	------------

Figure S3. Inferred germline-reverted 1D12 antibody does not bind influenza HA, related to Figure 3

(A) Sequence alignments of germline and mature 1D12 heavy and light chains. (B) Summary of antibody 1D12 sequence characteristics. (C) Binding affinity and kinetics of 1D12 to various HAs measured by Octet. Hemagglutinin analyte concentrations used 2-fold dilutions starting at 100 nM and ending with 6.25 nM.

Figure S4. Rosetta energies per position, related to Figure 5

Rosetta energies for sensitive and resistant sets for specific subset of the extended epitope positions. Only 34 out of the 46 extended epitope positions are shown, with the remaining 10 positions having no detectable in-silico energy contributions.

A In silico classification ROC

 $\textbf{B} \quad \text{Sensitive strains } \Delta \textit{E} \text{ for 4 key epitope positions}$

Figure S5. Experimental assessment of *in silico* predictions shows high accuracy and correlates with experimental binding data, related to Figure 5

(A) \overrightarrow{A} neutralization was predicted with *in silico* energies. The classification performance was assessed by the ROC AUC and achieves 89% accuracy at the best energy threshold. (B) Two sensitive strains containing the most frequent residues at the key epitope positions from the sensitive set were selected based on the highest average *in silico* ΔE energy for further experimental validation. Black dots represent the average ΔE across the 4 positions. (C) *In silico* ΔE correlated to experimental ΔB inding at multiple 1D12 antibody concentrations.

	H7 SH13 HA Trimer
	in complex with 1D12 Fab
EMDB ID	21961
PDB ID	6WXL
Data Collection	
Microscope	FEI Titan Krios
Voltage (kV)	300
Electron dose (e ⁻ /Å ²)	49.90
Detector	Gatan K3
Pixel Size (Å)	1.083
Defocus Range (µm)	-0.1 to -3.3
Magnification	81000
Images	1878
Reconstruction	
Software	cryoSparcV2.12
Particles	142,628
Symmetry	C3
Box size (pix)	400
Resolution Å (FSC _{0.143})	2.76
Refinement (Phenix)	
Protein residues	2175
CC (mask)	0.78
CC (box)	0.64
CC (peak)	0.58
CC (volume)	0.77
Chimera CC	0.89
d FSC _{0.143} Model Resolution (Å)	2.5
EMRinger Score	3.72
R.m.s. deviations	
Bond lengths (Å)	0.005
Bond angles (°)	0.697
Validation	
Molprobity score	1.28
Clash score	2.9
Rotamer outliers (%)	0.16
Ramachandran	
Favored regions (%)	96.79
Disallowed regions (%)	0.0

Table S1. Cryo-EM data collection and refinement statistics, related to Figure 1

Table S2. Interactions between 1D12 Fab and influenza A virus HA, related to Figure 1

The data were output from PISA (https://www.ebi.ac.uk/pdbe/pisa) analysis of the cryo-EM structure of the 1D12-SH13 HA complex. (Table continued on next page) (A) Epitope and paratope areas

	HA	Light chain
Interface (Ų)	591.6	600.1
	HA	Heavy chain
Interface (Ų)	480.6	544.1

(B) Hydrogen bonds between 315-19-1D12 and SH13 HA Bond distance [Å] SH13 HA atom 1D12 atom 1 H:LYS 95[NZ] 3.31 B:GLN 42[OE1] 2 B:ASP 19[0] H:TYR 100E[OH] 3.12 3 H:TYR 100H[OH] B:THR 49[OG1] 3.19 4 H:TYR 100H[OH] 2.78 B:ASP 46[OD1] H:TYR 100E[O] B:GLN 42[NE2] 5 3.04 6 L:ARG 24[NH2] 2.89 A:ASP 276A[O] 7 L:ARG 93[NH2] 3.03 A:ASN 291[OD1] 8 L:SER 27A[0] 2.99 A:ASN 291[ND2] L:LEU 27C[O] A:ASN 291[ND2] 9 2.75 10 L:LEU 27E[O] 3.01 A:THR 40[OG1] L:HIS 27D[NE2] B:ASN 53[OD1] 11 2.78 L:ARG 93[NH2] 2.83 B:ILE 56[O] 12 L:ARG 93[NE] 3.05 B:ILE 56[O] 13

Table S2 (continued from prior page). Interactions between 1D12 Fab and influenza A virus HA, related to Figure 1

H: hydrogen bond; ASA: accessible surface area, Å²; BSA: buried surface area, Å²; ΔiG: solvation energy effect, kcal/mol; ||||: buried area percentage, one bar per 10%. (Table continued on next page)

((\mathbf{C})	HA	Residues	that interact	with	heavy	chain
1	\sim		1001000	that mitoraot	****	nouvy	oniuni

(D) Heavy chain residues that interact with HA

	HA atoms	ASA	BSA	ΔiG	Heavy cl	nain atoms ASA	BSA	ΔiG
HA1	A:HIS 18	106.81	18.78	0.05	HA1 H:MET 100B	148.11	20.92	0.33
	[CB] [CG] [CD2] [CE1]					[CE]		
	[NE2]		II		H:TYR 100F	164.94	2.45	-0.03
	A:THR 318	87.28	2.70	-0.03		[OH]	1	
	[0]				HA2 H:THR 28	141.86	15.75	-0.16
HA2	B:LEU 17	29.50	0.86	-0.01	[C][O]] [OG1] [CG2]		
	[0]				H:PHE 29	125.38	79.29	1.18
	B:ILE 18	159.65	23.12	-0.18	[CA][O] [CD1] [CE1]		
	[CA][C][O]					[CE2] [CZ]	1111111	
	B:ASP 19	99.80	60.07	0.25	H:GLY 31	22.93	7.85	-0.09
						[0]		
			111111		H:TYR 32	48.66	14.22	0.13
	B:GLY 20	13.29	8.45	0.02	[CD	2] [CE2] [OH]		
	[N][CA][C][O]				H:LYS 95	. 12.75	6.51	-0.20
	B:TRP 21	116.72	27.42	0.13		[CE] [NZ] ^H		
	[CD1] [NE1] [CZ2]				H:ALA 98	113.26	5.53	0.09
	B:ASP 37	12.99	0.24	-0.00		[CA]		
	[0]				H:VAL 99	63.45	7.15	-0.08
	B:TYR 38	159.49	55.23	0.52		[C][O]		
					H:THR 100	144.94	49.29	0.51
					[CA][C][O][CB]		
		171 57	EO 40	0.26	H:ALA 100A	38.34	2.28	0.03
		174.57	52.40	0.20				4.04
					H:MET 100B	148.59	81.36	1.61
		11 00	1/ 00	0.24		A] [CB] [SD]		
		14.09	14.09	0.24			400.40	0.00
	B:GLN 42	101.05	05 /0	-0.27	HITR TOUE	140.02	133.42	0.69
		101.05	33.43	-0.27				
	B'SER 43	42 27	1 61	0.01		16/ 08	5/ 20	0.34
			1.01	0.01		11 CE11 CE21	54.25	0.54
	BILE 45	58 77	57 42	0.92	[00][00			
	[CG1] [CG2] [CD1]			0.02	H·TYR 100H	133.32	63 86	0.06
	B:ASP 46	87.14	29.21	-0.25		21 [CZ] [OH] ^H		0.00
	[CA][CG][OD1] ^H [OD2]					-,, , , , , , , , , , , , , , , , , , ,		
	B:THR 49	63.70	34.97	0.25				
	[CB] [OG1] ^H [CG2]							

Table S2 (continued from prior page). Interactions between 1D12 Fab and influenza A virus HA, related to Figure 1

H: hydrogen bond; ASA: accessible surface area, $Å^2$; BSA: buried surface area, $Å^2$; Δ iG: solvation energy effect, kcal/mol; ||||: buried area percentage, one bar per 10%.

(E) HA residues that interact with light chain

(F) Light chain residues that interact with HA

-								
	HA atoms	ASA	BSA	ΔiG	Light chain atoms	ASA	BSA	ΔiG
HA1	A:THR 40	60.24	32.77	0.26	HA1 L:ARG 24	152.45	55.68	-0.81
	[CB] [OG1] ^H [CG2]				[CD][NE][CZ][I	NH1]		
	A:GLU 41	42.40	1.59	-0.02	[N	H2] ^H	1111	
	[0]		1		L:SER 26	60.84	43.82	-0.36
	A·THR 42	20 10	5 60	0.08	[CA][O][CB][OG 1		
		_00	111	0.00	1 HIS 27	86 20	21 26	0.28
	A-1 VS 54	110.02	10.22	-0.31		CE11		0.20
		110.02	10.22	-0.01		59.16	13 33	0.44
		111 10	20 42	0.01		00.10	45.52	0.44
		114.40	29.43	-0.01				0.00
			Ш		LILEU 27C	86.28	18.95	-0.22
					l	0 J.		
	A:CYS 277	30.88	3.84	0.06	L:HIS 27D	74.58	2.69	0.04
	[CA]				[CA][C]	[0]		
	A:GLU 278	129.23	59.23	0.00	L:LEU 27E	180.99	109.00	1.13
	[N][O][CB][CG]				[N][CA][C][O] ^H [CB]		
	[CD][OE1][OE2]					CD2		
	A:ASP 280	68.25	2.69	0.04	L:ASN 28	. 84.53	16.21	0.26
	[CB]					CB 1		0.20
	[00] ∆·II E 289	82 77	31 70	0.48		47 30	0.5/	0 15
		02.11	01.70	0.40	E.THIC 09	-01	9.94 III	0.15
		44 70		0.10		202]	111	0.00
	A:SER 290	41.78	1.22	0.12	LILEU 92	22.34	4.85	0.08
						CD2]		
	A:ASN 291	157.68	110.42	-0.82	L:ARG 93	124.57	20.53	-0.76
	[N][CA][C][O]				[N	H2] [∺]		
	[CB] [CG] [OD1] ^H				HA2 L:LEU 27C	85.59	1.59	-0.02
	[ND2] ^H					[0]		
	A:LEU 292	53.07	16.12	0.26	L:HIS 27D	75.39	63.22	-0.20
	[CA] [CD2]				[CA][C][CG][I	ND1]		
	A:PRO 293	68.16	12.82	0.21		IE21 ^Ĥ		
	[CG][CD]		П		L:LEU 27E	181.66	72.00	1.07
	A:LEU 316	108.08	14.82	0.24	IN 11C 11O 11CB11	CG 1		
	[CD2]			•				
	A-THR 318	87 28	18 06	0.29		00 I] 0/ 70	35 68	0.03
		07.20	10.00	0.20		104.70	00.00	-0.05
<u>ц</u> лр		62 75	111	0.45		57.04	 5 1 G	0.00
TIAZ		03.75	20.94	0.45	LITR 32	0/104	5.10	-0.00
		07.07		0.05		OHJ		0.00
	BILEU 52	97.87	53.99	0.85	L:LEU 92	22.50	11.09	0.03
					[O][CG][CD1][0	CD2]		
	[CD1] [CD2]				L:ARG 93	124.20	58.58	-0.86
	B:ASN 53	86.58	26.44	-0.37	[CA][CG][CD][N	NE] ^H		
	[CG] [OD1] ^H [ND2]				[CZ] [N	H2] ^H	11111	
	B:LEU 55	92.32	14.26	0.22	L:THR 94	106.72	4.85	0.08
	[O][CB][CD2]				[(CG2]		
	B:ILE 56	137.78	97.68	1.04	`		·	
	[C][O] ^H [CB]							
	B'GIU 57	126 34	8 37	0 13				
	[CA1[CB1			0.10				
	BI VS 58	173 96	5 37	0.06				
	IN 11001		0.07	0.00				

Table S3. The HA residues that compose the 1D12 epitope, related to Figure 5Residues that differ from the H7N9 SH13 (reference sequence) are in gray shade. Glycans presentat positions 33 and 280 in group 1 HA1 are highlighted in red.

			HA1	HA2
Group	Subtype	Strain	31 32 33 33 33 33 44 44 44 44 44 44 44 44 44	21 33 33 33 33 33 33 33 33 35 55 55 55 55
	H7N9	A/Shanghai/1/2013	ERGTETKACEDISNLPLTLIDG	WDYKSTQSIDTLNLIEK
	H7N9	A/Netherlands/219/2003	ERGTETKACEDISNLPLTLIDG	WDYKSTQSIDTLNLIEK
	H7N9	A/Anhui/1/2013	E R G T E T K A C E D I S N L P L T L I D G	W D Y K S T Q S I D T L N L I E K
	H3N2	A/Hong Kong/1/1968		W D L K S T Q A I D N L N V I E K
	H3N2	A/Bangkok/1/1979	N D Q T E L S / C S E P N D K P L T M I D G	W D L K S T Q A I D N L N V I E K
	H3N2	A/Phillipines/2/1982	N D Q T E L S / C S E P N D K P L T M I D G	W D L K S T Q A I D N L N V I E K
	H3N2	A/Beijing/353/1989	NDQTELS/CSEPNDKPLTMING	W D L K S T Q A I D N L N V I E K
	H3N2	A/Moscow/10/1999	N D Q T E L S / C N E P N D K P L T M I N G	WDLKSTQAINNLNVIEK
	H3N2	A/Wyoming/3/2003	N D Q T E L S / C N E P N D K P L T M I N G	WDLKSTQAINNLNLIGK
2	H3N2	A/Wisconsin/67/2005	N D Q T E L S / C N E P N D K P L T M I N G	WDLKSTQAINNLNLIGK
	H3N2	A/Brisbane/10/2007	N D Q T E L S / C N E P N D K P L T M I N G	WDLKSTQAIDNLNLIGK
	H3N2	A/Perth/16/2009	N D Q T E L S / C N E P N D K P L T M I N G	WDLKSTQAIDNLNLIGK
	H3N2	A/Victoria/361/2011	N D Q T E L S / C N E P N D K P L T M I N G	W D L K S T Q A I D N L N L I G K
	H3N2	A/Texas/06/2012	N D Q T E L S / C N A P N D K P L T M I N G	WDLKSTQAIDNLNLIGK
	H3N2	A/Texas/50/2012	N D R T E L S / C K E P N D K P L T M I N G	WDLKSTQAIDNLNLIGK
	H3N2	A/Switzerland/9715293/2013	NDRTELS/CKEPNDKPLTMING	WDLKSTQAIDNLNLIGK
	H3N2	A/Alaska/29/2014	NDRTELS/CKEPNDKPLTMING	WDLKSTQAIDNLNLIGK
	H10N8	A/Jiangxi/IPB13/2013	NEQTETKNCEKNTRLPLTMVDG	W D Y K S T Q A I D T L N L V E K
	H1N1	A/South Carolina/1/1918		WDQKSIQNIDIVNVIEK
	H1N1	A/Puerto Rico/8/1934		WDQKSIQNINIVNVIEK
	H1N1	A/New Jersey/1976	EK@VNLG/CNK@ISLPMIMIDG	WDQRSIQNIDIVNVIEK
	H1N1	A/Singapore/6/1986	EK@VNLK/CDK@SSLPMIMIDG	WDQKSIQNINIVNVIEK
	H1N1	A/Beijing/262/1995	EK@VNLK/CDK@SSLPMIMIDG	WDQKSIQNINIVNVIEK
	H1N1	A/New Caledonia/20/1999	EK@VNLK/CDK@SSLPMIMIDG	WDQKSIQNINIVNVIEK
	H1N1	A/Solomon Island/3/2006	EK@VNLK/CDK@SSLPMTMIDG	WDQKSTQNINTVNVIEK
	H1N1	A/Brisbane/59/2007	EK@VNLK/CDK@SSLPMTMIDG	WDQKSTQNINTVNVIEK
4	H1N1	A/California/04/2009	EK@MNLK/C@T@TSLPMTMIDG	WDLKSTQNIDTVNVIEK
1	H2N2	A/Singapore/1/1957	ER@KDIN/CEK@TTLPMTMIDG	W D K E S T Q K F D T V N V I E K
	H2N2	A/Canada/720/2005	ER@KDINICEK@TTLPMTMIDG	WDKESTQKFDTVNVIEK
	H5N1	A/Hong Kong/483/1997	EK@QDIN/CNK@SSMPMTMIDG	WDQESTQKIDTVNIINK
	H5N1	A/Vietnam/1203/2004	EK@QDID/CNK@SSMPMTMIDG	WDKESTQKIDTVNIIDK
	H5N1	A/Thailand/1(Kan-1)/2004	EK@QDID/CNK@SSMPMTMIDG	WDKESTQKIDTVNIIDK
	H5N1	A/Indonesia/05/2005		
	H5N1	A/Turkey/Turkey/1/2005		
	H5N1	A/Anhui/1/2005	EK@QDID/CNK@SSMPMTMIDG	WDKESTOKIDTVNIIDK
	H5N1	A/Egypt/0636-NAMRU3/2007	EK@QDINICNK@SSMPMTMIDG	WDKESTQKIDTVNIIDK
	H9N2	A/Hong Kong/1074/1999	E T N K E L S / C V Q @ S T L P L V L V A G	W D R D S T Q K I D T V N I V D K