

Supplementary Material

Rewiring of Gene Expression in *Pseudomonas aeruginosa* During Diauxic Growth Reveals an Indirect Regulation of the MexGHI-OpmD Efflux Pump by Hfq

Marlena Rozner, Ella Nukarinen, Michael T. Wolfinger, Fabian Amman, Wolfram Weckwerth, Udo Bläsi* and Elisabeth Sonnleitner*

*Correspondence:

udo.blaesi@univie.ac.at

elisabeth.sonnleitner@univie.ac.at

1 Supplementary Figures and Tables

1.1 Supplementary Tables

Supplementary Table 1 Compilation of the T3/T1, T2/T1 and T3/T2 RNA-seq, Ribo-seq and translatome datasets. The numbers of transcripts, ribosome footprints and peptides with a fold-change ≥ 2 or ≤ 2 and a multiple testing adjusted *p*-value ≤ 0.05 are listed in bold, whereas values below these thresholds are shown in pale writing.

1.2 Supplementary Figures

Supplementary Figure S1 Venn diagrams showing the number of transcripts with increased (left panels) or decreased (right panels) abundance in RNA-seq, Ribo-seq and the MS data obtained after analysis of the following datasets: (A) T3 vs T1 (mannitol uptake vs succinate uptake); (B) T2 vs T1; (C) T3 vs T2; For significance only a FC ≥ 2 or ≤ 2 and a multiple testing adjusted *p*-value ≤ 0.05 are considered for the RNA-seq, Ribo-seq and MS data. The corresponding transcripts, ribosomal footprints and MS data with increased or decreased abundance are listed in **Supplementary Table 1**.

Supplementary Figure S2 Meta-analysis of the dataset T3 vs T1 of normalized synthesis / expression of differentially abundant proteins resulting from the MS data and transcripts revealed by Ribo-seq and RNA-seq, respectively. The genes are grouped into the corresponding pathways (<u>http://www.kegg.jp/kegg-bin/show_organism?org=pae</u>). For each group the averaged log₂ fold changes of significantly modulated members are shown. The colour code shown in the scale at the left denotes log₂-fold changes. Red indicates an overall decrease and green indicates an overall increase in the protein and mRNA levels in a particular pathway.

	2	
	e	١.
	2	,
	-	

		T2 vs T1									
PA	gene	RNA-seq		Ribo-seq		MS					
number	name	FC	p-value	FC	p-value	FC	p-value				
Pentose phosphate pathway											
PA3183	zwf	25.4	0.00E+00	1.91	2.94E-17	4.99	3.38E-04				
Entner–Doudoroff pathway											
PA3181	edaA	82.5	0.00E+00	5.84	6.37E-54						
PA3194	edd	14.0	0.00E+00	2.28	4.86E-31	-1.22	4.56E-01				
PA3182	pgl	85.6	0.00E+00	3.21	3.07E-31	7.09	3.70E-04				
Mannitol metabolism											
PA2344	mtlD	17.2	0.00E+00	1.02	7.69E-01	1.42	5.73E-01				
PA2344	mtlZ	8.14	0.00E+00	1.03	7.06E-01	1.61	5.95E-01				

Supplementary Figure S3 (A) *Pae* utilizes the pentose phosphate (PP) and the Entner-Doudoroff (ED) pathways for metabolization of different carbohydrates, such as mannitol (Dolan et al., 2020; Park et al., 2020). Key enzymes for these pathways are highlighted in red. (B) RNA-seq, Ribo-seq and MS data for the functions highlighted in red in (A).