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Methods 
 
Study design 
 
Plasma samples were collected in two 10-ml EDTA and a 4.5-ml tube with sodium citrate and centrifuged at 2,000×g 
for 10 min and fractionated by automation (Janus robotic liquid handlers; PerkinElmer). Typically, 6-8 hours were 
elapsed between sample collection and freezing. 
 
Cytokines 
 
Regardless of SARS-CoV-2 status, all plasma samples were inactivated by adding TritonX-100 to plasma to final 
concentration of 1% TritonX-100, followed by incubation in the biosafety hood at room temperature for 2 hours. 1 μl 
of each sample was incubated with antibody probes at 4°C overnight. Matched pairs of antibodies attached to unique 
DNA oligonucleotides were used for each of the targeted plasma proteins. After binding, the extension mix was added 
and the products were extended and amplified using 17 cycles of PCR (Applied Biosystems 9700, Life Technologies). 
Next, 2.8 μl of each PCR product was added to the detection mix and loaded into the sample wells of a Fluidigm 96.96 
Dynamic Array plate (Fluidigm Corporation) while kit primers were loaded into the primer wells. The Dynamic Array 
was primed in a Fluidigm HX IFC controller and then loaded into the Fluidigm Biomark imaging thermocycler for 
quantitative PCR. Quantification cycle values for each measurement were determined using Fluidigm’s Real-Time 
PCR Analysis software and BiomarkDataCollection version 4.1.3. Data were normalized using the extension positive 
control and the negative control quantitation cycle values. Each detected protein produced a unique barcode resulting 
in a high-sensitivity, high-specificity readout with NGS. The Explore panel includes protein targets from 
Cardiometabolic, Inflammation, Neurology and Oncology panels. Pooled plasma samples were used to evaluate the 
average intra-assay and inter-assay coefficient of variance, which were calculated to be 13.5% and 23.8% across the 
4 panels, respectively.  
 
Lipidomics 
 
Lipids were extracted from 75 µl of plasma using an automated BUME extraction after adding the identical amount 
of deuterated internal standards prior to extraction.1 The extracts were dried under nitrogen and reconstituted in 
0.25mL of dichloromethane:methanol (50:50) with 10mM ammonium acetate. The samples were analyzed via both 
positive and negative mode electrospray to maximize the coverage of lipids. The infusion-MS analysis using Sciex 
SelexION-5500 QTRAP was performed in multiple reaction monitoring mode (MRM) with a total of more than 1,100 
MRMs, in which MS parameters were optimized for each species. Shimadzu LC was utilized for automated sample 
injection. Identification of lipids were based on retention index, precursor ion match (+/- 10 ppm) and MS/MS spectra. 
The lipid species were quantified by calculating their peak areas in reference to internal standards having the identical 
head groups, then multiplying by the concentration of internal standard. Total levels of lipid classes were calculated 
by adding the calculated concentrations of all species within each class together. Overall process variability was 
determined by calculating the median relative standard deviation (RSD) for all endogenous lipids present in the 
technical replicates and it was calculated to be 4.5%. 
 
Metabolomics 
 
From 225 µl of plasma, metabolites were extracted using the automated MicroLab STAR® system from Hamilton 
Company (Reno). For metabolite extraction, methanol was added to samples and shaken for 2 min (Glen Mills 
GenoGrinder 2000). Followed by centrifugation, the supernatant was collected, divided into 5 equal aliquots and dried. 
Each aliquot was eventually reconstituted in organic solvent appropriate for four methods of UPLC-MS/MS analyses 
and analyzed; one reversed phased UPLC-MS/MS in positive ion mode with elution gradient optimized for 
hydrophobic metabolites (methanol and acetonitrile containing 0.05% perfluoropentanoic acid and 0.1% formic acid, 
one reversed phased UPLC-MS/MS in positive ion mode with elution gradient optimized for hydrophilic metabolites 
(water and methanol with 0.05% perfluoropentanoic acid and 0.01% formic acid), one reversed phased UPLC-MS/MS 
in negative ion mode for basic metabolites (methanol and water with 6.5 mM ammonium bicarbonate at pH 8) and 
one for hydrophilic interaction chromatography UPLC-MS/MS with negative ion mode (water and acetonitrile with 
10 mM ammonium formate at pH 10.8). One aliquot was saved as back up. For each method, a Waters ACQUITY 
UPLC was coupled to Q-Exactive Hybrid Quadrupole-Orbitrap mass spectrometers from Thermo Scientific. For 
reversed phase LC, Waters UPLC BEH C18 column (2.1 mm × 100 mm, 1.7 µm) was utilized as an analytical column 
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while Waters UPLC BEH Amide column (2.1 mm × 150 mm, 1.7 µm) was used in hydrophilic interaction 
chromatography. Data-dependent analysis was carried out for all methods with scan range of m/z 70-1000 and a mass 
resolution of 35,000. Identification of metabolites was made based on matching with a spectral library, which was 
built using purified standards. In addition to retention time index, m/z of precursor and product ions were taken into 
consideration with +/- 10 ppm mass tolerance. Metabolites were quantified by calculating their peak areas, followed 
by normalization using a quality control sample that was injected periodically to monitor MS performance. Instrument 
variability was determined by calculating the median RSD for the internal standards that were added to each sample 
prior to injection into the mass spectrometers, which was calculated to be 4.9%. Overall process variability was 
determined by calculating the median RSD for all endogenous metabolites across the technical replicates and it was 
calculated to be 8.6%. 
 
Pathway and network analysis 
 
The protein names from Olink data were mapped to the canonical gene symbols using DAVID Bioinformatics 
resource. The metabolite and lipid names were mapped to the Human Metabolome Database and Kyoto Encyclopedia 
of Gene and Genome compound accessions using the Metaboanalyst R package (version 5.0). The remapped gene 
symbols and compound accessions along with their corresponding log2 fold change and adjusted P value were loaded 
into Ingenuity Pathway Analysis (IPA; Qiagen). Candidates were shortlisted for pathway analysis using an absolute 
log2 fold-change≥0.50 and an adjusted p≤0.05. IPA was set to use the fold change direction when assessing the 
directionality of pathway change whenever possible. The software performed the core pathway analysis using the 
default settings. Pathways that have an adjusted p≤0.05 were considered as statistically significant and utilized for 
further interpretation. 
 
Machine learning analysis 
 
Data pre-processing was implemented as follows. Candidate variables considered for inclusion in the model included 
both molecular markers (cytokines, lipids, and metabolites) and demographics (age, sex, race, ethnicity, and 
comorbidity). The dataset was split 80/20 into a training subset and a held-out test set observations, respectively, using 
standard stratified splitting methods provided by the Caret package in R.2 The paired pre-COVID-19 and post-COVID-
19 samples were not included in the stratified split and were instead placed in the test set directly. When multiple 
observations from a single individual were available, only the earliest observation (with at least one analyte in the 
target feature set) was retained. Any remaining missing values in molecular analyte data were assumed to be below 
the limit of detection and thus were imputed using the minimum value for that analyte across all samples. Demographic 
(age, sex, race, ethnicity) and comorbidity (Charlson Comorbidity Index) features were preprocessed as follows. Age 
was reported in years. Sex was binary encoded as either Male or Female. Race was predominately “White” for this 
cohort, so the race feature was binary encoded as either “White” or “Other”. Similarly, ethnicity was predominately 
“Not Hispanic or Latino” for this cohort, so the ethnicity feature was binary encoded as either “Not Hispanic or Latino” 
or “Other”. For both race and ethnicity, missing values encoded as their own class automatically by AutoGluon. 
Comorbidity values were median imputed. Class labels based on the WHO ordinal scale were binned into 4 levels as 
previously defined.  
 
Exploratory analysis was performed within the 80% training set, leaving the 20% test set untouched. A 10-fold 
stratified cross-validation within our training set was used for model selection using the Caret package in R.2 
Classification methods were selected in agreement with established best practices to deal with the high dimensionality 
without overfitting.3  
 
To this end, we compared LASSO to the ensemble method of AutoGluon’s (Version 0.1.1b20210326) tabular 
prediction. AutoGluon outperformed LASSO in the cross-validation on training data, and thus was chosen as the 
classifier for final evaluation on the test set. AutoGluon performs model stacking of a large variety of machine learning 
algorithms (e.g., XGboost, random forests, deep neural networks, KNN, et cetera) to create an ensemble classifier. It 
avoids overfitting the data automatically through a variety of sophisticated machine learning methods, such as model 
ensembling/stacking, regularization applied to individual models in the stacked ensemble, and careful splitting and 
tracking of out-of-fold data points during training. AutoGluon was run with parameters “eval_metric='accuracy', 
presets='medium_quality_faster_train', and time_limit=6000”, leaving all other parameters were left as default. We 
provide our AutoGluon code as a Supplementary Material. Inclusion of the demographic and comorbidity features did 
not statistically significantly change the performance of the “all analytes” feature set. Additionally, a model using only 



4 
 

demographic and comorbidity features had statistically significantly lower accuracy than the “all analytes” model in 
the held-out test set. This is consistent with results from other studies showing that demographics and comorbidity 
features did not improve model results.4,5 
 
Biomarker evaluation was performed using feature importance scores of the final AutoGluon model. Feature 
importance scores were generated using the “feature_importance” function of AutoGluon-Tabular with the parameters 
“subsample_size = None”, “num_shuffle_sets = 10”, and “time_limit = 12000”. Input variables with a positive feature 
importance score represent features that, when removed, cause the model to decrease in accuracy, while variables with 
a negative score cause the model performance to improve when they are removed from the model. Thus, the list of 
features with a positive feature importance score and a p≤0.05 were considered as candidate biomarkers for predicting 
COVID-19 severity. 
 
Proteomics and glycoproteomics 
 
We had 24 individual COVID-19 patients enrolled for whom we also had samples available in the biorepository that 
were collected before these individuals contracted COVID-19. After samples were aliquoted for the multi-omics 
experiments with proteomics (proximity extension assay), lipidomics and metabolomics, there was adequate amount 
of plasma available for mass spectrometry-based total proteomics and glycoproteomics experiments for 21 patients of 
24 patients with relative quantitation using tandem mass tags (TMT). As the limit of multiplexing and relative 
quantitation with tandem mass tags is 16 samples per experiment, we divided these 21 patients (and their pre-COVID-
19 and COVID-19 samples numbering 42) into three separate batches of 8, 8 and 5 patients. Detailed information for 
these patients is provided in Supplementary Table 4. Plasma samples were diluted 1:50 and protein concentration was 
determined by BCA assay. For 21 individuals, plasma samples collected before and after COVID-19, equal amount 
of protein was trypsin digested. Dried plasma samples were reconstituted in 100 µl of 8 M urea in 50 mM 
triethylammonium bicarbonate (TEAB), pH 8.5 and reduction was carried out with dithiothreitol at final concentration 
of 10 mM (Sigma) at 37°C. Reduced samples were cooled to room temperature (RT) and 40 mM iodoacetamide 
(Sigma) was added. Samples were incubated for 15 minutes in dark at room temperature. TEAB was used to dilute 
samples 1:10 and sequencing-grade trypsin was added to a final amount ratio of 1:20 (trypsin:total protein). The 
digested peptides were labeled with tandem mass tag (16-plex TMT) reagents as per the manufacturer’s instructions 
(Thermo Fisher). Briefly, peptides were resuspended in 50 mM TEAB (pH 8.0) and mixed with TMT reagents which 
was dissolved in anhydrous acetonitrile. After incubating for 1 hour at RT, the reaction was quenched by 1M tris 
buffer, pH 8.5. After labeling check, labelled samples were pooled into one and either size-exclusion chromatography 
or basic pH reversed-phase fractionation was performed. An aliquot of dried peptides was resuspended in 100 μl of 
0.1% formic acid and injected into Superdex peptide 10/300 column (GE Healthcare) also equilibrated with 0.1% 
formic acid. The early fractions were collected starting at 10 minutes after injection (total run time of 130 minutes) 
and concatenated to 12 fractions, which were analyzed by LC-MS/MS. Another aliquot of total peptides was cleaned 
up by C18 TopTips (Glygen) and fractionated by bRPLC on a reversed phase C18 column (4.6 mm ×250 mm column) 
using an Ultimate 3000 UHPLC System. 5 mM ammonium formate, pH 9 and 5 mM ammonium formate in 90% 
acetonitrile, pH 9 were used as solvent A and B. Ninety-six fractions were collected for a total of 120 min and were 
concatenated into 12 fractions and analyzed by LC-MS/MS.  
 
A modification of previously published LC-MS/MS parameters were used.6 Specifically, 12 fractions from SEC were 
selected based on the UV profile (214 nm, 220 nm) and separately 12 concatenated fractions of bRPLC were analyzed 
by Orbitrap Eclipse mass spectrometer (Thermo Fisher Scientific). Liquid chromatography for separation of peptides 
was performed on an EASY-Spray column (75 μm × 50 cm, PepMap RSCL C18, Thermo Fisher Scientific) packed 
with 2 μm C18 particles. The column was maintained at 50 °C. Solvent A and B were 0.1% formic acid in water and 
0.1% formic acid in acetonitrile, respectively. Injected peptides were trapped on a trap column (100 μm × 2 cm, 
Acclaim PepMap100 Nano-Trap, Thermo Fisher Scientific) at a flow rate of 20 µl/min. Every run was 130 minutes 
with flow rate being 300 nl/min. The gradient used for separation was equilibration at 3% solvent B from 0 to 4 min, 
3% to 10% sol B from 4 to 10 min, 10% to 35% sol B from 10.1 to 125 min, 35% to 80% sol B from 125 to 145 
minutes. followed by equilibration for next run at 5% sol B for 5 min. Ionization of eluting peptides was performed 
using an EASY-Spray source at an electric potential of 2 kV. All experiments were done in data dependent acquisition 
mode with top 15 ions isolated at a window of 0.7 or 1.2 m/z and default charge state of +2. Only precursors with 
charge states ranging from +2 to +7 were considered for MS/MS events. Stepped collision energy was applied to 
fragment precursors at normalized collision energies of 15, 25, 40. MS precursor mass range was set to 375 to 2000 
m/z and 100 to 2000 for MS/MS. Automatic gain control for MS and MS/MS were 1 × 106 and 1 × 105 and injection 
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time to reach AGC were 50 ms and 200 or 250 ms respectively. Exclude isotopes feature was set to “ON” and 60 s 
dynamic exclusion was applied. Data acquisition was performed with option of Lock mass (441.1200025 m/z) for all 
data. Database searching was performed using publicly available software pGlyco Version 2.2.0.7,8 Glycan database 
containing 8,092 entries, available with the software was used and Uniprot Human Reviewed protein sequences 
(20,432 entries) were used as proteins sequence fasta file. Cleavage specificity was set to fully tryptic with 2 missed 
cleavages and precursor and fragment tolerance were set to 5 and 20 ppm. Cysteine carbamidomethylation was set as 
fixed modification and oxidation of methionine as variable modification. The results were filtered to retain only entries 
which had 1% FDR at glycopeptide level. Reporter ion quantification was performed in Proteome Discoverer 2.5 
using “reporter ion quantifier” node and Ids were matched with quantitation on a scan-to-scan basis (MS/MS). 
Glycopeptide PSMs were combined to reflect unique glycopeptides per search and reporter ion intensities were 
summed up. Spectra were manually verified for glycan oxonium ions and quality. All sialic acid glycopeptides’ spectra 
were verified for presence of sialic acid-specific oxonium ions; 274.09, 292.1 and 657.23. Core fucosylated 
glycopeptides spectra were checked for at least one peptide+HexNAc+Fuc ion. Proteomics dataset was searched using 
Sequest in Proteome Discoverer 2.4. 
 
scRNA-seq analysis  
 
Publically available scRNA-seq data was analyzed from three COVID-19 studies using the in-house platform at 
nference that currently hosts 127 single-cell studies profiling 2.7 million cells.9 Three COVID-19 studies were 
identified which profiled the expression of cells in patients with varying symptomatic profiles ranging from 
mild/moderate to severe. 10-12 The study by Bost et al. profiled 50,615 cells from bronchoalveolar lavage fluid of three 
mild, six severe COVID-19 patients and 8 healthy controls. 12 The study by Wilk et al. isolated cells from peripheral 
blood samples derived from only ICU admitted COVID-19 patients. 11 For our downstream analyses, we defined 
severe COVID-19 patients as those that required ventilator support and the rest as moderate/mild symptomatic cases. 
This resulted in 4 patients/samples with severe COVID-19 symptoms and 4 patients/samples with moderate symptoms 
and 6 healthy controls with a total of 44,721 cells. Finally, the study by Chua et al. profiled 160,528 cells from 
nasopharyngeal and bronchial samples tissue isolated from 19 COVID-19 patients and 5 control patients.10 The 
severity of COVID-19 in this study was assessed as per the WHO guidelines. We specifically compared the expression 
profiles of cells isolated from 8 patients that presented mild/moderate symptoms and 11 patients with severe COVID-
19 symptoms. All the differential expression analyses of scRNA-seq datasets were performed using non-parametric 
Wilcoxon rank sum test implemented in FindMarkers function of SEURAT package (version 4.0.4) in R programming 
environment (4.1.0).13 For comparing scRNA-seq data with the plasma proteomics cohort, we computed the direction 
of gene expression between severity groups in each study cohort. 
 
Statistics 
 
Statistical significance of individual molecules was carried out for the severe and critical patients against the 
outpatients using Student's t-test with two tail distributions assuming equal variance. Resulting p-values were 
corrected for multiple testing using the Benjamini-Hochberg method to calculate adjusted p-values. For proteomics 
and glycoproteomics analysis of pre-COVID-19 and COVID-19 matched patient plasma samples, one-way ANOVA 
was performed to calculate significance between the three severity subgroups and individual fold-changes were 
calculated for all patients and a p≤0.05 was considered significant. Metaboanalyst 5.0 was employed to perform 
principal component analysis after scaling the data using autoscaling option.14 
 
Statistical significance of model performances between the four multi-omics models (All Lipids, All metabolites, 
Olink protein panel, and All analytes) and the two baseline models (one with only interleukin-6 and the other using 
the cytokine storm panel of cytokines) shown in Supplementary Figure 1D were computed using Fisher’s exact test. 
Confidence intervals in Supplementary Figure 1D were computed using a two-sided exact binomial test at a confidence 
level of 0.95.  
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Results 
 
Principal component analysis of -omics datasets 
 
Principal component analysis was carried out using data from proteomics alone (Supplementary Figure 2A), 
lipidomics alone (Supplementary Figure 2B) or the integrated multi-omics dataset (Supplementary Figure 2C). 
Although we observed a separation of the uninfected individuals (control) from hospitalized patients, no such 
separation could be discerned between the control and outpatient groups from this analysis. Further, among the 
hospitalized patients, patients who were classified as severe could not be separated from the critically ill group. 
 
Analysis for enriched pathways and cellular processes 
 
Pathway and network analysis to uncover distinguishing pathways between critical and severe cases showed an 
enrichment of processes related to protein synthesis and degradation (Supplementary Figure 3). EGFR-mediated 
signaling pathway molecules were enriched, along with those associated with protein post-translational modifications. 
Protein degradation via cathepsins and proteases was also elevated, which along with elevated levels of THOP1, TPP1 
and metabolites like hydroxyproline, points to increased turnover of extracellular matrix proteins and remodeling. A 
similar analysis to distinguish severe patients from outpatients enriched pathways involved in cellular organization, 
function and death (Supplementary Figure 4A). On the other hand, critical patients were separated from outpatients 
by an enrichment of pathways related to cellular response to therapeutics, signaling and death (Supplementary Figure 
3B). 
 
A multi-omic biomarker panel to predict COVID-19 severity 
 
Individualized predictions can be generated using the model developed in this study. This process would require the 
generation of a dataset based on the cytokine, lipid, and metabolite panels as well as demographic data for the 
individual. This dataset would then be preprocessed as described in the methods section using the same codebase 
developed here. Then the predictive model trained on our dataset could be used to generate predictions based on the 
new data. Results are reported as a probability the new individual is a member of each of the four classes this predictive 
model was trained on. The class with the highest probability is the predicted class. While this process describes how 
the model may be used directly for predictions using new data, the model was not intended to be used in a clinical 
setting without further validation and refinement. 
 
Cellular mRNA expression of predictive cytokine markers  
 

We observed a similar upregulation based on scRNA-seq data in the severe group for 17 proteins that were identified 
from our cytokine analysis.10-12  These 17 upregulated genes were TNF, PFDN2, PSME2, CXCL11, BTN3A2, CAPG, 
TGFA, FLT1, LTA4H, CASP1, DDX58, OLR1, CCL2, IL1B, LGALS9, MMP7 and HMOX1 (Figure 3 and 
Supplementary Figures 4 and 5). This upregulation at the mRNA level was defined as significant increase in 
expression in at least one cell type and in at least one of these three studies in the critical patient groups as compared 
to the severe group. We observed some genes with similar signals across multiple sc-RNA-seq studies and cell types. 
For example, CCL2 was consistently overexpressed in 8 cell types in two studies.10,12 C-C motif chemokine 2 (CCL2) 
is a chemotactic factor for monocytes and basophils and a ligand for CCR2 receptor, which suggests increased activity 
of monocytes and basophils in severely ill patients. LTA4H was consistently overexpressed in two single cell 
studies.11,12 Leukotriene A-4 hydrolase (LTA4H) is a bifunctional enzyme with catalytic activity for biosynthesis of 
the proinflammatory mediator leukotriene B4 and its upregulation in the severe group suggests dominance of the 
leukotriene pathway. Macrophage-capping protein (CAPG) is known to play an important role in macrophage 
function.15 Loss of CAPG in bone marrow macrophages profoundly inhibits macrophage colony stimulating factor–
stimulated ruffling. Correspondingly, CAPG was overexpressed in epithelial cells, CD14, CD16, monocytes and 
neutrophils, aligning with the functional requirement for the performance across all three studies. BTN3A2 was 
significantly elevated in five cell types (gamma delta T cells, DC, neutrophil, CD4 and CD8 family). 11 Interleukin-1 
beta (IL1B) functions to induce T-cells, neutrophils influx and activation and was elevated in two of the studies. 10,12 
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Supplementary Figure 1. Multi-Omic analysis of COVID-19 patients. (A) Distribution of controls and patients 
across various grades of severity. The patients are binned according to WHO ordinal scale for clinical improvement. 
(B) Distribution of patients with COVID-19 where and matched pre-COVID-19 samples were available and binned 
as per the WHO ordinal scales of clinical outcomes. (C) Distribution of sample collection time point and the duration 
of hospitalization for the admitted COVID-19 patients. (D) Bar plot showing the prediction accuracies in the held-out 
test set of classification models constructed using various selected molecular feature sets and features across -omics 
platform (Whiskers in bar plot indicate 95% confidence interval of mean). 
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Supplementary Figure 2. Principal Component Analysis shows clustering of severity subgroups across patients and 
controls using (A) 1,463 unique proteins, (B) 902 lipids, and (C) 3,383 multi-omic analytes (1,463 proteins, 902 lipids 
and 1,018 metabolites). 
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Supplementary Figure 3. Top scoring network analysis of molecules showing changes in critical vs. severe cases of 
COVID-19. Red and green nodes indicate upregulated and downregulated molecules, respectively. Orange nodes 
indicate molecules with predicted activation. 
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Supplementary Figure 4. Top scoring networks of (A) severe vs. outpatient COVID-19 cases and (B) critical vs. 
outpatient COVID-19 cases using Ingenuity Pathway Analysis. Red and green nodes indicate upregulated and 
downregulated molecules, respectively. Blue nodes indicate molecules with predicted inhibition. White node 
represents molecules not detected in the study.  
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Supplementary Figure 5: Box plots of (A) cytokines and other proteins, and (B) 14 classes of lipids. NS - No 
significance; *Adjusted p≤0.05; **Adjusted p≤0.01; ***Adjusted p≤0.001. Abbreviations: LPC – 
lysophosphatidylcholine; LPE – lysophosphatidylethanolamine; PC – phosphatidylcholine; PE – 
phosphatidylethanolamine; PI – phosphatidylinositol; CE – cholesteryl ester; MAG – monoglyceride; DAG – 
diglyceride; TAG – triglyceride; SM – sphingomyelin; CER – ceramide; DCER – dihydroceramide; HCER – 
hexosylceramide; LCER - lactosylceramide 
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Supplementary Figure 6: Genes upregulated significantly in severe COVID-19 compared to moderate/severe 
COVID-19 in Wilk’s study11 and the current study. The pink boxes highlighted in the figure denotes those genes which 
are upregulated in severe as compared to moderate/mild cohort in both scRNA-seq and plasma proteomics analysis. 
Abbreviations:  SC - stem cells; RBC - red blood cells; pDCs - plasmacytoid dendritic cells; NK - Natural Killer; gD 
T cells - Gamma delta T cells; DCs - conventional dendritic cells; Treg - regulatory T cell; NK/NKT - Natural 
killer/Natural killer T cells; Neu - Neutrophils; MoDC - Monocyte-derived dendritic cells; CTL - cytotoxic T 
lymphocytes. 
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Supplementary Figure 7: Genes upregulated significantly in severe COVID-19 compared to moderate/severe 
COVID-19 in Chua’s study10 and the current study. The pink boxes highlighted in the figure denote genes which are 
upregulated in severe as compared to moderate/mild cohort in both scRNA-seq and plasma proteomics analysis. 
Abbreviations:  SC - stem cells; RBC - red blood cells; pDCs - plasmacytoid dendritic cells; NK - Natural Killer; gD 
T cells - Gamma delta T cells; DCs - conventional dendritic cells; Treg - regulatory T cell; NK/NKT - Natural 
killer/Natural killer T cells; Neu - Neutrophils; MoDC - Monocyte-derived dendritic cells; CTL - cytotoxic T 
lymphocytes. 
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Supplementary Figure 8: Box plots showing variation at protein level and their N-linked glycosylation sites across 
different patient groups for proteins: Haptoglobin (A), Kininogen-1 (B) and Alpha-1-acid glycoprotein (C). NS - No 
significance; **Adjusted p≤0.05; **Adjusted p≤0.01; ***Adjusted p≤0.001. Abbreviations: Hex – Hexose; HexNAc 
– N-acetylhexosamine; Neu5Ac – N-acetylneuraminic acid; Fuc – Fucose. 
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Supplementary Table 1: Complete list of 102 predictors of COVID-19 severity discovered in the study and 
their corresponding importance score and p-value 

Molecules Importance 
score p-value Omics Molecules Importance 

score 
p-

value Omics 

linoleamide (18:2n6) 0.079 <0.0001 M eicosapentaenoate (EPA; 
20:5n3) 0.004 0.0026 M 

LTA4H 0.05 <0.0001 P LILRA5 0.004 0.026 P 
oleamide 0.044 <0.0001 M PPP3R1 0.004 0.0026 P 

KRT19 0.036 <0.0001 P androstenediol (3alpha, 
17alpha) monosulfate 0.004 0.0026 M 

CCL7 0.027 <0.0001 P arachidonate (20:4n6) 0.004 0.0026 M 
heme 0.023 <0.0001 M delta-CEHC 0.004 0.0026 M 
VSIG4 0.021 <0.0001 P cortolone glucuronide 0.004 0.0026 M 
5-methyluridine 
(ribothymidine) 0.017 0.0001 M carnitine of C10H14O2 0.004 0.0026 M 

IL15 0.016 <0.0001 P CLEC6A 0.004 0.0026 P 
LGALS4 0.013 <0.0001 P theobromine 0.004 0.0026 M 
lactate 0.012 0.0014 M cysteine 0.004 0.0026 M 
PTGDS 0.0093 <0.0001 P 2-hydroxydecanoate 0.0033 0.0075 M 
CXCL9 0.0087 <0.0001 P LPE(18:1) 0.0033 0.0075 L 
ITGAV 0.008 0.0005 P TAG55:7-FA20:3 0.0033 0.0075 L 
leucylglycine 0.008 0.0001 M ITGB1 0.0033 0.0075 P 
OBP2B 0.008 0.0001 P PE(O-16:0/22:6) 0.0033 0.0075 L 
LRP1 0.0073 <0.0001 P DUOX2 0.0033 0.0075 P 
2,6-dihydroxybenzoic acid 0.0073 <0.0001 M RTBDN 0.0033 0.0075 P 
PC(16:0/20:1) 0.0067 0.0005 L IDUA 0.0033 0.0075 P 
eicosanedioate (C20-DC) 0.006 0.021 M N-methylpipecolate 0.0033 0.0075 M 
docosadienoate (22:2n6) 0.006 0.0019 M 4-hydroxyphenylpyruvate 0.0033 0.0075 M 
bilirubin (E,Z or Z,E) 0.006 0.0019 M HBQ1 0.0033 0.0075 P 
KRT18 0.006 0.015 P PI(18:0/20:3) 0.0033 0.048 L 
gamma-glutamylisoleucine 0.006 <0.0001 M phenylacetylcarnitine 0.0033 0.0075 M 
DPEP1 0.006 <0.0001 P AMY2B 0.0033 0.0075 P 
IGFBP6 0.006 <0.0001 P CDH6 0.0033 0.0075 P 
4-aminophenol sulfate (2) 0.006 <0.0001 M ursodeoxycholate 0.0033 0.026 M 
PE(P-18:1/18:1) 0.0053 0.0054 L PLA2G15 0.0027 0.018 P 
CTRC 0.0053 0.0001 P GOLM2 0.0027 0.018 P 
AOC3 0.0053 0.0001 P pentadecanoate (15:0) 0.0027 0.018 M 
gamma-glutamylthreonine 0.0053 0.0001 M RARRES2 0.0027 0.018 P 
ITGB6 0.0053 0.0001 P ANGPT2 0.0027 0.018 P 
glucose 0.0053 0.0001 M CXCL11 0.0027 0.018 P 
KLK10 0.0053 0.0001 P AMY2A 0.0027 0.018 P 
PE(O-16:0/18:1) 0.0047 0.012 L CA1 0.0027 0.018 P 
acetoacetate 0.0047 0.0048 M NRP1 0.002 0.041 P 
CTSB 0.0047 0.0007 P IRAG2 0.002 0.041 P 
DAG(18:1/18:2) 0.0047 0.0007 L NME3 0.002 0.041 P 
ENPP5 0.0047 0.0007 P arabinose 0.002 0.041 M 
CEACAM5 0.0047 0.0007 P DAG(16:1/20:4) 0.002 0.041 L 
ICOSLG 0.0047 0.0007 P 3-methyl catechol sulfate 0.002 0.041 M 
4-hydroxychlorothalonil 0.0047 0.0007 M TBC1D5 0.002 0.041 P 
CEP85 0.0047 0.0007 P TAG56:6-FA18:3 0.002 0.041 L 
SERPINB5 0.0047 0.0007 P DCER(18:1) 0.002 0.041 L 
CD1C 0.0047 0.0007 P sebacate (C10-DC) 0.002 0.041 M 
heneicosapentaenoate 
(21:5n3) 0.0047 0.0007 M CRACR2A 0.002 0.041 P 

CGA 0.0047 0.0007 P HAGH 0.002 0.041 P 
NTF4 0.0047 0.0007 P cys-gly, oxidized 0.002 0.041 M 
RAB6A 0.0047 0.0007 P trizma acetate 0.002 0.041 M 
Ep-CAM 0.004 0.0026 P PE(16:0/20:4) 0.002 0.041 L 
DPP7 0.004 0.0026 P cysteinylglycine disulfide 0.002 0.041 M 

*Abbreviations: P - protein; M - metabolite; L – lipid 
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Supplementary Table 2. Measure of precisions of the prediction accuracies in the held-out test set of classification models 

Features Groups True 
positive 

False 
negative 

False 
positive Precision 

Precision - 
Lower 95% 
CI 

Precision - 
Upper 95% 
CI 

Recall 
Recall - 
Lower 95% 
CI 

Recall - 
Upper 95% 
CI 

All cytokines 
and circulatory 
proteins 

Control 52 3 13 0.80 0.68 0.89 0.95 0.85 0.99 
Outpatient 19 14 3 0.86 0.65 0.97 0.58 0.39 0.75 
Severe 24 0 16 0.60 0.43 0.75 1.00 0.86 1.00 
Critical 21 15 0 1.00 0.84 1.00 0.58 0.41 0.74 

All lipids 

Control 35 20 18 0.66 0.52 0.78 0.64 0.50 0.76 
Outpatient 14 20 21 0.40 0.24 0.58 0.41 0.25 0.59 
Severe 17 8 25 0.40 0.26 0.57 0.68 0.46 0.85 
Critical 14 22 6 0.70 0.46 0.88 0.39 0.23 0.57 

All metabolites 

Control 54 1 5 0.92 0.81 0.97 0.98 0.90 1.00 
Outpatient 29 5 2 0.94 0.79 0.99 0.85 0.69 0.95 
Severe 16 9 23 0.41 0.26 0.58 0.64 0.43 0.82 
Critical 14 22 7 0.67 0.43 0.85 0.39 0.23 0.57 

All omics 

Control 53 2 2 0.96 0.87 1.00 0.96 0.87 1.00 
Outpatient 30 4 2 0.94 0.79 0.99 0.88 0.73 0.97 
Severe 19 6 17 0.53 0.35 0.70 0.76 0.55 0.91 
Critical 21 15 6 0.78 0.58 0.91 0.58 0.41 0.74 

Interleukin-6 

Control 24 31 22 0.52 0.37 0.67 0.44 0.30 0.58 
Outpatient 22 11 35 0.39 0.26 0.52 0.67 0.48 0.82 
Severe 13 11 23 0.36 0.21 0.54 0.54 0.33 0.74 
Critical 7 29 2 0.78 0.40 0.97 0.19 0.08 0.36 

Discussed 
cytokines 

Control 45 10 15 0.75 0.62 0.85 0.82 0.69 0.91 
Outpatient 18 15 10 0.64 0.44 0.81 0.55 0.36 0.72 
Severe 21 3 24 0.47 0.32 0.62 0.88 0.68 0.97 
Critical 13 23 2 0.87 0.60 0.98 0.36 0.21 0.54 

Cytokine storm 
panel 

Control 41 14 25 0.62 0.49 0.74 0.75 0.61 0.85 
Outpatient 18 15 17 0.51 0.34 0.69 0.55 0.36 0.72 
Severe 11 13 14 0.44 0.24 0.65 0.46 0.26 0.67 
Critical 16 20 6 0.73 0.50 0.89 0.44 0.28 0.62 
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Supplementary Table 3: Top scoring networks and molecules involved in SARS-CoV-2. 

Comparison Molecules in Network Score Focus 
Molecules Top Diseases and Functions 

Patients with 
critical 
COVID-19 
vs. severe 
COVID-19 

2-palmitoylglycerol,ACY1,B4GAT1,BCAM,calpain,Cathepsin,CD109,CLEC14A,CTSB, 
CTSD,CTSF,CTSL,CTSO,CTSS,CTSZ,D-pantothenic acid,DCBLD2,EGFR,EPS8L2, 
FGFBP1,GALNT3,GPC1,LAMA4,LGMN,Lysosomal Protease,MATN2,NAAA,Par, 
PRSS27,SEMA7A,Serine Protease,THOP1,TPP1,trans-4-hydroxy-L-proline,WFDC2 

51 30 
[Post-Translational Modification, 
Protein Degradation, Protein 
Synthesis] 

ADAM22,ADAM23,ADAMTS13,ADRB,AREG,CG,CLEC11A,Ecm,EGFR ligand,EGLN, 
FABP4,Fcer1,FSH,gondoic acid,Gpcr,GUSB,HAVCR1,IGFBPL1,IL1R2,IL6R,LY75, 
MEP1B,Metalloprotease,MMP12,MMP9,MYOC,PAPPA,PRSS8,PTPase,SCARF2,SDC1,SP
INT2,STC1,Vegf,WARS1 

36 24 
[Cellular Movement, Hematological 
System Development and Function, 
Immune Cell Trafficking] 

17-hydroxydocosahexaenoic acid,bilirubin,CALCA,CCL15,CCL16,CCL21,CCL23, 
chemokine,CLEC10A,Collagen type V,ENPP2,ENTPD5,HAVCR2,IDO,Ifn,IL17C, 
IL17D,IL2,Il8r,immune complex,LIFR,LTBR,MIR124,NCR1,NFkB (family),OSCAR, Pro-
inflammatory Cytokine,SDC4,SIGLEC1,SPINT1,Tlr,Tnf receptor,TNFRSF9, Villin,VSIG4 

34 23 
[Cellular Movement, Hematological 
System Development and Function, 
Immune Cell Trafficking] 

Alpha catenin,ANXA10,AXL,BAG3,CCL19,CCL20,CCL3,CDH2,CDH5,CST5, 
CXCL10,CXCL16,CXCL9,Erm,Fc gamma receptor,FCRL2,G protein beta gamma,Hsp90,Ifn 
gamma,IgG2b,IL13,KRT19,LILRB4,Mek,MFGE8,NEFL,NOMO1 (includes others),OSM, 
Ppp2c,SRC (family),SYK/ZAP,TAM receptor kinase,TNFRSF12A,TNFSF13B,TYRO3 

34 23 
[Cell-mediated Immune Response, 
Cellular Movement, Hematological 
System Development and Function] 

3 beta HSD,Abl1/2,ACAN,BCAN,CNTN1,CNTN2,CSPG,Cytokeratin,ESAM,FETUB, 
FSTL3,FXR ligand-FXR-Retinoic acid-RXRα,gelatinase,HNMT,IGFBP2,IGFBP7, 
Kallikrein,KIR,L1CAM,LTBP2,Mir200,MSMB,NCAN,NPTXR,plasminogen 
activator,PLAT,SMOC2,SMOOTH MUSCLE ACTIN,sodium channel,SPOCK1, 
Tenascin,TGFB1,TNR,WFIKKN1,WFIKKN2 

32 22 
[Carbohydrate Metabolism, Cell-To-
Cell Signaling and Interaction, Cellular 
Assembly and Organization] 

Patients with 
critical 
COVID-19 
vs. 
outpatients of 
COVID-19 

ABL1,ADGRG1,AGR2,AGRN,ANXA5,BACH1,CDC37,CKAP4,DPY30,FBP1,FES,FUS,G
PR37,GRK5,HEXIM1,HMOX2,HNRNPK,Hsp90,HSPA1A/HSPA1B,LYPD3,MRPL46,MY
O9B,NPM1,OGN,PARK7,PEBP1,peroxidase (miscellaneous),Pik3r,PRDX1,PSIP1,PXN, 
SCAMP3,SF3B4,TIA1,WWP2 

44 32 
[Cell Death and Survival, Cell-To-Cell 
Signaling and Interaction, Cellular 
Response to Therapeutics] 

AMFR,APEX1,BAG3,BIRC2,BLM,CETN2,DCTN2,DCTN6,DCTPP1,DPP10,DTX3,E3 
cofactor-E3 ring-target,E3 RING,E3 ring-target,ELOA,FABP5,FAS,FEN1,GPKOW, KRT18, 
LYAR,MAD1L1,MNDA,PDCD6,PMVK,PRKAB1,RAD23B,RNASET2,Rnr,SETMAR,SRP
14,SSB,SUGT1,TPT1,XRCC4 

42 31 
[Cell Death and Survival, Cellular 
Compromise, DNA Replication, 
Recombination, and Repair] 

ADM,ALT,CASP8,Caspase 3/7,CD109,CD34,CD46,CD69,CD70,CLEC7A,CLSPN,FADD, 
FASLG,GOT,GZMA,GZMB,GZMH,IKKA/B,IL12A,IL2RA,KDR,LGALS1,LGALS3,LTA,
MERTK,MMP13,PARP1,PLXNA4,SELE,SELP,SPINK1,TNFRSF1A,TNFRSF1B,trypsin,Z
BTB16 

40 30 
[Cell Death and Survival, Connective 
Tissue Disorders, Inflammatory 
Response] 

aldo,apyrase,ATP5PO,ATP6AP2,ATP6V1D,ATP6V1F,CANT1,CCL2,CLEC14A,CLTA,DA
PP1,Enolase,Fcer1,glutamine,GOPC,GUSB,H -transporting two-sector ATPase,IGF2R, 
LAMP3,leukotrieneB4,lipoxygenase,LTA4H,MITD1,NDRG1,NPDC1,PDP1,PRTFDC1,RA
B6A,SIGLEC5,SLAMF7,SNX9,STAMBP,TBC1D23,TJAP1,Vacuolar H  ATPase 

35 28 [Cellular Compromise, Cellular 
Movement, Inflammatory Response] 
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Patients with 
critical 
COVID-19 
vs. 
outpatients of 
COVID-19 

2-palmitoylglycerol,ACY1,adenine-riboflavin dinucleotide,Ap2,Ap2 alpha,B4GALT1, 
B4GAT1,Cg Beta,CNPY4,D-pantothenic acid,EGFR,Endophilin,F3-F7,gamma-
glutamylalanine,HARS1,homocitrulline,Keratin II, 6,LRIG1,LRP11,MICOS10-
NBL1/NBL1,MUC13,MUC16,Mucin,N-acetylneuraminic acid,PHOSPHO1,PON2,PROK1, 
S-glutathionyl-L-cysteine,SHMT1,SPINK5,TFF3,trans-4-hydroxy-L-proline, 
transglutaminase,TSPAN1,uracil 

33 27 
[Immunological Disease, 
Inflammatory Disease, Inflammatory 
Response] 

14-3-3,CD177,CG,CLMP,Complement,CXCL1,CXCL16,CXCL3,CXCL5, 
DEFB4A/DEFB4B,ESM1,GNRH,IL1,IL12B,IL18,IL1RN,IL32,IL33,ITGB2,JINK1/2,LCN2,
LGALS9,MAP2K1/2,OSM,PRKAR1A,PRTN3,SERPINB1,SORCS2,THBD,Tnf (family), 
TNFRSF11B,TNFSF13,TNFSF14,TYMP,VCAN 

33 27 
[Cellular Movement, Hematological 
System Development and Function, 
Immune Cell Trafficking] 

ADA,Adaptor protein 1,AGER,AIF1,beta-lactose,CCL11,CCL17,CCL18,CCL19,CCL3, 
CCL4,CCL7,Cd1,CD274,CXCL10,CXCL11,CXCL6,CXCL9,FIBRINOGEN (family), 
HMOX1,Ifn gamma,IFNGR1,IL12 (family),IL4R,IL7,LDL,LILRB4,LPL,MAPK9, 
MMP12,MMP9,p85 (pik3r),TH1 Cytokine,TNFRSF12A,XCL1 

33 27 
[Cellular Movement, Hematological 
System Development and Function, 
Immune Cell Trafficking] 

5-hydroxytryptamine,ACP5,AMPK,ANGPT2,BCL2L11,CD302,DRG2,EGLN1,ENO2, 
FGF23,FKBP5,FLT3,FOXO1,FOXO3,HDL,INPPL1,Lh,MAP1LC3,MAPT,MAX,MILR1, 
MLN,MPO,NAMPT,NGF,p70 S6k,PEPCK,PI3K (family),PLAUR,PPP3R1,PRDX5,SOD2, 
TSH,VCAM1,VEGFA 

33 27 
[Connective Tissue Disorders, Free 
Radical Scavenging, Inflammatory 
Disease] 

Patients with 
severe 
COVID-19 
vs. 
outpatients of 
COVID-19 

20s proteasome,26s Proteasome,BLM,CASP1,CDKN1A,CETN2,Ctbp,DCTN2,DCTN6, 
ELOA,FAS,GFAP,GNE,GRN,IL32,KRT18,KRT19,N-acetylneuraminic acid,NBN,NEFL, 
NUB1,PARP,PDCD6,PRKAB1,RAD23B,RCOR1,Rnr,SETMAR,SIGLEC7,SUMF2,TFIIH,
TNFSF10,ULBP2,VIM,XRCC4 

42 29 
[Cell Death and Survival, Cellular 
Assembly and Organization, Cellular 
Function and Maintenance] 

AGR2,AXL,CDC37,CGA,CKAP4,CRELD2,DPY30,DRG2,EGLN,ERP44,EZR,FKBP5,FUS
,GNRH,GOPC,GRK5,GTPase,HARS1,Hsp90,HSPA1A/HSPA1B,KIFBP,Lh,MYO9B,NOM
O1 (includes others),NUDC,Pkc(s),PLXNB3,PREB,PSIP1,SEPTIN9,SESTD1,SPOCK1, 
SUGT1,THOP1,TNFRSF10B 

42 29 
[Digestive System Development and 
Function, Gastrointestinal Disease, 
Organ Morphology] 

Adaptor protein 1,AIF1,CCL11,CCL17,CCL20,CCL3,CCL7,CD74,CEBPB,CHIT1,CXCL10, 
CXCL16,CXCL3,CXCL5,CXCL9,FGF23,FOSB,FOXO1,FOXO3,Gsk3,Ifn gamma,IL15, 
IL1RL1,IL1RN,IL7,IRAK4,LILRB4,MAP1LC3,MAPK9,METAP1D,Mhc2 Alpha,PI3K 
(family),PRTN3,SERPINB1,XCL1 

42 29 
[Cellular Movement, Hematological 
System Development and Function, 
Inflammatory Response] 

AIFM1,BAX,BID,CD274,CD38,CD69,CLMP,CTSD,DGKZ,FADD,FASLG,GBP4,GC-GCR 
dimer,IFN alpha/beta,IFNGR1,Ikb,IKK (complex),IL12RB1,IL13RA1,IL18R1,IL4R, 
IL5RA,IRAK1,LCN2,MOG,PECAM1,SPP1,STAT5a/b,Tgf beta,TNFRSF11A,TNFRSF11B, 
TNFRSF1A,TNFRSF1B,Ubiquitin,ZBTB16 

40 28 
[Cell Death and Survival, Cellular 
Growth and Proliferation, Lymphoid 
Tissue Structure and Development] 

AKR1B1,Aldose Reductase,BMP6,CC2D1A,CLTA,CORO1A,Creb,CST5,DECR1,Ferritin, 
FLI1,FMNL1,IL11,LAP3,LYAR,MATN2,MED18,mediator,Mir122a,b,MRPL46,MVK,Oste
ocalcin,PAK4,PLIN3,PRKRA,RAB6A,RAS,ROCK,Rsk,Smad,TACC3,TARBP2,THPO,TIA
1,TJAP1 

33 25 

[Cellular Function and Maintenance, 
Cellular Growth and Proliferation, 
Hematological System Development 
and Function] 
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Supplementary Table 4: Details of patients with matched pre-COVID-19 samples studied by mass spectrometry-based total proteomics and 
glycoproteomics 

Patient ID WHO ordinal 
scale  

Gender Age Ethnicity Race Sample collection date: 
Pre-COVID-19 

Sample collection date: 
COVID-19 

TMT 
Batch 

1 1 F 66 Not Hispanic or Latino White 2013-05-22 2020-09-25 1 
2 1 F 62 Not Hispanic or Latino White 2012-11-21 2020-09-22 1 
3 1 M 73 NA White 2015-08-02 2020-08-13 1 
4 5 M 96 Not Hispanic or Latino White 2014-07-29 2020-07-08 1 
5 5 F 83 Not Hispanic or Latino White 2014-07-30 2020-07-28 1 
6 4 M 90 Not Hispanic or Latino White 2014-04-14 2020-07-28 1 
7 5 M 80 Not Hispanic or Latino White 2014-03-04 2020-07-07 1 
8 6 F 69 Not Hispanic or Latino White 2013-05-14 2020-05-20 1 
9 4 M 73 Not Hispanic or Latino White 2015-08-19 2020-09-29 2 
10 4 F 82 Hispanic or Latino White 2015-03-05 2020-08-18 2 
11 4 M 76 Not Hispanic or Latino White 2014-05-27 2020-06-29 2 
12 1 M 59 Not Hispanic or Latino White 2013-05-06 2020-09-28 2 
13 1 F 50 Not Hispanic or Latino White 2015-05-04 2020-10-05 2 
14 1 M 67 Not Hispanic or Latino White 2014-10-27 2020-10-20 2 
15 1 F 61 Not Hispanic or Latino White 2015-04-05 2020-09-03 2 
16 1 F 48 Hispanic or Latino White 2015-06-22 2020-08-27 2 
17 1 F 58 Not Hispanic or Latino White 2014-01-31 2020-09-04 3 
18 1 M 78 Not Hispanic or Latino White 2014-05-12 2020-08-25 3 
19 5 M 77 Not Hispanic or Latino White 2014-10-06 2020-10-20 3 
20 3 F 82 Not Hispanic or Latino White 2014-02-17 2020-10-28 3 
21 1 F 66 Not Hispanic or Latino White 2015-01-09 2020-10-29 3 
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