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Supplementary Material

1 Captions for Supplementary Tables
Supplementary Table 1. Description for scores and filters in PandaOmics.
Supplementary Table 2. Enrichment of dysregulated pathways in different biological processes.

Supplementary Table 3. Dysregulated pathways in CNS, diMN transcriptomic and diMN proteomic
groups.

2 Supplementary Figures
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G GSE18920 44 24 20 16 Motoneuron (1 more) microarray GPL5188 Nov 06 2009 Amyotrophic Lateral Sclerosis
% GSE124439 176 159 17 14 Frontal Lobe (1 more) RNA-seq GPL16791 Dec 27 2018 Nervous System Disease (1 more)
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GSE76220 21 13 8 6 Motoneuron RNA-seq GPL9115 Dec 21 2015 Sporadic Amyotrophic Lateral Scler.
GSE19332 10 3 7 15 Motoneuron microarray GPL570 Dec 04 2009 Amyotrophic Lateral Sclerosis
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Supplementary Figure 1. ALS-related datasets in PandaOmics. Sixty-six transcriptomic datasets
associated with ALS were extracted from public repositories (e.g. Gene Expression Omnibus and
ArrayExpress) and processed for standardization before uploading onto PandaOmics. Number of total
samples (as well as cases and controls), tissue type, technology and platform used, and published date
were listed in the Dataset page for ALS.
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Supplementary Figure 2. Schematic workflow for target identification. Eight transcriptomic datasets
using post-mortem CNS samples retrieved from public repositories, along with the transcriptomic and
proteomic data using diMN samples from Answer ALS were analyzed in the present study. For each
dataset, the ALS patients were divided into the familial and sporadic subtypes based on the family
history of ALS occurrence or the presence of ALS subtype-linked gene mutations. Comparisons were
made between case and control samples independently for different tissues, ALS subtypes and data
types. To identify potential targets, all the case-control comparisons belonging to the same comparison
group were pooled into a single meta-analysis, yielding a total of six meta-analyses. For each meta-
analysis, PandaOmics prioritized the targets under two novelty setting (viz. high-confidence and novel
settings specified in Methods). Potential therapeutic targets were further selected with three criteria,
yielding a total of 28 actionable targets. T: Transcriptomics; P: Proteomics; ND: Neurodegenerative
disease.
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Supplementary Figure 3. Schematic representation of scoring-approach validation. To validate the
models of novel target identification, the “time machine” approach was applied. (A) Taking year 2010
as an example time split, clinical data before the year was used as the training set and that after was the
testing set. (B) Each scoring approach was validated by ELFC (log fold change of enrichment) and
HGPV (significance of the enrichment). Its predictive power increases with the rise of ELFC and
HGPV values.
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Supplementary Figure 4. Filter setting for high-confidence targets identification. With the use of over
20 Al and bioinformatics models, PandaOmics ranks related genes and identifies potential targets based
on twenty-one scores from Omics, Text-based, Financial and KOL categories, as well as the
Druggability filters. To identify high-confidence druggable targets, eighteen scores and Druggability
Classes were applied. Druggability filters were also customized to select targets with associated small
molecules and medium safety levels.
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Supplementary Figure 5. Filter setting for novel targets identification. Novel targets are defined as
druggable targets without prior knowledge in ALS. To achieve this criterion, the Druggability filter
was restricted to a higher novelty level, and only Omics scores were selected for the recalculation of
the metascores.
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Supplementary Figure 6. Schematic flow for pathway analysis. For each ALS comparison, the log-
transformed fold changes between the gene expression levels in the case and control samples were used
as the input data for the iPANDA algorithm, yielding positive iPANDA values for activated pathways
and negative values for inactivated pathways. Then, the dysregulation of pathways was measured in
each of the six groups of comparisons respectively. Taken the CNS fALS group (number of
comparisons = 5) as an example, a pathway was considered as dysregulated when 1) its alteration was
unidirectional in greater than or equal to 80% of all the comparisons (viz. >4 out of the 5 comparisons),
and 2) the absolute iPANDA value reached the threshold of 0.01 in at least one comparison. Next, the
dysregulated pathways were mapped to higher-level biological processes based on the hierarchical
level of pathways retrieved from the Reactome database. Finally, dysregulated pathways with shared
genes were connected to form the network of dysregulated pathways. In addition, the significant level
of the enrichment of dysregulated pathways in different top-level biological processes were evaluated
using hypergeometric tests.



