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1 Prediction methods for survival data

We consider the prediction methods using multiple settings, in particular the choice of

the hyperparameters and/or the variable select, resulting to 11 sub-methods in total. In

the following, we describe the difference between those sub-methods.

1.1 Cox models

Two cox models are estimated using either all predictors (Cox-AllVar) or some predictors

(Cox-SelectVar) selected using a stepwise backward procedure based on the AIC statistic.

1.2 Penalized-Cox models

Penalized-cox models require the tuning of 2 parameters: the norm mixing parameter

α and the penalty λ. The penalty λ is chosen by minimizing the partial likelihood

deviance for a given α using an internal 10-folds cross-validation. We define 3 sub-models

according to norm mixing parameter: lasso penalty with α = 1 (Penal-Cox-Lasso), Ridge

penalty with α = 0 (Penal-Cox-Ridge) or elastic-net penalty with α ∈ [0, 1] (Penal-Cox-

Elastic). For the elastic-net penalty, multiple α are evaluated according to a grid from 0

to 1 with a 0.1 step. As a final Penal-Cox-Elastic model, we retain the model with the

lower partial likelihood deviance over all α from the grid.
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1.3 Deviance residuals-based sparse-Partial Least Square

Deviance residuals-based sparse-Partial Least Square models require the tuning of 2 pa-

rameters: the number of components C and the sparsity controled by the lasso penalty

parameter for each component η. The number of components C are chosen by maxi-

mizing the iAUCsurvROC criteria (from the plsRcox R package) for a given η using an

internal 5-folds cross-validation. We define 3 sub-models according to the lasso penalty

parameter: no sparsity with η = 0 (sPLS-NoSparse), maximum sparsity with η = 0.9

(sPLS-MaxSparse) or mixing sparsity with η ∈ [0, 0.9] (sPLS-Optimize). For the mixing

sparsity, multiple η are evaluated according to a grid from 0 to 0.9 with a 0.1 step. As

a final sPLS-Optimize model, we retain the model with the higher iAUCsurvROC over

all η from the grid.

1.4 Random Survival Forests

Random survival forest methods require the tuning of 2 parameters: the number of

predictors drawn at each node M and the minimal node size S. We defined 3 sub-

methods according to these parameters. The RSF-Default method uses the default

parameters with M equals to the square root of the number of predictors and S = 15. In

the RSF-Optimize and the RSF-SelectVar methods, the parameters are tuned according

to a grid of values, M from 5 to the maximum of predictors with a 5 step and S ∈ {3, 15}.

The best parameters are chosen by minimizing the out-of-bag error based on the 1−C,

where C is Harrell’s concordance index. For the RSF-SelectVar, a final random survival

forest is computed using the predictors with V IMP > 0.005.

2 Simulations

2.1 Model formulation for time-dependent markers

For all scenarios described in the main manuscript, the 17 time-dependent markers were

generated up to tLM = 4 according to a linear mixed model defined as:
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Marker 1

Yi1(tij) = β0 + β1 ∗ tij + β2 ∗ t2ij + bi0 + bi1 ∗ tij + bi2 ∗ t2ij + ϵij (1)

where the fixed coefficients β0 = 1.5, β1 = 2.0, β2 = −1.2, the random effects

bi = (bi0, bi1, bi2)
⊤ ∼ N (0, D) with D =


1.52 0 0

0 0.82 0

0 0 0.52

 and the measurement error

ϵij ∼ N (0, σ2) and σ = 1.1.

Marker 2

Yi2(tij) = β0 + β1 ∗ log (tij + 0.1) + bi0 + bi1 ∗ log (tij + 0.1) + ϵij (2)

where the fixed coefficients β0 = 5.5, β1 = −1.5, the random effects bi = (bi0, bi1)
⊤ ∼

N (0, D) with D =

1.42 0

0 0.62

 and the measurement error ϵij ∼ N (0, σ2) and σ = 0.9.

Marker 3

Yi3(tij) = β0 + β1 ∗
√

(tij + 0.1) + bi0 + bi1 ∗
√
(tij + 0.1) + ϵij (3)

where the fixed coefficients β0 = 2.5, β1 = 1.8, the random effects bi = (bi0, bi1)
⊤ ∼

N (0, D) with D =

0.72 0

0 0.72

 and the measurement error ϵij ∼ N (0, σ2) and σ = 1.1.

Marker 4

Yi4(tij) = β0 + β1 ∗ tij + bi0 + bi1 ∗ tij + ϵij (4)

where the fixed coefficients β0 = 3.0, β1 = 1.2, the random effects bi = (bi0, bi1)
⊤ ∼

N (0, D) with D =

0.72 0

0 0.52

 and the measurement error ϵij ∼ N (0, σ2) and σ = 1.3.
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Marker 5

Yi5(tij) = β0 + β1 ∗ t2ij + bi0 + bi1 ∗ t2ij + ϵij (5)

where the fixed coefficients β0 = 0.0, β1 = 0.7, the random effects bi = (bi0, bi1)
⊤ ∼

N (0, D) with D =

0.32 0

0 0.22

 and the measurement error ϵij ∼ N (0, σ2) and σ = 0.9.

Marker 6

Yi6(tij) = β0 + β1 ∗ tij + β2 ∗ t2ij + bi0 + bi1 ∗ tij + bi2 ∗ t2ij + ϵij (6)

where the fixed coefficients β0 = 3.5, β1 = −1.2, β2 = 0.8, the random effects

bi = (bi0, bi1, bi2)
⊤ ∼ N (0, D) with D =


1.52 0 0

0 0.72 0

0 0 0.52

 and the measurement error

ϵij ∼ N (0, σ2) and σ = 1.1.

Marker 7

Yi7(tij) = β0 + β1 ∗ tij + bi0 + bi1 ∗ tij + ϵij (7)

where the fixed coefficients β0 = 1.1, β1 = 0.8, the random effects bi = (bi0, bi1)
⊤ ∼

N (0, D) with D =

0.32 0

0 0.52

 and the measurement error ϵij ∼ N (0, σ2) and σ = 0.5.

Marker 8

Yi8(tij) = β0 + β1 ∗ exp (tij) + bi0 + bi1 ∗ exp (tij) + ϵij (8)

where the fixed coefficients β0 = 1.1, β1 = −0.2, the random effects bi = (bi0, bi1)
⊤ ∼

N (0, D) with D =

0.32 0

0 0.12

 and the measurement error ϵij ∼ N (0, σ2) and σ = 0.5.

Marker 9

Yi9(tij) = β0 + β1 ∗ log (tij + 0.1) + β2 ∗ t2ij + bi0 + bi1 ∗ log (tij + 0.1) + bi2 ∗ t2ij + ϵij (9)
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where the fixed coefficients β0 = 6.5, β1 = 4.5, β2 = −1.0, the random effects

bi = (bi0, bi1, bi2)
⊤ ∼ N (0, D) with D =


1.22 0 0

0 2.52 0

0 0 0.32

 and the measurement error

ϵij ∼ N (0, σ2) and σ = 0.9.

Marker 10

Yi10(tij) = β0 + β1 ∗ tij + β2 ∗ t2ij + bi0 + bi1 ∗ tij + bi2 ∗ t2ij + ϵij (10)

where the fixed coefficients β0 = 4.1, β1 = −2.0, β2 = 0.9, the random effects

bi = (bi0, bi1, bi2)
⊤ ∼ N (0, D) with D =


1.52 0 0

0 1.12 0

0 0 0.42

 and the measurement error

ϵij ∼ N (0, σ2) and σ = 1.1.

Marker 11

Yi11(tij) = β0 + β1 ∗ tij + β2 ∗ t2ij + bi0 + bi1 ∗ tij + bi2 ∗ t2ij + ϵij (11)

where the fixed coefficients β0 = 9.4, β1 = −1.2, β2 = −0.7, the random effects

bi = (bi0, bi1, bi2)
⊤ ∼ N (0, D) with D =


0.92 0 0

0 0.72 0

0 0 0.82

 and the measurement error

ϵij ∼ N (0, σ2) and σ = 1.1.

Marker 12

Yi12(tij) = β0 + β1 ∗
√
(tij + 0.1) + bi0 + bi1 ∗

√
(tij + 0.1) + ϵij (12)

where the fixed coefficients β0 = 5.2, β1 = 4.7, the random effects bi = (bi0, bi1)
⊤ ∼

N (0, D) with D =

0.92 0

0 1.12

 and the measurement error ϵij ∼ N (0, σ2) and σ = 0.9.
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Marker 13

Yi13(tij) = β0 + β1 ∗
√
(tij + 0.1) + bi0 + bi1 ∗

√
(tij + 0.1) + ϵij (13)

where the fixed coefficients β0 = 8.2, β1 = −3.2, the random effects bi = (bi0, bi1)
⊤ ∼

N (0, D) with D =

1.32 0

0 1.62

 and the measurement error ϵij ∼ N (0, σ2) and σ = 1.3.

Marker 14

Yi14(tij) = β0 + β1 ∗ tij + β2 ∗ t3ij + bi0 + bi1 ∗ tij + bi2 ∗ t3ij + ϵij (14)

where the fixed coefficients β0 = 3.6, β1 = −0.9, β2 = 0.4, the random effects

bi = (bi0, bi1, bi2)
⊤ ∼ N (0, D) with D =


1.52 0 0

0 0.52 0

0 0 0.12

 and the measurement error

ϵij ∼ N (0, σ2) and σ = 1.1.

Marker 15

Yi15(tij) = β0 + β1 ∗ tij + β2 ∗ t3ij + bi0 + bi1 ∗ tij + bi2 ∗ t3ij + ϵij (15)

where the fixed coefficients β0 = 8.6, β1 = 4.9, β2 = −0.4, the random effects

bi = (bi0, bi1, bi2)
⊤ ∼ N (0, D) with D =


1.52 0 0

0 0.72 0

0 0 0.22

 and the measurement error

ϵij ∼ N (0, σ2) and σ = 1.1.

Marker 16

Yi16(tij) = β0 + β1 ∗ exp (tij) + bi0 + bi1 ∗ exp (tij) + ϵij (16)

where the fixed coefficients β0 = 4.1, β1 = −0.2, the random effects bi = (bi0, bi1)
⊤ ∼

N (0, D) with D =

0.62 0

0 0.22

 and the measurement error ϵij ∼ N (0, σ2) and σ = 0.5.
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Marker 17

Yi17(tij) = β0 + β1 ∗ t3ij + bi0 + bi1 ∗ t3ij + ϵij (17)

where the fixed coefficients β0 = 3.2, β1 = 0.3, the random effects bi = (bi0, bi1)
⊤ ∼

N (0, D) with D =

0.62 0

0 0.22

 and the measurement error ϵij ∼ N (0, σ2) and σ = 1.0.

We display an example of individual trajectories for all markers in Fig. S1. In the

following for the sake of simplicity, we denote the summaries Y pred
k , Y slope

k , Y hist
k for

respectively the current level, current slope and history level on landmark time for the

marker k.

2.2 Model formulation for time-to-event

We generated the hazard function λi according to a proportional hazard model defined

as:

λi(t) = λ0(b, c, t) exp (Pi) (18)

With λ0(b, c, t) = cbctc−1 the baseline hazard function from a Weibull distribution

with parameters b and c, and Pi the linear predictor. Using the standard uniform

distribution u ∼ U(0, 1) [1], we generated time-to-event Ti defined as:

Ti =
1

b
∗
(
− log u

exp (Pi)

)1/c

(19)

In the following, we detail the parameters used to build the hazard function from

equation 18 in each of the scenarios. A recap of the summaries used in each scenario is

available in the table S1.

Scenario 1: few summaries with linear association

Pi = γ1 ∗ Y pred
1i + γ2 ∗ Y hist

3i + γ1 ∗ Y pred
8i + γ2 ∗ Y pred

15i (20)

With γ1 = −0.5 and γ2 = 0.5 the coefficients associated to the summaries and b = 0.3

and c = 6.5 to build the base hazard function λ0. Results from this scenario are given

in Fig. S2A.
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Scenario 2: few summaries with linear association with interaction

Pi = γ1 ∗ Y pred
1i + γ2 ∗ Y hist

3i + γ1 ∗ Y pred
8i + γ2 ∗ Y pred

15i + γ1 ∗ Y pred
1i ∗ Y hist

3i

+ γ2 ∗ Y pred
8i ∗ Y pred

15i + γ1 ∗ Y pred
1i ∗ Y pred

8i + γ2 ∗ Y hist
3i ∗ Y pred

15i

(21)

With γ1 = −0.5 and γ2 = 0.5 denote the coefficients associated to the summaries

and b = 0.3 and c = 6.5 to build hazard function λ0. Results from this scenario are

given in Fig. S2B.

Scenario 3: few summaries with non-linear association

Pi = γ1 ∗ (Y pred
1i )2 + γ1 ∗ (Y slope

1i )2 + γ1 ∗ (Y slope
4i )2 + γ1 ∗ (Y pred

10i )2 (22)

With γ1 = 0.5 denotes the coefficients associated to the summaries and b = 0.25 and

c = 6.5 to build hazard function λ0. Results from this scenario are given in Fig. S2C.

Scenario 4: many summaries with linear association

Pi = γ1 ∗ Y pred
1i + γ2 ∗ Y slope

1i + γ1 ∗ Y pred
3i + γ2 ∗ Y hist

3i + γ1 ∗ Y pred
4i + γ2 ∗ Y slope

4i

+ γ1 ∗ Y pred
5i + γ2 ∗ Y slope

5i + γ1 ∗ Y hist
5i + γ2 ∗ Y pred

10i + γ1 ∗ Y hist
10i + γ2 ∗ Y pred

13i

+ γ1 ∗ Y slope
13i + γ2 ∗ Y pred

15i + γ1 ∗ Y slope
15i + γ2 ∗ Y hist

15i + γ1 ∗ Y pred
17i + γ2 ∗ Y slope

17i

(23)

With γ1 = −0.5 and γ2 = 0.5 denote the coefficients associated to the summaries

and b = 0.3 and c = 6.5 to build hazard function λ0. Results from this scenario are

given in the main manuscript.

Scenario 5: many summaries with non-linear association

Pi = γ1 ∗ (Y pred
1i )2 + γ1 ∗ (Y slope

1i )2 + γ2 ∗ (Y slope
2i )2 + γ2 ∗ (Y hist

3i )2 + γ1 ∗ (Y pred
4i )2

+ γ2 ∗ (Y slope
4i )2 + γ1 ∗ (Y pred

10i )2 + γ2 ∗ (Y hist
11i )2 + γ1 ∗ (Y slope

12i )2 + γ2 ∗ (Y pred
13i )2

+ γ1 ∗ (Y slope
14i )2 + γ2 ∗ 1(Y pred

15i >
∼
Y15

pred

) + γ1 ∗ 1(Y hist
16i >

∼
Y16

hist

)

+ γ2 ∗ 1(Y pred
17i >

∼
Y17

pred

) + γ1 ∗ 1(Y slope
5i >

∼
Y5

slope

) + γ2 ∗ 1(Y hist
6i >

∼
Y6

hist

)

+ γ1 ∗ 1(Y slope
9i >

∼
Y9

slope

) + γ2 ∗ 1(Y hist
9i >

∼
Y9

hist

)

(24)

With γ1 = −0.5 and γ2 = 0.5 denote the coefficients associated to the summaries

and b = 0.28 and c = 5.5 to build hazard function λ0.
∼
Yk represents the median for

marker k. Results from this scenario are given in the main manuscript.
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3 Applications

3.1 Prediction of death in primary billiary cholangitis

To estimate the probability of death on primary biliary cholangitis patients, we used 7

continuous time-dependent markers measuring bilirubin, cholesterol, albumin, alkaline,

SGOT, platelets and prothrombin and 4 binary time-dependent markers measuring the

presence of ascites, hepatomegaly, spiders and edema. Except albumin, all continuous

variables were normalized using splines to follow a gaussian distribution [2].

Except ascites and edema, we modeled the variables using generalized mixed model

defined as:

g(E(Yij |bi)) = β0 +
L∑
l=1

βl ∗ fl(t, L) + bi0 +
L∑
l=1

bil ∗ fl(t, L) (25)

With g(.) the link function taking into account the nature of the marker, β0 and

βl the fixed coefficients and the random effects bil = (bi0, bil)
⊤ ∼ N (0, D) with D a

covariance matrix. f(t, L) denotes the natural splines function with L knots.

To model continuous markers, we use g(.) as the identity function, D an unstructured

covariance matrix and L = 3 for the natural splines function with two internal knots

placed at t = 0.5 and t = 2.0 and boundary knots at t = 0 and t = 4. To model binary

markers, we use g(.) as the logit function, D a diagonal independent covariance matrix

and L = 2 for the natural splines function with a single internal knot placed at t = 1.0

and boundary knots at t = 0 and t = 4.

Finally, to avoid convergence issues, ascites and edema are defined as:

g(E(Yij |bi)) = β0 + β1 ∗ tij + bi0 + bi1 ∗ tij (26)

With g(.) the logit function, β0 and βl the fixed coefficients and the random effects

bil = (bi0, bi1)
⊤ ∼ N (0, D) with D an unstructured covariance matrix.
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3.2 Prediction of 5-years death at 80 and 85 years old

3.2.1 Model specification

To estimate the probability of death at 80 and 85 years old, we used 6 continuous time-

dependent markers (measuring depression, executive functioning, cognition, speed on

fluency, dependency and polymedication) and 3 binary time-dependent markers (mea-

suring the presence of incontinence, dyspnea and living alone). Except executive func-

tioning and speed on fluency, all continuous variables were normalized using splines to

follow a gaussian distribution [2]. We modeled the variables from 5 years prior the

landmark time using generalized mixed model defined as:

g(E(Yij |bi)) = β0 +
L∑
l=1

βl ∗ fl(t, L) + bi0 +
L∑
l=1

bil ∗ fl(t, L) (27)

With g(.) the link function taking into account the nature of the marker, β0 and

βl the fixed coefficients and the random effects bil = (bi0, bil)
⊤ ∼ N (0, D) with D a

covariance matrix. f(t, L) denotes the natural splines function with L knots.

To model continuous markers, we use g(.) as the identity function, D an unstructured

covariance matrix and L = 3 for the natural splines function with two internal knots

placed at t = 1.7 and t = 3.4 and boundary knots at t = 0 and t = 5.

To avoid convergence issues, we model binary markers as:

g(E(Yij |bi)) = β0 + β1 ∗ tij + bi0 + bi1 ∗ tij (28)

With g(.) the logit function, β0 and βl the fixed coefficients and the random effects

bil = (bi0, bi1)
⊤ ∼ N (0, D) with D a diagonal independent covariance matrix.

3.2.2 Age-specific predictors of death using Cox model with Lasso penalty

Fig. S14 displays the predictors selected for Cox model with Lasso penalty. We can see

that many time-dependent markers are associated with death, especially with tLM = 80.

In addition, among these markers, we found 3 predictors of death (measuring execu-

tive functioning, dependency and polymedication) at both landmark time 80 and 85
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years old. Variables measuring dependency and polymedication are strongly predictive

of death at tLM = 80. Indeed, 3 summaries were selected by the model. For time-

independent variables, sex, history of dementia and dependency are predictive of death

at both landmark time 80 and 85 years old.

4 Software

All analysis were performed using R software version 3.6. We used lcmm [3] (for contin-

uous markers) and lme4 [4] (for binary markers) to compute generalized mixed models.

Predictions are computed using survival [5] for Cox model, glmnet [6] for Cox model

with penalty (with 2 hyperparameters: λ and α for respectively strength of the penalty

and the type of penalty), plsRcox [7] for the Deviance residuals-based sparse-Partial

Least Square (with 2 hyperparameters: η and ncomp for respectively sparsity param-

eter and the number of components) and randomForestSRC [8] for random survival

forests (with 2 hyperparameters: mtry and nodesize for respectively the number of

variables randomly selected as candidates for splitting a node and the forest average

number of unique cases in a terminal node). R code detail and example can be found

on https://github.com/anthonydevaux/hdlandmark.
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Figure S1: Illustration of 30 randomly selected individual trajectories chosen randomly

for the 17 markers generated up to tLM = 4 in the simulation study.
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Figure S2: Scenario results with 4 summaries associated to the event with linear form

(figure A), linear form with interaction (figure B) and non-linear form (figure C) over

250 replicates. Methods are assessed using at 3 years Mean Square Error of Prediction

(MSEP), Brier Score (BS) and Area Under the ROC Curve (AUC).
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Figure S3: PBC data flowchart
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Figure S4: 3-year survival probability estimated by Kaplan-Meier in each of the 10 folds

for PBC subjects still at risk at landmark time tLM = 4.
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Figure S5: Random survival forest hyperparameters tuning on primary biliary cholan-

gitis patients at landmark time tLM = 4. The best hyperparameters (mtry = 25 and

nodesize = 5) are chosen by minimizing the out-of-bag error.
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Figure S6: Flowchart for Paquid application with a landmark times at 80 (left) and 85

(right) years old.
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Figure S7: Survival probability estimated by Kaplan-Meier over the 10 folds for elderly

people still at risk at landmark time tLM = 80.
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Figure S8: Survival probability estimated by Kaplan-Meier over the 10 folds for elderly

people still at risk at landmark time tLM = 85.
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Figure S9: Random survival forest hyperparameters tuning in the paquid application at

landmark time tLM = 80. The best hyperparameters (mtry = 30 and nodesize = 15)

are chosen by minimizing the out-of-bag error.
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Figure S10: Random survival forest hyperparameters tuning in the paquid application

at landmark time tLM = 85. The best hyperparameters (mtry = 70 and nodesize = 5)

are chosen by minimizing the out-of-bag error.
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Figure S11: Predictive performances (figure A) and weights in superlearner (figure B)

of 5-year survival prediction tool that uses information collected from the last 5 years

before landmark time tLM = 80 over 50 replicates. Methods are assessed using Brier

Score (BS) and Area Under the ROC Curve (AUC).
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Figure S12: Predictive performances (figure A) and weights in superlearner (figure B)

of 5-year survival prediction tools that use information collected from the last 5 years

before landmark time tLM = 85 over 50 replicates. Methods are assessed using Brier

Score (BS) and Area Under the ROC Curve (AUC).
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Figure S13: Predictive performances of 5-year survival prediction tools that use infor-

mation collected at landmark time tLM = 80 (figure A) and tLM = 85 (figure B) over

50 replicates. Methods are assessed using Brier Score (BS) and Area Under the ROC

Curve (AUC).
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Figure S14: Variables associated with the event for Cox model with Lasso penalty. The

heatmaps show which summaries (figure A) and covariates (figure B) have been selected

in the model. The black color indicates that the variable has been selected, while the

color grey indicates that at least one modality of the variable has been selected, otherwise

white for no selection.
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Tables

Table S1: Type of summaries used in scenario 1 (in red), scenario 2 (in blue), scenario3

(in green), scenario 4 (in yellow) or scenario 5 (in orange).

Y pred
i Y slope

i Y hist
i bi0 bi1 bi2

Marker 1 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Marker 2 ✔

Marker 3 ✔ ✔ ✔ ✔ ✔

Marker 4 ✔ ✔ ✔ ✔ ✔

Marker 5 ✔ ✔ ✔ ✔

Marker 6 ✔

Marker 7

Marker 8 ✔ ✔

Marker 9 ✔ ✔

Marker 10 ✔ ✔ ✔ ✔

Marker 11 ✔

Marker 12 ✔

Marker 13 ✔ ✔ ✔

Marker 14 ✔

Marker 15 ✔ ✔ ✔ ✔ ✔ ✔

Marker 16 ✔

Marker 17 ✔ ✔ ✔
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Table S2: Summaries of predictors used to predict survival probability in primary biliary

cholangitis patients.

Predictor Description Type

Time-

dependent

Yes/No

Bilirubin Level of serum bilirubin Continuous Yes

Cholesterol
Level of serum

cholesterol
Continuous Yes

Albumin Level of albumin Continuous Yes

Alkaline
Level of alkaline

phosphatase
Continuous Yes

SGOT
Level of aspartate

aminotransferase
Continuous Yes

Platelets Platelet count Continuous Yes

Prothrombin Prothrombin time Continuous Yes

Ascites
Presence of ascites

(Yes/No)
Binary Yes

Hepatomegaly
Presence of

hepatomegaly (Yes/No)
Binary Yes

Spiders

Blood vessel

malformations in the

skin (Yes/No)

Binary Yes

Edema
Presence of edema

(Yes/No)
Binary Yes

Age Age at enrollment Continuous No

Sex / Binary No

Treatment
Drug treatment (D-

penicillmain/Placebo)
Binary No
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Table S3: List of time-dependent variables used to predict the survival probability in

the elderly

Predictor Description Type
Time-dependent

Yes/No

Depression

Measured using the Center for

Epidemiological Studies-Depression

(CES-D) providing a score from 0 to 60,

with high scores indicating most depressive

symptoms

Continuous Yes

Executive

functioning
Measured using the Wechsler code test Continuous Yes

Cognition

Measured using the Mini-Mental State

Examination (MMSE) providing a score

from 0 to 30, with lower score indicating

suspicion of dementia

Continuous Yes

Verbal fluency

Measured using Isaac set Test, which

evaluates the verbal fluency in 15 secondes

by reapeated a list of specific words

Continuous Yes

Dependency

(IADL)

Measured using Instrumental Activities of

Daily Living (IADL), also called Lawton

scale, with multiple questions about how

well you can live on your own

Continuous Yes

Polymedication Daily number of drugs taken by the patient Continuous Yes

Incontinence Yes/No Binary Yes

Dyspnea Yes/No Binary Yes

Living alone Yes/No Binary Yes
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Table S4: List of baseline variables used to predict the survival probability in the elderly

Predictor Description Type
Time-dependent

Yes/No

Level of

education

Scale from no education from higher

education
5-level factor No

Sex Male/Female Binary No

Generation Age at enrollment Continuous No

Hearing
Hearing self-assessment

(Good/Medium/Bad)
3-level factor No

Eyesight Eyesight self-assessment (Good/Bad) Binary No

Diabete Diabete history (Yes/No) Binary No

Stroke Stroke history (Yes/No) Binary No

Dementia Demantia history (Yes/No) Binary No

Fracture Fracture history (Yes/No) Binary No

Family status In couple/Single Binary No

City size / 4-level factor No

Owner Owner/Tenant Binary No

Housing Personal residence/Other Binary No

Satisfaction
Scale measuring whether the patient is

satisfied with his life
Continuous No

Health
Health self-assessment

(Good/Medium/Bad)
3-level factor No

Rural area Yes/No Binary No

Cardiovascular Cardiovascular history (Yes/No) Binary No

Dependency

(ADL)

Measured using Activities of Daily Living

(ADL), also called Katz scale, with multiple

questions about the functional status of the

patient

Binary No
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