
1 Versions or Parameters 

1.1   CyTOF Dataset 

1.1.1  Before calibration 

In this study, we all use deep learning networks for 

classification. To achieve fair comparison, the types and 

numbers of network layers remain the same before and after 

calibration. The parameter “MALDI_MS” is a flag of mass 

spectrometry experiments, therefore it is set to False on all 

public CyTOF data. The learning rate, number of epochs, size 

of mini-batch and learning step are set to 10−4, 100, 200 and 

104 respectively. In order to prevent overfitting the network, 

the L2 weight decay is set to 5 × 10−5 during training. 

1.1.2  After calibration 

For training our network after calibration, the learning rate is 

set to 10−4 and the number of epochs is set to 2000. The 

gradient update rule of mini-batch in deep learning is used to 

train our model where three losses are calculated from a 

sampled “mini-batch” during each iteration of the training 

process. We set the mini-batch size to 100 and the coefficients 

of three losses are 𝛼 = 0.01 , 𝛽 = 1 , 𝛾 = 0.01  by grid-

search. The learning step, L2 weight decay are set to 104, 

5 × 10−5 during training. 

1.1.3  In-batch Cross Validation 

In order to compare all the results on the same benchmark, the 

classification network of in-batch 10-fold cross-validation 

shares the same framework as cross-batch experiments. The 

learning rate, number of epochs, size of mini-batch, learning 

step and L2 weight decay are set to 10−4, 15, 200, 103 and 

5 × 10−5, respectively. 

1.2   MALDI MS Dataset 

1.2.1  Before calibration 

In this set of experiment, the flag variable “MALDI_MS” is 

set to True on all private MALDI MS data. The ID of the file 

containing the number of samples in each subject is consistent 

with testing set. The structure of the classification network is 

also consistent with the CyTOF experiments. The learning 

rate, number of epochs, size of mini-batch, learning step and 

L2 weight decay are set to 10−3 , 100, 200, 104  and 

5 × 10−5, respectively. 

1.2.2  After calibration 

For training after calibration, the ID of the file containing the 

number of samples in each subject is consistent with testing 

set. The learning rate, number of epochs, size of mini-batch 

and learning step are set to 10−4 , 2000, 200 and 104 , 

respectively. In addition, the hyper-parameters of the 

coefficients of three losses are set to 𝛼 = 0.01, 𝛽 = 1, 𝛾 =

0.01 by grid-search. The L2 weight decay is set to 5 × 10−5 

during training, the same with first experiment. 

1.2.3  In-batch Cross Validation 

As the previous experiment, the classification network of in-

batch cross-validation holds the same structure as cross-batch 

predictions. The ID of the file containing the number of 

samples in each subject is consistent with training set. The 

learning rate, number of epochs, size of mini-batch, learning 

step and L2 weight decay are set to 10−4, 25, 200, 103 and 

5 × 10−5, respectively. 

1.3   Information for Other Methods 

Corresponding open source code could be found about those 

algorithms involved in comparative experiments. The 

ComBat and fSVA have been implemented by ComBat() and 

fsva() function respectively into R software package sva 

(http://bioconductor.org/packages/3.5/bioc/html/sva.html). In 

addition, commonly used batch effect removal functions 

including geometric.mean() that ratio_G adopted is 

implemented in Psych R package (http://cran.r-

project.org/web/packages/psych/index.html). In principle, 

ratio-based data is obtained by scaling all samples through 

ready-made reference samples or the average of negative class 

samples in each batch. However, it should be mentioned that 

the two means above are not available in practice, because it 

is not possible to know the class label of the test batch before 

performing the prediction. We choose to utilize the mean of 

whole train samples (namely batch 1) as the reference and 

scale other batch sample values (intensity) by it, thus not 

leading to significant performance bias. The source codes of 

ResNet and NormAE algorithm are publicly available at 

https://github.com/ushaham/BatchEffectRemoval.git and 

https://github.com/luyiyun/NormAE, respectively. Since our 

data based MALDI MS instead of LC MS in NormAE, which 

not exist so-called injection order, therefore, it is eliminated in 

training and testing process. In addition, the mass quality 

control was conducted using standard molecules on the stage 

of serum plates, so it doesn’t appear at the preprocessing 

matrix. In order to ensure the convergence of the model, 

except for the lr_disc_b, epoch and batch_size which are set 

to 0.0005, (100, 10, 100) and 200, other parameters are 

defaulted. 

2 Additional Visualization Results 



Fig. S1. Visualization of Patient 2 of the public CyTOF data. 

This illustration has exactly the same situation as the caption 

of Figure 1. For details, please refer to the explanation in Fig. 

1. 

Fig. S2. Visualizations of remaining five groups in private MALDI MS data. Its situations and legend explanations are the same 

as caption in Fig. 2. a Source: batch 1; Target: batch 2. b Source: batch 1; Target: batch 3. c Source: batch 2; Target: batch 1. d 

Source: batch 2; Target: batch 3. e Source: batch 3; Target: batch 1. 

3 Robustness Verification 

To prove the deep learning algorithm we developed could be 

applied to an entirely new similar set, we have collected a new 

batch of systemic lupus erythematosus (SLE) patients and 

healthy controls (HCs) subjects from Renji Hospital, 

including 89 SLEs and 75 HCs. We utilize the previously 

trained three batches to calibrate the batch effect of this new 

batch and predict its ACC, F-score, AUC and MCC. As shown 

in Table S1, no matter which batch is used for the training set, 

these indicators can be significantly improved after calibration. 

Table S1.  Cross-batch prediction results of original three 

batches as source and the new batch as target 

Source Batch 
Sample Level Subject Level 

1 2 3 1 2 3 

ACC 
Before 0.773 0.810 0.755 0.768 0.805 0.756 

After 0.884 0.837 0.872 0.878 0.835 0.872 

F-score 
Before 0.806 0.831 0.723 0.802 0.826 0.726 

After 0.897 0.837 0.874 0.891 0.834 0.874 

AUC 
Before 0.764 0.805 0.770 0.759 0.800 0.771 

After 0.880 0.842 0.877 0.874 0.842 0.877 

MCC 
Before 0.544 0.616 0.568 0.534 0.606 0.567 

After 0.767 0.684 0.752 0.755 0.685 0.752 

 

Permutation test is a computationally intensive based method 

that utilizes random arrangement of sample data for statistical 

inference. If random or “fake” labels could not achieve good 

results, our model is robust. Otherwise, it means that there are 

some problems with the model. Taking one old batch (i.e., 

batch 1) for training and the new batch for test, our 

implementation is the same shuffling pattern as the old 

batches in Figure 3. The accuracy values of random label are 

bell-shaped and very poor (Figure S3a). In addition, we have 

also tried to quest whether the differences of key metabolites 

are still significant after arranging the measurement for this 

new batch. As shown in Figure S3b, the results illustrate that 

there is no significant difference in any m/z feature between 

the case and control groups, which further verifies the 

robustness of the algorithm in our study. 



Fig. S3. a Permutation test of accuracy for old batch (batch 1) 

as source and new batch as target. b Boxplots of those six 

common m/z features on the condition of permutating the 

labels in the new batch. 


