
1 Versions or Parameters

1.1 CyTOF Dataset

1.1.1 Before calibration

In this study, we all use deep learning networks for

classification. To achieve fair comparison, the types and

numbers of network layers remain the same before and after

calibration. The parameter “MALDI_MS” is a flag of mass

spectrometry experiments, therefore it is set to False on all

public CyTOF data. The learning rate, number of epochs, size

of mini-batch and learning step are set to 10−4, 100, 200 and

104 respectively. In order to prevent overfitting the network,

the L2 weight decay is set to 5 × 10−5 during training.

1.1.2 After calibration

For training our network after calibration, the learning rate is

set to 10−4 and the number of epochs is set to 2000. The

gradient update rule of mini-batch in deep learning is used to

train our model where three losses are calculated from a

sampled “mini-batch” during each iteration of the training

process. We set the mini-batch size to 100 and the coefficients

of three losses are 𝛼 = 0.01 , 𝛽 = 1 , 𝛾 = 0.01 by grid-

search. The learning step, L2 weight decay are set to 104,

5 × 10−5 during training.

1.1.3 In-batch Cross Validation

In order to compare all the results on the same benchmark, the

classification network of in-batch 10-fold cross-validation

shares the same framework as cross-batch experiments. The

learning rate, number of epochs, size of mini-batch, learning

step and L2 weight decay are set to 10−4, 15, 200, 103 and

5 × 10−5, respectively.

1.2 MALDI MS Dataset

1.2.1 Before calibration

In this set of experiment, the flag variable “MALDI_MS” is

set to True on all private MALDI MS data. The ID of the file

containing the number of samples in each subject is consistent

with testing set. The structure of the classification network is

also consistent with the CyTOF experiments. The learning

rate, number of epochs, size of mini-batch, learning step and

L2 weight decay are set to 10−3 , 100, 200, 104 and

5 × 10−5, respectively.

1.2.2 After calibration

For training after calibration, the ID of the file containing the

number of samples in each subject is consistent with testing

set. The learning rate, number of epochs, size of mini-batch

and learning step are set to 10−4 , 2000, 200 and 104 ,

respectively. In addition, the hyper-parameters of the

coefficients of three losses are set to 𝛼 = 0.01, 𝛽 = 1, 𝛾 =

0.01 by grid-search. The L2 weight decay is set to 5 × 10−5

during training, the same with first experiment.

1.2.3 In-batch Cross Validation

As the previous experiment, the classification network of in-

batch cross-validation holds the same structure as cross-batch

predictions. The ID of the file containing the number of

samples in each subject is consistent with training set. The

learning rate, number of epochs, size of mini-batch, learning

step and L2 weight decay are set to 10−4, 25, 200, 103 and

5 × 10−5, respectively.

1.3 Information for Other Methods

Corresponding open source code could be found about those

algorithms involved in comparative experiments. The

ComBat and fSVA have been implemented by ComBat() and

fsva() function respectively into R software package sva

(http://bioconductor.org/packages/3.5/bioc/html/sva.html). In

addition, commonly used batch effect removal functions

including geometric.mean() that ratio_G adopted is

implemented in Psych R package (http://cran.r-

project.org/web/packages/psych/index.html). In principle,

ratio-based data is obtained by scaling all samples through

ready-made reference samples or the average of negative class

samples in each batch. However, it should be mentioned that

the two means above are not available in practice, because it

is not possible to know the class label of the test batch before

performing the prediction. We choose to utilize the mean of

whole train samples (namely batch 1) as the reference and

scale other batch sample values (intensity) by it, thus not

leading to significant performance bias. The source codes of

ResNet and NormAE algorithm are publicly available at

https://github.com/ushaham/BatchEffectRemoval.git and

https://github.com/luyiyun/NormAE, respectively. Since our

data based MALDI MS instead of LC MS in NormAE, which

not exist so-called injection order, therefore, it is eliminated in

training and testing process. In addition, the mass quality

control was conducted using standard molecules on the stage

of serum plates, so it doesn’t appear at the preprocessing

matrix. In order to ensure the convergence of the model,

except for the lr_disc_b, epoch and batch_size which are set

to 0.0005, (100, 10, 100) and 200, other parameters are

defaulted.

2 Additional Visualization Results

Fig. S1. Visualization of Patient 2 of the public CyTOF data.

This illustration has exactly the same situation as the caption

of Figure 1. For details, please refer to the explanation in Fig.

1.

Fig. S2. Visualizations of remaining five groups in private MALDI MS data. Its situations and legend explanations are the same

as caption in Fig. 2. a Source: batch 1; Target: batch 2. b Source: batch 1; Target: batch 3. c Source: batch 2; Target: batch 1. d

Source: batch 2; Target: batch 3. e Source: batch 3; Target: batch 1.

3 Robustness Verification

To prove the deep learning algorithm we developed could be

applied to an entirely new similar set, we have collected a new

batch of systemic lupus erythematosus (SLE) patients and

healthy controls (HCs) subjects from Renji Hospital,

including 89 SLEs and 75 HCs. We utilize the previously

trained three batches to calibrate the batch effect of this new

batch and predict its ACC, F-score, AUC and MCC. As shown

in Table S1, no matter which batch is used for the training set,

these indicators can be significantly improved after calibration.

Table S1. Cross-batch prediction results of original three

batches as source and the new batch as target

Source Batch
Sample Level Subject Level

1 2 3 1 2 3

ACC
Before 0.773 0.810 0.755 0.768 0.805 0.756

After 0.884 0.837 0.872 0.878 0.835 0.872

F-score
Before 0.806 0.831 0.723 0.802 0.826 0.726

After 0.897 0.837 0.874 0.891 0.834 0.874

AUC
Before 0.764 0.805 0.770 0.759 0.800 0.771

After 0.880 0.842 0.877 0.874 0.842 0.877

MCC
Before 0.544 0.616 0.568 0.534 0.606 0.567

After 0.767 0.684 0.752 0.755 0.685 0.752

Permutation test is a computationally intensive based method

that utilizes random arrangement of sample data for statistical

inference. If random or “fake” labels could not achieve good

results, our model is robust. Otherwise, it means that there are

some problems with the model. Taking one old batch (i.e.,

batch 1) for training and the new batch for test, our

implementation is the same shuffling pattern as the old

batches in Figure 3. The accuracy values of random label are

bell-shaped and very poor (Figure S3a). In addition, we have

also tried to quest whether the differences of key metabolites

are still significant after arranging the measurement for this

new batch. As shown in Figure S3b, the results illustrate that

there is no significant difference in any m/z feature between

the case and control groups, which further verifies the

robustness of the algorithm in our study.

Fig. S3. a Permutation test of accuracy for old batch (batch 1)

as source and new batch as target. b Boxplots of those six

common m/z features on the condition of permutating the

labels in the new batch.

