Supplementary Information Exploration of glassy state in Prussian blue analogues N. Ma *et al.*

*Corresponding author. Email: horike@icems.kyoto-u.ac.jp (Satoshi Horike)

Supplementary Tables

Supplementary Table 1. Fe and Cu mass percent of Cu[Fe]_{2/3} from Energy Dispersive X-ray Fluorescence (EDXRF).

	Mass (%)	Standard deviation	Fe:Cu mol ratio	
Cu	63.9	0.1	0.63	
Fe	35.1	0.1		

Supplementary Table 2. Room temperature ⁵⁷Fe Mössbauer spectral fitting parameters.

	Component	IS (mm/s)	QS (mm/s)	Fraction (%)
Cultal	Fe ^{II}	-0.088	0.179	51.1
Cu[Fe] _{2/3}	Fe ^{III}	-0.159	0.556	48.9
Cu[Fe] _{2/3} -g	Fe ^{II}	-0.088	0.168	67.0
	Fe ^{III}	0.258	0.790	33.0
Cu[Fe] _{2/3} -c	Fe ^{II}	-0.086	0.143	73.5
	Fe ^{III}	0.318	0.727	26.5
Cu[Fe] _{2/3} -c'	Fe ^{II}	-0.083	0.172	66.9
	Fe ^{III}	0.309	0.745	33.1

	Element	Weight (%)	Standard deviation
Cu[Fe] _{2/3}	С	23.7	0.34
	Ν	28.4	0.77
Cu[Fe] _{2/3} -g	С	22.7	0.20
	Ν	27.0	0.56
Cu[Fe] _{2/3} -c	С	22.2	0.51
	Ν	26.6	0.34

Supplementary Table 3. C and N weight percentage of Cu[Fe]_{2/3}, Cu[Fe]_{2/3}-g, and Cu[Fe]_{2/3}-c excluding water content. The values are calculated from elemental analysis.

Supplementary Table 4. Fe K-edge EXAFS data fitting results.

	Path	nleg	Degeneracy	R (Å)	σ^2 (Å ²)	$E_0 (eV)$
	Fe–C	2	6.0	1.93	0.004	-2.691
Cultal	Fe–N	2	6.0	3.06	0.031	-2.691
	Fe–N	3	12.0	3.06	0.007	-2.691
	Fe–N	4	6.0	3.06	0.005	-2.691
Cu[Fe] _{2/3} -g	Fe–C	2	4.4	1.92	0.005	-2.797
	Fe–N	2	4.4	3.01	0.027	-2.797
	Fe–N	3	8.8	3.01	0.007	-2.797
	Fe–N	4	4.4	3.01	0.003	-2.797
	Fe–C	2	5.4	1.91	0.005	-4.093
Cu[Fe] _{2/3} -c	Fe–N	2	5.4	3.03	0.046	-4.093
	Fe–N	3	10.8	3.03	0.012	-4.093
	Fe–N	4	5.4	3.03	0.004	-4.093

Supplementary Table 5. Room temperature ⁵⁷Fe Mössbauer spectral fitting parameters of Fe[Fe]_{3/4}.

	Component	IS (mm/s)	QS (mm/s)	Fraction (%)*
Fe[Fe] _{3/4}	Fe ^{II}	-0.143	0.118	48.1
	Fe ^{III, a}	0.410	0.001	17.7
	Fe ^{III, b}	0.410	0.270	22.6
	Fe ^{III, c}	0.410	0.627	11.6

*Fe^{III}/Fe^{II} ratio of Fe^{III}[Fe^{II}(CN)₆]_{3/4 \Box 1/4·*n*H₂O measured from ⁵⁷Fe Mössbauer spectroscopy is found to range from 0.99 to 1.13 (1.08 for this work) instead of the theoretical value of 1.33 due to the deviation of the *f*-factor between Fe^{II}–C bonding and the average of the Fe^{III}–N, Fe^{III}–O, and Fe^{III}–vacancy bonding.¹}

Supplementary Table 6. C and N weight percentage of Fe[Fe]_{3/4} excluding water content. The values are calculated from elemental analysis.

	Element	Weight (%)	Standard deviation
Fe[Fe] _{3/4}	С	27.6	0.58
	Ν	35.5	0.55

		Fe[Fe(CN) ₆]· <i>n</i> H ₂ O	Fe[Fe(CN) ₆]	Fe4[Fe(CN)6]3·nH2O
	$E_{\rm max}$ / GPa	247.4	217.3	169.0
Young's modulus	$E_{\min}/$ GPa	551.4	48.2	48.9
	А	4.8	4.5	3.5
	$\beta_{ m max}$ / TPa ⁻¹	3.0	3.0	11.8
Linear compressibility	$\beta_{\rm min}$ / TPa ⁻¹	2.7	3.0	6.6
· · · · · · · · · · · · · · · · · · ·	А	1.1	1.0	1.8
	G _{max} / GPa	103.7	92.4	78.6
Shear modulus	G_{\min} / GPa	16.7	16.9	18.8
	А	6.2	5.5	4.2
Poisson's ratio	$v_{\rm max}$	0.78	0.77	0.58
	$v_{ m min}$	0.03	0.05	-0.25
	А	29.3	16.0	ω

Supplementary Table 7. Variations of elasticity for $Fe[Fe(CN)_6] \cdot nH_2O$, $Fe[Fe(CN)_6]$, and $Fe_4[Fe(CN)_6]_3 \cdot nH_2O$.

Supplementary Table 8. Density (ρ), longitudinal velocity (V_L), Vickers hardness at infinite load ($H_{V,\infty}$), reduced elastic modulus (E_r) from indentation experiments, and longitudinal modulus (L) of Fe[Fe]_{3/4}-g and Cu[Fe]_{2/3}-g monolith samples as well as transversal velocity (V_T), Young's modulus (E), shear modulus (G), bulk modulus (B), and Poisson's ratio (ν) for the Cu[Fe]_{2/3}-g monolith. n.d. indicates that property could not be determined.

	Fe[Fe] _{3/4} -g	Cu[Fe] _{2/3} -g
ho (g cm ⁻³)	2.04	1.95
$V_{\rm L} ({\rm m \ s^{-1}})$	2950	2891
$V_{\rm T} ({\rm m \ s^{-1}})$	n.d.	1586
$H_{\mathrm{V},\infty}\left(\mathrm{GPa} ight)$	0.51	0.46
<i>E</i> _r (GPa)	7.6	5.7
L (GPa)	17.8	16.3
E (GPa)	n.d.	12.6
G (GPa)	n.d.	4.9
B (GPa)	n.d.	9.7
v(-)	n.d.	0.28

Supplementary Figure 1. PXRD patterns of Cu[Fe]_{2/3}, Fe[Fe]_{3/4}, and simulated Fe[Fe]_{3/4} ($\lambda = 1.5406$ Å). Source data are provided as a Source Data file.

Supplementary Figure 2. Rietveld refinement of Cu[Fe]_{2/3} ($\lambda = 0.2020$ Å). Source data are provided as a Source Data file.

Supplementary Figure 3. TGA profiles of Cu[Fe]_{2/3} and Cu[Fe]_{2/3}-g under Ar (10 °C min⁻¹). Inset scheme displays (A) zeolitic water and (B) coordinate water. Source data are provided as a Source Data file.

Supplementary Figure 4. In situ temperature-probing during the mechanical milling process of $Cu[Fe]_{2/3}$.

Supplementary Figure 5. Optical images of (A) Cu[Fe]_{2/3}, (B) Cu[Fe]_{2/3}-g, and (C) Cu[Fe]_{2/3}-c as well as samples mixed with 95 wt% CaF₂ to emphasise the colour change of (D) Cu[Fe]_{2/3}, (E) Cu[Fe]_{2/3}-g, (F) Cu[Fe]_{2/3}-c, and (G) Cu[Fe]_{2/3}-c'.

Supplementary Figure 6. Diffuse-reflectance UV-Vis spectra of Cu[Fe]_{2/3}, Cu[Fe]_{2/3}-g, Cu[Fe]_{2/3}-c, and Cu[Fe]_{2/3}-c'. Source data are provided as a Source Data file.

Supplementary Figure 7. Close system DSC profiles under Ar atmosphere of Cu[Fe]_{2/3}-g at the heating rate of 10, 20, and 30 °C min⁻¹. Source data are provided as a Source Data file.

Supplementary Figure 8. PXRD patterns of Cu[Fe]_{2/3}, Cu[Fe]_{2/3}-g, and Cu[Fe]_{2/3}-g after DSC measurement ($\lambda = 1.5406$ Å). Source data are provided as a Source Data file.

Supplementary Figure 9. Ar-flow variable temperature PXRD patterns of Cu[Fe]_{2/3}-g from 40 to 180 °C ($\lambda = 1.5406$ Å). The temperature was held for 30 min before each measurement. The peak at the 2 θ of 6.9 ° is corresponding to the cell background. Source data are provided as a Source Data file.

Supplementary Figure 10. PXRD patterns of Cu[Fe]_{2/3}, Cu[Fe]_{2/3}', and Cu[Fe]_{2/3}'-g. Peaks with (*) is corresponding to the Ar cell background ($\lambda = 1.5406$ Å). Source data are provided as a Source Data file.

Supplementary Figure 11. TGA profiles of Cu[Fe]_{2/3}, Cu[Fe]_{2/3}', and Cu[Fe]_{2/3}'-g. Source data are provided as a Source Data file.

Supplementary Figure 12. PXRD patterns of Cu[Fe]_{2/3}, Cu[Fe]_{2/3}-g, and Cu[Fe]_{2/3}-c ($\lambda = 1.5406$ Å). Source data are provided as a Source Data file.

Supplementary Figure 13. TGA profiles of Cu[Fe]_{2/3}, Cu[Fe]_{2/3}-c, and Cu[Fe]_{2/3}-h. Note that Cu[Fe]_{2/3}-h is prepared by heating Cu[Fe]_{2/3} at 80 °C and 85 RH% for 72 h, confirming that the increase in interstitial water content is exclusive to Cu[Fe]_{2/3}-c. Source data are provided as a Source Data file.

Supplementary Figure 14. SEM images at x100k magnification of (A) Cu[Fe]_{2/3}, (B) Cu[Fe]_{2/3}-g, and (C) Cu[Fe]_{2/3}-c. Scale bar is 100 nm.

Supplementary Figure 15. FTIR spectra of Cu[Fe]_{2/3}, Cu[Fe]_{2/3}-g, Cu[Fe]_{2/3}-c, and Cu[Fe]_{2/3}-c'. Source data are provided as a Source Data file.

Supplementary Figure 16. Pair distribution function (PDF) of Cu[Fe]_{2/3}, Cu[Fe]_{2/3}-g, and Cu[Fe]_{2/3}-c up to r of 58 Å. Source data are provided as a Source Data file.

Supplementary Figure 17. Pair distribution function (PDF) of $Cu[Fe]_{2/3}$ and $Cu[Fe]_{2/3}$ -c up to *r* of 150 Å. Source data are provided as a Source Data file.

Supplementary Figure 18. Photographs of (A) $Cu[Fe]_{2/3}$ and (B and C) $Cu[Fe]_{2/3}$ -g thin monolith disks with a thickness of ca. 250 μ m and 16 mm in diameter. The monoliths were prepared via the hot-pressing technique.

Supplementary Figure 19. ⁵⁷Fe Mössbauer spectra measured at room temperature of Cu[Fe]_{2/3}, Cu[Fe]_{2/3}-g, Cu[Fe]_{2/3}-c, and Cu[Fe]_{2/3}-c'. The blue and red fittings represent the contributions from Fe^{II} and Fe^{III}, respectively. Source data are provided as a Source Data file.

Supplementary Figure 20. Raman spectra of Cu[Fe]_{2/3}, Cu[Fe]_{2/3}-g, Cu[Fe]_{2/3}-c, and Cu[Fe]_{2/3}-c'. Source data are provided as a Source Data file.

Supplementary Figure 21. (A) Normalised XAS spectra and (B) Fourier transform EXAFS at Fe K-edge of Cu[Fe]_{2/3}, Cu[Fe]_{2/3}-g, and Cu[Fe]_{2/3}-c. Fourier transform EXAFS at Fe K-edge comparison between (C) Cu[Fe]_{2/3} – Cu[Fe]_{2/3}-g and (D) Cu[Fe]_{2/3}-g – Cu[Fe]_{2/3}-c. Source data are provided as a Source Data file.

Supplementary Figure 22. Fourier transform and EXAFS functions at Fe K-edge for (A, B) Cu[Fe]_{2/3}, (C, D) Cu[Fe]_{2/3}-g, and (E, F) Cu[Fe]_{2/3}-c. The fitting results show that the coordination numbers of Fe are 6.0, 4.4, and 5.4 for Cu[Fe]_{2/3}, Cu[Fe]_{2/3}-g, and Cu[Fe]_{2/3}-c, respectively (Table S4). Source data are provided as a Source Data file.

Supplementary Figure 23. Variable temperature I-V curve of $Cu[Fe]_{2/3}$ (L = 1.524 mm). Source data are provided as a Source Data file.

Supplementary Figure 24. Variable temperature I-V curve of $Cu[Fe]_{2/3}$ -g (L = 1.469 mm). Source data are provided as a Source Data file.

Supplementary Figure 25. Variable temperature I-V curve of $Cu[Fe]_{2/3}$ -c' (L = 1.506 mm). Source data are provided as a Source Data file.

Supplementary Figure 26. ⁵⁷Fe Mössbauer spectra measured at room temperature of Fe[Fe]_{3/4}. The blue and red fittings represent the contributions from low-spin Fe^{II} and high-spin Fe^{III}, respectively. The spectrum was analysed in terms of a single low-spin Fe^{II} quadrupole doublet and three high-spin Fe^{III} quadrupole doublets.¹ Source data are provided as a Source Data file.

Supplementary Figure 27. DSC profile of Fe[Fe]_{3/4}-g after 144 h of mechanical milling. Source data are provided as a Source Data file.

Supplementary Figure 28. Pair distribution function (PDF) of $Fe[Fe]_{3/4}$ -g up to *r* of 58 Å. Source data are provided as a Source Data file.

Supplementary Figure 29. Pair distribution function (PDF) of $Cu[Fe]_{2/3}$ -g up to r of 58 Å. Source data are provided as a Source Data file.

Supplementary Figure 30. PXRD patterns of Cu[Fe]_{2/3}-c and Fe[Fe]_{3/4}-c ($\lambda = 1.5406$ Å). Source data are provided as a Source Data file.

Supplementary Figure 31. Pair distribution functions (PDFs) of $Cu[Fe]_{2/3}$ -g and $Cu[Fe]_{2/3}$ -g up to *r* of 58 Å. Source data are provided as a Source Data file.

Supplementary Figure 32. PXRD patterns of Cu[Fe]_{2/3}-c and Cu[Fe]_{2/3}'-c ($\lambda = 1.5406$ Å). Source data are provided as a Source Data file.

Supplementary Figure 33. Schematic illustration of the directional elastic properties of materials in 2D space.

Supplementary Figure 34. Bulk, shear, and Young's moduli comparison of $Fe[Fe(CN)_6] \cdot nH_2O$, $Fe[Fe(CN)_6]$, and $Fe_4[Fe(CN)_6]_3 \cdot nH_2O$ at 0 GPa by Voigt-Reuss-Hill approximation. Source data are provided as a Source Data file.

Supplementary Figure 35. Bulk, shear, and Young's moduli comparison of $Fe[Fe(CN)_6] \cdot nH_2O$, $Fe[Fe(CN)_6]$, and $Fe_4[Fe(CN)_6]_3 \cdot nH_2O$ at 0.2 GPa by Voigt-Reuss-Hill approximation. Note, the $Fe_4[Fe(CN)_6]_3 \cdot nH_2O$ is considered unstable according to the Eigenvalue analysis. Source data are provided as a Source Data file.

Spatial elastic

Supplementary Figure 36. Spatial dependence Young's modulus of the $Fe[Fe(CN)_6] \cdot nH_2O$ at 0 GPa. Source data are provided as a Source Data file.

Supplementary Figure 37. Spatial dependence linear compressibility of the $Fe[Fe(CN)_6] \cdot nH_2O$ at 0 GPa. Source data are provided as a Source Data file.

Supplementary Figure 38. Spatial dependence shear modulus of the $Fe[Fe(CN)_6] \cdot nH_2O$ at 0 GPa. Blue and green curves/surfaces represent maximum and positive minimum shear moduli, respectively. Source data are provided as a Source Data file.

Supplementary Figure 39. Spatial dependence Poisson's ratio of the $Fe[Fe(CN)_6] \cdot nH_2O$ at 0 GPa. Blue, green, and red curves/surfaces represent maximum, positive minimum, and negative minimum Poisson's ratios, respectively. Source data are provided as a Source Data file.

Supplementary Figure 40. Spatial dependence Young's modulus of the Fe[Fe(CN)₆] at 0 GPa. Source data are provided as a Source Data file.

Supplementary Figure 41. Spatial dependence linear compressibility of the Fe[Fe(CN)₆] at 0 GPa. Source data are provided as a Source Data file.

Supplementary Figure 42. Spatial dependence shear modulus of the Fe[Fe(CN)₆] at 0 GPa. Blue and green curves/surfaces represent maximum and positive minimum shear moduli, respectively. Source data are provided as a Source Data file.

Supplementary Figure 43. Spatial dependence Poisson's ratio of the $Fe[Fe(CN)_6]$ at 0 GPa. Blue, green, and red curves/surfaces represent maximum, positive minimum, and negative minimum Poisson's ratios, respectively. Source data are provided as a Source Data file.

Supplementary Figure 44. Spatial dependence Young's modulus of the $Fe_4[Fe(CN)_6]_3 \cdot nH_2O$ at 0 GPa. Source data are provided as a Source Data file.

Supplementary Figure 45. Spatial dependence linear compressibility of the $Fe_4[Fe(CN)_6]_3 \cdot nH_2O$ at 0 GPa. Source data are provided as a Source Data file.

Supplementary Figure 46. Spatial dependence shear modulus of the $Fe_4[Fe(CN)_6]_3 \cdot nH_2O$ at 0 GPa. Blue and green curves/surfaces represent maximum and positive minimum shear moduli, respectively. Source data are provided as a Source Data file.

Supplementary Figure 47. Spatial dependence Poisson's ratio of the $Fe_4[Fe(CN)_6]_3 \cdot nH_2O$ at 0 GPa. Blue, green, and red curves/surfaces represent maximum, positive minimum, and negative minimum Poisson's ratios, respectively. Source data are provided as a Source Data file.

Supplementary Figure 48. Spatial dependence Young's modulus of the $Fe[Fe(CN)_6] \cdot nH_2O$ at 0.2 GPa. Source data are provided as a Source Data file.

Supplementary Figure 49. Spatial dependence linear compressibility of the $Fe[Fe(CN)_6] \cdot nH_2O$ at 0.2 GPa. Source data are provided as a Source Data file.

Supplementary Figure 50. Spatial dependence shear modulus of the $Fe[Fe(CN)_6] \cdot nH_2O$ at 0.2 GPa. Blue and green curves/surfaces represent maximum and positive minimum shear moduli, respectively. Source data are provided as a Source Data file.

Supplementary Figure 51. Spatial dependence Poisson's ratio of the $Fe[Fe(CN)_6] \cdot nH_2O$ at 0.2 GPa. Blue, green, and red curves/surfaces represent maximum, positive minimum, and negative minimum Poisson's ratios, respectively. Source data are provided as a Source Data file.

Supplementary Figure 52. Spatial dependence Young's modulus of the Fe[Fe(CN)₆] at 0.2 GPa. Source data are provided as a Source Data file.

Supplementary Figure 53. Spatial dependence linear compressibility of the Fe[Fe(CN)₆] at 0.2 GPa. Source data are provided as a Source Data file.

Supplementary Figure 54. Spatial dependence shear modulus of the Fe[Fe(CN)₆] at 0.2 GPa. Blue and green curves/surfaces represent maximum and positive minimum shear moduli, respectively. Source data are provided as a Source Data file.

Supplementary Figure 55. Spatial dependence Poisson's ratio of the $Fe[Fe(CN)_6]$ at 0.2 GPa. Blue, green, and red curves/surfaces represent maximum, positive minimum, and negative minimum Poisson's ratios, respectively. Source data are provided as a Source Data file.

Supplementary Reference

1. Grandjean, F., Samain, L. & Long, G.J. Characterization and utilization of Prussian blue and its pigments. *Dalton Trans.* **45**, 18018–18044 (2016).