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Appendix A 

GEE and MLM Can Be Biased When Estimating Causal Excursion Effects in MRTs 

MRTs produce intensive longitudinal data (Schafer, 2006), as individuals are randomized 

among intervention options repeatedly during the MRT, and outcomes and covariates are 

assessed in tandem with randomization. Repeated measurement of the same individuals over 

time means that the repeated observations are likely dependent. Generalized estimating 

equations (GEE; Liang & Zeger, 1986) and multi-level models (MLM; Laird & Ware, 1982; 

Raudenbush & Bryk, 2002), the latter also known as mixed models or random effects models, 

have been used widely in analyzing longitudinal data. However, as we illustrate below, 

inappropriate application of them to MRT data may result in biased estimates of the causal 

excursion effects when endogenous time-varying covariates are included in the model. A time-

varying covariate is endogenous if it can depend on previous outcomes or previous treatments, 

which commonly occurs in MRTs. For example, in analyzing the effect of activity suggestion in 

the subsequent 30-minute step count in HeartSteps, one may want to control for the 30-minute 

step count prior to each decision point to reduce noise. Because the 30-minute step count prior to 

a decision point can be correlated with past step counts (i.e., past outcomes), it is endogenous. 
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When a time-varying covariate is not endogenous, it is called exogenous. Examples of exogenous 

time-varying covariates include time, weather, and anything that cannot be impacted by previous 

treatments or previous outcomes. 

Inappropriate Use of GEE and MLM Can Result in Biased Causal Excursion Effect 

Estimates in the Presence of Endogenous Time-Varying Covariates 

 Pepe & Anderson (1994) demonstrated that, in the presence of endogenous time-varying 

covariates, parameter estimates from GEE may be biased unless certain conditions, described 

below, are met. Such bias is also shown in subsequent research through simulation studies and 

analytic calculations (Diggle et al., 2002; Pan et al., 2000; Schildcrout & Heagerty, 2005; 

Tchetgen et al., 2012; Vansteelandt, 2007). For completeness we provide a brief explanation of 

the bias here. Consider a simplified version of the HeartSteps MRT, where there are two decision 

points for each individual and the feasible component options are always not restricted. Suppose 

the observed data for individual i is (𝑋𝑖1, 𝐴𝑖1, 𝑌𝑖2, 𝑋𝑖2, 𝐴𝑖2, 𝑌𝑖3), where 𝑋𝑖𝑡 denotes the 30-minute 

step count prior to decision point 𝑡 (an endogenous time-varying covariate), 𝐴𝑖𝑡 is the indicator 

of whether an activity suggestion is delivered at decision point 𝑡 (so 𝐴𝑖𝑡 has .6 probability to be 

1), and 𝑌𝑖,𝑡+1 is the 30-minute step count following decision point t. The researcher chooses 

𝑆𝑖𝑡 = 𝑋𝑖𝑡 in equation (2): they want to assess whether the effect of the activity suggestion is 

moderated by the prior 30-minute step count. The researcher may then choose to impose the 

following linear model on the mean of the proximal outcome given the treatment and the 

covariate at decision point 𝑡: 

 𝐸(𝑌𝑖,𝑡+1|𝐴𝑖𝑡 , 𝑋𝑖𝑡) = 𝛼0 + 𝛼1𝑋𝑖𝑡 + 𝐴𝑖𝑡(𝛽0 + 𝛽1𝑋𝑖𝑡), (1) 
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and use GEE to estimate the coefficients 𝛼0, 𝛼1, 𝛽0, 𝛽1.1 Often a non-independent working 

correlation structure is used in GEE, aiming for efficiency gain (i.e., smaller standard error of the 

estimated coefficients compared to GEE with working independence correlation structure). 

It is well known that GEE produces consistent estimates regardless of the choice of the 

working correlation structure, as long as equation (1) holds; however, this is only true when all 

covariates are exogenous. In this above example with two decision points, Pepe & Anderson 

(1994) demonstrated that to guarantee the consistency of the GEE estimates, one of the following 

conditions needs to hold: 

(i) 𝐸(𝑌𝑖,𝑡+1|𝐴𝑖𝑡 , 𝑋𝑖𝑡) = 𝐸(𝑌𝑖,𝑡+1|𝐴𝑖1, 𝑋𝑖1, 𝐴𝑖2, 𝑋𝑖2) for 𝑡 = 1,2; or 

(ii) a working independence correlation structure is used. 

Condition (i) is usually violated when 𝑋𝑖𝑡 is endogenous: In this particular example, 𝑋𝑖2 can be 

correlated with 𝑌𝑖2, so that 𝐸(𝑌𝑖2|𝐴𝑖1, 𝑋𝑖1) ≠ 𝐸(𝑌𝑖2|𝐴𝑖1, 𝑋𝑖1, 𝐴𝑖2, 𝑋𝑖2). This means that unless the 

independent working correlation structure is used, GEE can produce biased estimates even if 

equation (7) holds. 

 The same bias can occur when MLM is used instead of GEE. In general, for each MLM 

there is a corresponding GEE with a non-independent correlation structure that produces the 

same estimated coefficients. For example, an MLM resembling equation (7) is 𝑌𝑖,𝑡+1 = 𝛼0 +

𝛼1𝑋𝑖𝑡 + 𝐴𝑖𝑡(𝛽0 + 𝛽1𝑋𝑖𝑡) + 𝑢𝑖 + 𝜖𝑖𝑡 , where 𝑢𝑖 ∼ Normal(0, 𝜎𝑢
2) is a random intercept and 𝜖𝑖𝑡 ∼

Normal(0, 𝜎𝜖
2) is the error term. This corresponds to a GEE with compound symmetric (also 

 
1 In this particular example in which the randomization probability is constant, the 𝛽0 , 𝛽1 in the proximal treatment 

effect term in (7) equals the 𝛽0
′ , 𝛽1

′  in 𝐸[𝐸( 𝑌𝑡+1 ∣∣ 𝐴𝑡 = 1,𝐻𝑡 ) − 𝐸(𝑌𝑡+1 ∣∣ 𝐴𝑡 = 0,𝐻𝑡 )|𝑆𝑡] = 𝛽0
′ + 𝛽1

′ 𝑆𝑡. Therefore, 

if one can obtain consistent estimates for 𝛽0 , 𝛽1, one obtains consistent estimate for the proximal treatment effect 

defined in (2). In general, however, when the randomization probability can depend on 𝐻𝑡, the 𝛽0, 𝛽1 in (7) no 

longer equals the 𝛽 in (2) due to the marginalization over 𝑆𝑡. This is another reason, in addition to the reason that 

will be presented in the next paragraph of the paper, why inappropriate use of GEE results in biased proximal 

treatment effect estimates. 
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called exchangeable) working correlation structure. Given this equivalency, MLM can produce 

biased estimates if the covariate 𝑋𝑖𝑡 is endogenous. 

A Few Scenarios Where GEE or MLM Provides Consistent Causal Excursion Effect 

Estimates from MRT Data 

GEE builds upon a marginal mean model (i.e., the relationship between the mean of the 

proximal outcome, the covariates, and the treatment assignments, such as (7)). If no endogenous 

time-varying covariates are included in the model, the feasible component options are always not 

restricted, and the randomization probability is constant, GEE with any working correlation 

structure gives consistent estimates as long as the marginal mean model is correct. If there are 

endogenous time-varying covariates in the model, the feasible component options are always not 

restricted, and the randomization probability is constant, GEE with independent working 

correlation structure still gives consistent estimates as long as the marginal mean model is 

correct, but GEE with other working correlation structure does not. 

 Because an MLM always corresponds to a GEE with some non-independent working 

correlation structure, MLM provides consistent causal excursion effect estimates if no 

endogenous time-varying covariates are included in the model, the feasible component options 

are always not restricted, and the randomization probability is constant. However, although the 

estimated coefficients from an MLM will generally be biased for the causal excursion effect 

when there are endogenous time-varying covariates, those estimated coefficients can have a 

different, individual-specific interpretation under a rather strong assumption. As shown in Qian, 

Klasnja, & Murphy (2020), if the endogenous time-varying covariates can be safely assumed to 

only depend on the random effect through the observed previous outcomes and previous 

covariates, then the fitted results from standard linear mixed models can be interpreted as a 
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causal effect that is conditional on the random effect (i.e., individual-specific rather than 

population-average) and conditional on the entire history 𝐻𝑡 (rather than conditional only on 𝑆𝑡). 

An example where this strong assumption holds is when the endogenous time-varying covariates 

are previous proximal outcomes (e.g., the endogenous time-varying covariate at decision point 𝑡 

is the proximal outcome at decision point 𝑡 − 1). 

A Mathematical Demonstration of the Bias from Inappropriate Application of GEE When 

There are Endogenous Time-Varying Covariates 

For clarity we consider the case where each participant is in the MRT for two decision 

points. The data for the i-th participant is (𝑋𝑖1, 𝐴𝑖1, 𝑌𝑖2, 𝑋𝑖2, 𝐴𝑖2, 𝑌𝑖3), where 𝑋𝑖𝑡 is the covariate, 

𝐴𝑖𝑡 is the treatment assignment, and 𝑌𝑖𝑡+1 is the continuous outcome. The covariate 𝑋𝑖𝑡 is 

endogenous time-varying, in the sense that it can depend on previous treatment and previous 

outcome. 

 The model on the marginal mean of 𝑌𝑡+1 is 𝐸(𝑌𝑡+1|𝐴𝑡 , 𝑋𝑡) = 𝛼0 + 𝛼1𝑋𝑡 +

𝐴𝑡(𝛽0 + 𝛽1𝑋𝑡). The corresponding GEE solves the following estimating equation: 

 ∑[

1 1
𝑋𝑖1 𝑋𝑖2

𝐴𝑖1 𝐴𝑖2

𝐴𝑖1𝑋𝑖1 𝐴𝑖2𝑋𝑖2

] 𝑉−1 [
𝑌𝑖2 − 𝛼0 − 𝛼1𝑋𝑖1 − 𝐴𝑖1(𝛽0 + 𝛽1𝑋𝑖1)

𝑌𝑖3 − 𝛼0 − 𝛼1𝑋𝑖2 − 𝐴𝑖2(𝛽0 + 𝛽1𝑋𝑖2)
]

n

i=1

= 0. (2) 

Here, 𝑛 denotes the number of participants, and 𝑉 is a 2 × 2 working covariance matrix. 

Examples of 𝑉 include the following: 

• Working independence: 𝑉 = [𝜎
2 0

0 𝜎2] 

• Compound symmetry: 𝑉 = [
𝜎2 𝜌𝜎2

𝜌𝜎2 𝜎2 ] 

• Autoregressive (in the special case of two decision points, autoregressive is the same as 

compound symmetry): 𝑉 = [
𝜎2 𝜌𝜎2

𝜌𝜎2 𝜎2 ]. 
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In this setting, the result in Pepe & Anderson (1994) implies that GEE is guaranteed to 

produce consistent 𝛼0, 𝛼1, 𝛽0, 𝛽1 if either 

(i) 𝐸(𝑌𝑡+1|𝐴𝑡 , 𝑋𝑡) = 𝐸(𝑌𝑡+1|𝐴1, 𝑋1, 𝐴2, 𝑋2) for 𝑡 = 1,2, or 

(ii) a working independence correlation structure is used, 

and they provided simulation results to show that GEE can produce biased estimates when 

neither condition holds. In the following, we rephrase the intuitive argument given in Pepe and 

Anderson (1994) in this particular setting to show why GEE can be biased if neither condition 

holds. 

We write 𝑉−1 = [
𝑤11 𝑤12

𝑤21 𝑤22
] and write the residual 𝑟𝑖𝑡 = 𝑌𝑖𝑡+1 − 𝛼0 − 𝛼1𝑋𝑖𝑡 −

𝐴𝑖𝑡(𝛽0 + 𝛽1𝑋𝑖𝑡). A summand (for fixed 𝑖) in equation (8) becomes 

 

[

1 1
𝑋𝑖1 𝑋𝑖2

𝐴𝑖1 𝐴𝑖2

𝐴𝑖1𝑋𝑖1 𝐴𝑖2𝑋𝑖2

] [
𝑤11 𝑤12

𝑤21 𝑤22
] [

𝑟𝑖1
𝑟𝑖2

]

=

[
 
 
 

(𝑤11 + 𝑤21)𝑟𝑖1 + (𝑤12 + 𝑤22)𝑟𝑖2
(𝑤11𝑋𝑖1 + 𝑤21𝑋𝑖2)𝑟𝑖1 + (𝑤12𝑋𝑖1 + 𝑤22𝑋𝑖2)𝑟𝑖2
(𝑤11𝐴𝑖1 + 𝑤21𝐴𝑖2)𝑟𝑖1 + (𝑤12𝐴𝑖1 + 𝑤22𝐴𝑖2)𝑟𝑖2

(𝑤11𝐴𝑖1𝑋𝑖1 + 𝑤21𝐴𝑖2𝑋𝑖2)𝑟𝑖1 + (𝑤12𝐴𝑖1𝑋𝑖1 + 𝑤22𝐴𝑖2𝑋𝑖2)𝑟𝑖2]
 
 
 

. 

(3) 

Because 𝐸(𝑌𝑡+1|𝐴𝑡 , 𝑋𝑡) = 𝛼0 + 𝛼1𝑋𝑡 + 𝐴𝑡(𝛽0 + 𝛽1𝑋𝑡), we have 

𝐸[𝑟𝑖𝑡] = 𝐸[𝑋𝑖𝑡𝑟𝑖𝑡] = 𝐸[𝐴𝑖𝑡𝑟𝑖𝑡] = 𝐸[𝐴𝑖𝑡𝑋𝑖𝑡𝑟𝑖𝑡] = 0. 

Therefore, all the terms with 𝑤11𝑟𝑖1 and 𝑤22𝑟𝑖2 (such as 𝑤11𝑟𝑖1𝑋𝑖1; i.e., terms that are multiplied 

with the diagonal elements of 𝑉−1) in (9) have expectation zero, and what is left are the terms 

with 𝑤21𝑟𝑖1 and 𝑤12𝑟𝑖2 (i.e., terms that are multiplied with the off-diagonal elements of 𝑉−1). In 

other words, the expectation of (3) equals 

 [

0
𝑤21𝑋𝑖2𝑟𝑖1 + 𝑤12𝑋𝑖1𝑟𝑖2
𝑤21𝐴𝑖2𝑟𝑖1 + 𝑤12𝐴𝑖1𝑟𝑖2

𝑤11𝐴𝑖2𝑋𝑖2𝑟𝑖1 + 𝑤12𝐴𝑖1𝑋𝑖1𝑟𝑖2

]. (4) 
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Mathematical theory for GEE tells us that GEE outputs consistent 𝛼0, 𝛼1, 𝛽0, 𝛽1 when (9) has 

expectation zero; i.e., when (10) equals zero. 

 If condition (i) holds, we have 𝐸[𝑋𝑖2𝑟𝑖1] = 𝐸[𝐴𝑖2𝑟𝑖1] = 𝐸[𝐴𝑖2𝑋𝑖2𝑟𝑖1] = 0, and similarly 

𝐸[𝑋𝑖1𝑟𝑖2] = 𝐸[𝐴𝑖1𝑟𝑖2] = 𝐸[𝐴𝑖1𝑋𝑖1𝑟𝑖2] = 0. Therefore, (10) equals 0 with any choice of 𝑉−1, and 

GEE estimators are consistent. 

 If condition (ii) holds, we have 𝑤21 = 𝑤12 = 0. Hence (10) equals 0 and GEE estimators 

are consistent. 

 When neither condition holds, it’s likely that (10) does not equal zero. For example, 

suppose 𝑋𝑖2 = 𝑌𝑖2. Then the term 𝑋𝑖2𝑟𝑖1 equals 

 𝑌𝑖2{𝑌𝑖2 − 𝛼0 + 𝛼1𝑋𝑖1 + 𝐴𝑖1(𝛽0 + 𝛽1𝑋𝑖1)}, (5) 

which is the residual multiplied with the outcome itself. Because the residual and the outcome at 

the same time point are correlated, (11) likely does not equal zero. Therefore, (10) likely does 

not equal zero. This means GEE can be biased when neither conditions hold, i.e., when 

endogenous time-varying covariates are included and non-independent working correlation 

structure is used. 

 

Appendix B 

A General Form of the WCLS Estimator for the Causal Excursion Effect That Allows the 

Randomization Probability to Vary Over Time 

We assume a linear model for the causal excursion effect: 𝛽(𝑡, 𝑠) = 𝑠T𝛽. Suppose 𝑍𝑡
T𝛼 is 

a working model for the conditional mean of 𝑌𝑡+1 given no treatment at decision point t and 

history 𝐻𝑡, 𝐸(𝑌𝑡+1|𝐼𝑡 = 1,𝐻𝑡). Note that the consistency of the estimator for 𝛽 does not require 



  8 
 

𝑍𝑡
T𝛼 to be a correct model for 𝐸(𝑌𝑡+1|𝐼𝑡 = 1,𝐻𝑡). We use 𝑝𝑡(𝐻𝑡) to denote the randomization 

probability at decision point 𝑡, which may possibly depend on 𝐻𝑡.  

The WCLS estimator for 𝛽 is calculated as follows. Suppose (𝛼̂, 𝛽̂) is the (𝛼, 𝛽) value 

that solves the following estimating equation: 

 
1

𝑛
∑∑ 𝐼𝑖𝑡𝑊𝑖𝑡[𝑌𝑖,𝑡+1 − 𝑍𝑖𝑡

T𝛼 − {𝐴𝑖𝑡 − 𝑝̃𝑡(𝑆𝑖𝑡)}𝑆𝑖𝑡
T𝛽] [

𝑍𝑖𝑡

{𝐴𝑖𝑡 − 𝑝̃𝑡(𝑆𝑖𝑡)}𝑆𝑖𝑡
]

𝑇

𝑡=1

𝑛

𝑖=1

= 0; (6) 

then 𝛽̂ is the WCLS estimator for 𝛽. 𝑝̃𝑡(𝑆𝑖𝑡) is an arbitrary probability as long as it depends on 

𝐻𝑖𝑡 through at most 𝑆𝑖𝑡 and it is bounded away from 0 and 1; 𝑖 is the index for the ith individual, 

and 𝑊𝑖𝑡 is defined as 

 𝑊𝑖𝑡 = {
𝑝̃𝑡(𝑆𝑖𝑡)

𝑝𝑡(𝐻𝑖𝑡)
}

𝐴𝑖𝑡

{
1 − 𝑝̃𝑡(𝑆𝑖𝑡)

1 − 𝑝𝑡(𝐻𝑖𝑡)
}

1−𝐴𝑖𝑡

. (7) 

 𝑊𝑖𝑡, the ratio of two probabilities, serves as a change of probability: It makes it as if the 

treatment 𝐴𝑖𝑡 is randomized with probability 𝑝̃𝑡(𝑆𝑖𝑡). It is used to marginalize the causal 

excursion effect over variables in 𝐻𝑖𝑡 but not in 𝑆𝑖𝑡. As long as 𝑝̃𝑡(𝑆𝑡) depends on 𝐻𝑖𝑡 through at 

most 𝑆𝑖𝑡 and it is bounded away from 0 and 1, the particular choice of 𝑝̃𝑡(𝑆𝑡) doesn’t affect the 

consistency of 𝛽̂. For instance, one can set it to be 0.5 (or any constant between 0 and 1) for all 

individuals and all decision points, or set it to be the predicted value from a logistic regression fit 

of 𝐴𝑡~𝑆𝑡 . If the true randomization probability 𝑝𝑡(𝐻𝑡) depends at most on 𝑆𝑡, then one can also 

set 𝑝𝑡(𝑆𝑡) to be equal to the true randomization probability, in which case (12) is mathematically 

equivalent to (5). 𝑝̃𝑡(𝑆𝑡) can impact the standard error of 𝛽̂. In addition, when the causal 

excursion effect model 𝛽(𝑡, 𝑠) = 𝑠T𝛽 is misspecified, 𝑝̃𝑡(𝑆𝑡) impacts the limit of 𝛽̂. See the 

Appendix of Boruvka et al. (2018) for more technical details on how the limit of 𝛽̂ is impacted 

by 𝑝𝑡(𝑆𝑡) in this case. 
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 Now we present a way to obtain the general WCLS estimator for time-varying 

randomization probability through standard statistical software that implements GEE. Suppose 

the assumed causal excursion effect model is (6) and the working model for 𝐸(𝑌𝑡+1|𝐼𝑡 = 1,𝐻𝑡) is 

𝑍𝑡
T𝛼; then the WCLS estimator 𝛽̂ and its standard error can be obtained by (i) incorporating 𝐼𝑡𝑊𝑡 

as the “prior weights”, (ii) choosing a working independence correlation structure, and (iii) 

fitting GEE with dependent variable 𝑌𝑡+1 and independent variables 𝑍𝑡 and (𝐴𝑡 − 𝑝̃𝑡(𝑆𝑡))𝑆𝑡. 

Then the estimated coefficient for (𝐴𝑡 − 𝑝̃𝑡(𝑆𝑡))𝑆𝑡 is the WCLS estimate 𝛽̂. 

Standard Error Formula for WCLS.  

Below we provide the formula for the standard error of the WCLS estimator 𝛽̂. For (𝛼̂, 𝛽̂) 

that solves estimating equation (12), variance can be estimated by 

 Var̂ ([
𝛼̂
𝛽̂
]) =

1

𝑛
𝑀𝑛

−1𝛴𝑛(𝑀𝑛
−1)T,  

where 

 𝑀𝑛 = −ℙ𝑛 ∑ 𝐼𝑡𝑊𝑡
𝑇
𝑡=1 [

𝑍𝑡𝑍𝑡
T {𝐴𝑡 − 𝑝̃𝑡(𝑆𝑡)}𝑍𝑡𝑆𝑡

T

{𝐴𝑡 − 𝑝̃𝑡(𝑆𝑡)}𝑆𝑡𝑍𝑡
T {𝐴𝑡 − 𝑝̃𝑡(𝑆𝑡)}

2𝑆𝑡𝑆𝑡
T]  

and 

Σ𝑛 = ℙ𝑛 ∑{𝑌𝑡+1 − 𝑍𝑡
T𝛼

𝑇

𝑡=1

− (𝐴𝑡 − 𝑝̃𝑡(𝑆𝑡))𝑆𝑡
T𝛽}

2
𝐼𝑡𝑊𝑡 [

𝑍𝑡𝑍𝑡
T {𝐴𝑡 − 𝑝𝑡(𝑆𝑡)}𝑍𝑡𝑆𝑡

T

{𝐴𝑡 − 𝑝̃𝑡(𝑆𝑡)}𝑆𝑡𝑍𝑡
T {𝐴𝑡 − 𝑝𝑡(𝑆𝑡)}

2𝑆𝑡𝑆𝑡
T]. 

Here, ℙ𝑛 denotes sample average over n individuals. The standard error formula can be modified 

for the setting in which the randomization probability is constant over time (i.e., the setting in the 

main paper) by letting 𝑝̃𝑡(𝑆𝑡) = 𝑝 and 𝑊𝑡 = 1. 

 

Appendix C 
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We conduct a simulation study to illustrate the claim that including variables that are 

correlated with 𝑌𝑡+1 in 𝑍𝑡 may reduce the variance of the WCLS estimator. The generative model 

mimics features of the HeartSteps data and is set up as follows. For simplicity we assume that the 

feasible component options are always not restricted. At decision point 𝑡, the covariate 𝑋𝑡 is 

drawn from the empirical distribution of the log-transformed 30-minute step count preceding a 

decision point in the HeartSteps data. For simplicity 𝑋𝑡 is generated independently of previous 

outcomes and treatments. The treatment 𝐴𝑡 is generated from a Bernoulli distribution with .6 

success probability; this mimics the .6 randomization probability of activity suggestions in 

HeartSteps. The proximal outcome 𝑌𝑡+1 is generated from a Gaussian distribution with mean 

1.6085 + 0.4037 × 𝑋𝑡 + 0.0655 × 𝑌𝑡 + 0.1229 × (𝐴𝑡 − 0.6) 

and standard deviation 2.716. The coefficients in the above display are the estimated coefficients 

from a WCLS fit on the HeartSteps data with the same control variables (1, 𝑋𝑡 , 𝑌𝑡) and constant 

treatment effect model. The standard deviation is the empirical standard deviation of the residual 

in 𝑌𝑡+1 from the above WCLS fit. As in the HeartSteps data set, for each simulated trial we 

generate 37 individuals, each with 210 decision points. 

 For each data set generated from the above generative model, we consider four WCLS 

fits for the true treatment effect 0.1229 and compare their performance. All four WCLS assume 

the constant treatment effect model, and they differ in the choice of the working model. The first 

WCLS fit (WCLS-1) includes control variables (1, 𝑋𝑡 , 𝑌𝑡); the second WCLS fit (WCLS-2) 

includes control variables (1, 𝑋𝑡); the third WCLS fit (WCLS-3) includes control variables 

(1, 𝑌𝑡); and the fourth WCLS fit (WCLS-4) includes only the intercept. The bias, standard 

deviation (SD), and coverage probability (CP) of 95% confidence interval are listed in 

Supplementary Table 1. All four WCLS estimators are consistent with nominal confidence 



  11 
 

interval coverage because their assumed constant treatment effect model holds under this 

generative model. (This again illustrates that the consistency of the WCLS estimator does not 

require the control part of the model to be correct.) On the other hand, the choice of working 

model affects the efficiency of the estimator. In particular, WCLS-1 and WCLS-2 have smaller 

standard errors than WCLS-3 and WCLS-4 because the former two include 𝑋𝑡, a covariate that is 

highly correlated with the proximal outcome 𝑌𝑡+1. 

 

Appendix D 

 To assess sensitivity of the result to potential non-linearity in Question 2 of Section 

“Analysis Using Data from HeartSteps MRT,” we fit a local 2-degree polynomial regression 

with smoothing span 2/3 and tricubic weighting to estimate the causal excursion effect over time 

(the default setting for many local regression software, such as the lowess function in R (R Core 

Team, 2019)). The estimated effect from local regression is presented in Supplementary Figure 1 

(black curve). Comparing this estimated effect with the estimated effect based on the linear 

model (blue curve in Figure 1, with blue shaded area being the pointwise 95% confidence 

interval), we see that the two estimates are relatively close to each other, indicating that the linear 

model fits well. 

 

Appendix E 

A Synthetic Data Set Mimicking HeartSteps 

The HeartSteps data set that was used in the illustrative data analysis is not publicly 

available. To allow readers to try out the R code which implements the WCLS estimator, we 

included a synthetic data set which was generated by mimicking some features of the HeartSteps 
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data. These features include the number of individuals, the number of decision points, the fact 

that treatments are randomized 5 times a day, and the quantitative relationship among the 

proximal outcome variable (30-minute step count following each decision point), the treatment 

indicator, and some time-varying covariates including 30-minute step count preceding each 

decision point and location of the individual. 

The synthetic data set and the example R code to analyze it can be downloaded at 

https://github.com/tqian/paper_mrt_PsychMethods/tree/main/synthetic_data. Below is a brief 

description of the files in the github repository folder: 

• synthetic_data_37subject_210time.csv: A synthetic data set in csv format. 

• analysis_synthetic_data.R: R code to analyze the synthetic data, which is similar to the R 

code used to analyze the original HeartSteps data set 

(https://github.com/tqian/paper_mrt_PsychMethods/blob/main/analysis.R) 

• analysis_synthetic_data_with_result.pdf: A PDF file that describes the variables in the 

synthetic data set, walks through the steps in the analysis code, and shows the R output. 

• xgeepack.R and estimate.R: Code that implements the WCLS estimator. (They will be 

loaded by analysis_synthetic_data.R) 

 

Appendix F 

Below we provide a SAS code example that utilizes PROC GEE to obtain the WCLS 

estimator for the synthetic data set (description of which is provided in Appendix E). 

 

* import the synthetic_data_37subject_210time_SAS.csv data set; 

* you may need to modify the directory; 

 

FILENAME REFFILE '/home/synthetic_data_37subject_210time_SAS.csv'; 

https://github.com/tqian/paper_mrt_PsychMethods/tree/main/synthetic_data
https://github.com/tqian/paper_mrt_PsychMethods/blob/main/analysis.R
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PROC IMPORT DATAFILE=REFFILE 

 DBMS=CSV 

 OUT=example_data; 

 GETNAMES=YES; 

RUN; 

 

* add variable: centered treatment indicator; 

* (suppose the randomization probability is 0.6 in this case); 

data example_data; 

 set example_data; 

 send_ctr = send - 0.6; 

run; 

 

* Marginal effect; 

proc gee data = example_data; 

 class userid; 

 model jbsteps30_log = jbsteps30pre_log send_ctr / dist = normal; 

 repeated subject = userid / corr = ind; 

 weight avail; 

run; 

 

* Marginal effect with more control variables in WCLS fit; 

proc gee data = example_data; 

 class userid; 

 model jbsteps30_log = jbsteps30pre_log jbsteps30_log_lag1 send_ctr / dist = normal; 

 repeated subject = userid / corr = ind; 

 weight avail; 

run; 

 

* Effect change over time; 

proc gee data = example_data; 

 class userid; 

 model jbsteps30_log = jbsteps30pre_log study_day_nogap send_ctr 

    send_ctr * study_day_nogap / dist = normal; 

 repeated subject = userid / corr = ind; 
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 weight avail; 

run; 

 

* Effect moderation by outcome at previous time point; 

proc gee data = example_data; 

 class userid; 

 model jbsteps30_log = jbsteps30pre_log jbsteps30_log_lag1  

       location_homework send_ctr send_ctr * jbsteps30_log_lag1 / dist = normal; 

 repeated subject = userid / corr = ind; 

 weight avail; 

run; 
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Supplementary Figure 1.  

Estimated effect of activity suggestion on proximal outcome as a linear function of days in study, 

and corresponding 95% pointwise confidence intervals 

 

Note. Figure for the sensitivity analysis in Appendix D regarding “Question 2: Does the effect of 

the activity suggestions change with each additional day in the study?” in section “Analysis 

Using Data from HeartSteps MRT.” The black curve is the estimated effect using local 2-degree 

polynomial regression with smoothing span 2/3 and tricubic weighting. The blue line represents 

the estimated causal excursion effect across the 42 study days, assuming a linear time trend, and 

the shaded blue area is the pointwise 95% confidence interval. 
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Supplementary Table 1. 

Simulation results for Appendix C: Efficiency gain from including prognostic variable in the 

working model 

 bias standard deviation 
95% coverage 

probability 

WCLS-1 -0.001 0.067 96.7% 

WCLS-2 -0.001 0.067 96.9% 

WCLS-3 -0.001 0.074 95.8% 

WCLS-4 -0.001 0.074 95.7% 

 

Note. All four WCLS assumes the constant treatment effect model, and they differ in the choice 

of the working model. WCLS-1 includes control variables (1, 𝑋𝑡 , 𝑌𝑡); WCLS-2 includes control 

variables (1, 𝑋𝑡); WCLS-3 includes control variables (1, 𝑌𝑡); WCLS-4 includes only the 

intercept. 

 


