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Abstract

Colorectal cancer (CRC) is the third most common malignancy worldwide. Circular
RNAs (circRNAs) have been reported to play critical regulatory roles in
tumorigenesis, serving as tumor biomarkers and therapeutic targets. However, the
contributions of circRNAs to CRC tumorigenesis are unclear. In our study, high
expression of circLDLR was found in CRC tissues and cells and was closely
associated with the malignant progression and poor prognosis of CRC patients. We
demonstrated that circLDLR boosts growth and metastasis of CRC cells in vitro and
in vivo, and modulates cholesterol levels in vitro. Mechanistically, we showed that
circLDLR competitively binds to miR-30a-3p and prevents it from reducing the
SOAT1 level, facilitating the malignant progression of CRC. In sum, our findings

illustrate that circLDLR participates in CRC tumorigenesis and metastasis via the
miR-30a-3p/SOAT1 axis, serving as a potential biomarker and therapeutic target in

CRC.

Keywords: colorectal cancer, circLDLR, miR-30a-3p, SOAT1
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Introduction

Colorectal cancer (CRC) is one of the most common tumors and the leading cause of
cancer-related death all over the world [1]. In spite of great improvements in
therapeutic strategies, including colectomy, chemotherapy and immunotherapy, the
high frequencies of recurrence and metastasis make CRC a serious menace to human
health [2, 3]. CRC diagnosed at an advanced stage, particularly distant metastasis
patients, remain a low 5-year survival rate [4, 5]. Thus, discovering new biomarkers
for early diagnosis, precise metastasis prediction and prognosis is needed.

As a kind of abundant and ubiquitous noncoding RNAs, circular RNAs (circRNAs)
have single-stranded closed-loop structures [6]. Accompanied by the continuous
technical advance of the next-generation sequencing, circRNAs are potentiality for
serving as tumor biomarkers and curative targets in the clinic [7]. Recently,
literature have demonstrated that circRNAs partake in regulating miscellaneous tumor
biological processes, such as invasion, metastasis, proliferation, tumor angiogenesis,
drug resistance and cancer metabolism [8]. For example, circ-ERBIN is highly
expressed and facilitates the proliferation, migration and metastasis in CRC [9].
Knockdown of circHIPK3 effectively inhibits various biological functions in CRC
cells by sponging miR-7, such as proliferation, migration, and invasion [10]. Lei et al.
noted that circCUL2 activated autophagy in a miR-142-3p/ROCK2 axis-dependent
manner, and functioned as a tumor suppressor and regulator of resistance to cisplatin
[I1]. Moreover, circ-PVT1 activates miR-106a-5p/HK2 signaling, regulating

biological processes, such as growth and metastasis, as well as glycolytic metabolism
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in oral squamous cell carcinoma [12]. However, there is still no universally accepted
explanation for how key differential circRNAs regulate CRC progression and
metastasis.

In this work, we scouted the results of ribosomal RNA-depleted RNA-sequencing
data for five CRC patients and focused on a circular RNA (circ_0006877) stemmed
from the LDLR gene, labeled as circLDLR. And circLDLR was obviously boosted in
both CRC tissues and CRC cell lines, and it was associated with a poor prognosis in
CRC patients. Moreover, circLDLR was identified as a key regulator in CRC. In

vitro and in vivo experiments displayed that it modulates CRC proliferation and
metastasis. Our mechanistic study evidenced that circLDLR deeds as a blocker for

miR-30a-3p to modulate the level of sterol O-acyltransferase 1 (SOAT1), further

facilitating the tumorigenesis of CRC. Therefore, circLDLR has the potential to
become promising therapeutic target for CRC.
Materials and methods
Human CRC tissue specimens

2
Five CRC tissue samples and paired adjacent normal tissue samples were obtained
from patients who received surgery at the First Affiliated Hospital of Soochow
University (Suzhou, China). We received approval from the Moral Principle Board of
the First Affiliated Hospital of Soochow University before we collected the samples
(2020084). Informed consent was signed by each CRC patient. Detailed

clinicopathological characteristics of these patients are described in Supplementary

Table S1.
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Cell lines and cell cultures

The human HEK293T cells, normal colonic epithelial cell line NCM-460, and human
CRC cell lines (HCT116, HT29, RKO, SW620, HCT8, LoVo, SW480, and Caco-2)

were purchased from American Type Culture Collection (ATCC, USA). DMEM

Eallbio, Beijing, China), containing 10% fetal bovine serum (FBS, Eallbio) and 1%
jIng, g

penicillin-streptomycin (Beyotime, Shanghai, China, #C0222), was used for all cells

maintain in a humidified incubator with 5% CO2 at 37°C.

Nucleic acid preparation and quantitative real-time polymerase chain reaction
(qRT-PCR)

TRIzol reagent (Vazyme, Nanjing, China, #R401-01) was adopted to elicit total RNA
from tissues or cultured cells. We extracted the nuclear and cytoplasmic fractions with
Minute Cytoplasmic & Nuclear Extraction Kits for Cells (Invent Biotechnologies, Inc.,
Plymouth, MN, USA, #SC-003). Isolated RNA was used for reverse transcription
with MonScript RT Super Mix with dsDNase (Monad, Wuhan, China, #MR05201) in
the light of the manufacturer’s manual. We performed the quantitative PCR with
SYBR green using the ChemoHS qPCR Mix kit (Monad, Wuhan, China, #MQ00401)
on a CFX96 Touch Real-Time-PCR system (Bio-Rad, CA, USA) in the light of the
manufacturer’s manual. We performed expression analysis with specific primers for
each gene, which are shown in Table S2 in Supplementary materials.

RNase R treatment

We incubated total RNA from CRC cells with RNase R (Epicentre Technologies,

USA). The condition of incubation with RNase R was at a concentration of 3u /mg at
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37°C for 30 min in accordance with the manufacturer’s protocol. We detected the

stability of circLDLR and LDLR mRNA (mLDLR) using qRT-PCR.
Actinomycin D assay
RKO cells were forced on equally in 6-well plates (5x10° cells per well). We handled
1
cells with 2 pg/ml actinomycin D (MCE, HY-17559) for several specific times (0 h, 4
h, 8 h, 12 h or 24 h). Then, we reaped the cells and used them to analyze the mRNA
contents of the linear and circular forms of the LDLR gene using qRT-PCR. Then, we
normalized the expression of mRNA to the values measured in the 0 h group.
Fluorescence in situ hybridization (FISH)
Cy3-labeled circLDLR probes (Geneseed, Guangzhou, China) and FAM-labeled
miR-30a-3p probes (GenePharma, Shanghai, China) were used for the detection of the
colocalization of circLDLR and miR-30a-3p in CRC cells. We marked cell nuclei
7
using 4,6-diamidino-2-phenylindole (DAPI, #C1002). The Fluorescent In Situ
Hybridization Kit (RiboBio, Guangzhou, China, #C10910) were utilized to discover
the signals of the probes in the light of the manufacturer’s instructions. Briefly, cells
(1x10%) were keeped in 15 mm cell culture dishes with glass-bottom. The next day, we
used 4% paraformaldehyde to fix the cells at room temperature for 10 min,
6]
permeabilized the cells in Triton X-100 (0.5%) for 5 min at 4°C. Then we rinsed them
in PBS. All the reagents were RNase-free. After incubating the cells for 30 min at
37°C in prehybridization buffer, we hybridized them with the probes in the

hybridization buffer (1:50) overnight. Next, the cells were washed in different

washing buffers in order, and the nuclei were stained with DAPI following the
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manufacturer’s protocol. We acquired all images on a confocal laser scanning
microscope (Olympus FLUOVIEW FV1000).

Cell viability

To evaluate the proliferation of CRC cells, Cell Counting Kit-8 (CCK-8, NCM,

Suzhou, China, #C6005) was applied. In the CCK-8 experiment, we cultured
transfected CRC cells into a well of 96-well plate at a concentration of 5000 cells. At
the same time every day, we added ten microliters of CCK-8 solution into each well ,

and the absorbance value was quantified at 450 nm as a reference.

5-Ethynyl-2'-deoxyuridine (EdU) incorporation assay

@
To perform the EdU experiment, we used the BeyoClick™ EdU Cell Proliferation Kit
with Alexa Fluor 555 (Beyotime, #C00758S) in the light of the manufacturer’s protocol.

In Brief, we seeded cells (1%10°) in 15 mm glass-bottom cell culture dishes. The next

day, we incubated the cells with 10 pM EdU working solution and cultured them at

37°C with 5% CO:2 for 2 h. After fixed in paraformaldehyde (4%), the cells were

permeabilized in 0.3% Triton X-100 and washed them in 3% BSA. Finally, we

incubated the cells with Click Additive Solution and Hoechst 33342 in the light of the
manufacturer’s manual. Using a confocal laser scanning microscope (Olympus

FLUOVIEW FV1000), we obtained all images. Finally, we calculated the percentage

of EdU incorporation (DNA Synthesis) to evaluate cell proliferation.

Transwell migration and invasion assays

To carry out the migration assay, we resuspended cells (4x10° cells) in medium

without FBS and added them to the upper chamber in a 24-well plate with the pore of
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8 um (BD Biosciences, NJ, USA, #353097). To perform the invasion assay, we coated
2
the upper chambers with 100 pl of diluted Matrigel (200 pg/ml, Coming, Shanghai,

China, #356234) for 2 h. Then we filled the bottom chamber with 800 ul of cell

culture medium supplemented with 20% FBS as the attractant. After incubating the

cells for 24 h, we fixed the cells with 4% paraformaldehyde for 15 min, which were

remained on the bottom surface of the upper chamber. Then we stained these cells for
15 min with crystal violet (Beyotime, #C0121). Finally, we imaged the cells on the
lower side of the chamber membrane and counted them under an inverted microscope.
Analysis of cellular cholesterol levels

(6] 5
The low-density lipoprotein cholesterol (LDL-C) and total cholesterol (T-CHO) kits
(Nanjing Jiancheng Bioengineering Institution, Nanjing, China, #Al11-1-1,
#A113-1-1) were used to measure the concents of T-CHO and LDL-C in CRC cells.
Cell transfection and infection

Human CRC cell lines were cultured in a 6-well plate at 37°C in a humidified 5%
CO: atmosphere overnight. CircLDLR-specific siRNA (siRNA-1, -2, -3, -4 and -5),
46

miRNA mimics and miRNA inhibitors (GenePharma) were transfected with
Lipofectamine 2000 (Invitrogen, USA) in the light of the manufacturer’s protocol.

Lentiviruses carrying a circLDLR overexpression vector or short hairpin RNA
(shRNA) containing the sequence of circLDLR siRNA-2 was obtained from
Geneseed (Guangzhou, China). We used an empty backbone vector as a control.

When CRC cells grew to 30% confluence, lentiviral particles (MOI: 20) were used to

infect them. We verified the effectiveness of overexpression or interference by
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fluorescence microscopy and gRT-PCR after 72 h.

RNA Immunoprecipitation (RIP) assays

CRC cells (3%107) were cumulated and lysed using RIP lysis. The lysis buffer
contained 2.5 mM MgClz, 60 U/ml Superase-In (Ambion, #AM2694), 20 mM Tris,
500 mM NaCl, 2% SDS, 1 mM DTT (Sigma, #43816), and protease inhibitors

(Biotool, #B14001). Then, we subjected the lysates to sonication, and incubated the

supernatants with an anti-AGO2 antibody (Proteintech, Wuhan, China, #10686-1-AP)

or IgG overnight at 4°C. Then, we added Protein A/G beads (MedChemExpress,
Monmouth Junction, NJ, USA, #HY-K0202) for incubation at 4°C for a further 3 h.
After washing the protein with washing buffer (PBS, 0.5% Triton X-100, pH 7.4), we
then purified the immunoprecipitated RNAs using TRIzol and assessed by gRT-PCR
analysis.

1

RNA pull-down assay

Biotinylated circLDLR were designed and synthesized (GenePharma, Shanghai,
China). We harvested approximately 3x107 circLDLR-overexpressing CRC cells, then
lysed and sonicated them for further experiments. We incubated the biotinylated
circLDLR probe with C-1 magnetic beads (Invitrogen) and cultured them at room
temperature for 1 h, generating probe-coated beads. Then, we incubated cell lysates
with the circLDLR probe at 4°C overnight, using oligo probe as control. After
washing beads with wash buffer, we eluted and extracted the RNA transcripts bound

to the beads with TRIzol for analysis.

Luciferase reporter assay
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We seeded HEK293T cells (3x10°) in 6-well plates, and cotransfected them with a

mixture of miRNA mimics and luciferase reporter plasmid (1 pg) using

Lipofectamine 2000 transfection reagent. 48 h later, we washed the cells with PBS
and lysed them in Promega Passive Lysis Buffer. Then, we measured the luciferase
activities by the Dual Luciferase Reporter Assay System (Promega, Madison, USA,
#E1910) following the manufacturer’s instructions. Finally, we normalized the
luciferase values and calculated relative luciferase activity .

Western blot analysis

Our team drew proteins with RIPA lysis buffer (Beyotime, #P0013B) adding protease
inhibitors (Beyotime, #P1045). Utilizing a BCA protein assay kit (Beyotime, #P0010),
we determined the concentrations of proteins. Then, total proteins (30 pg) were
separated by electrophoresis using the 10% ExpressCast PAGE Kit (NCM, Suzhou,
China, #P2012) and transferred to PVDF membranes (GE Healthcare Life Science,
Germany). We used 5% BSA (Fcmacs, Nanjing, China,#fMS-WBO021) to block the
membranes with for about 1 h, then incubated them with primary antibodies at 4°C
overnight. We used the primary antibodies anti-GAPDH (Abclonal, Wuhan, China,
#AC035) and anti-SOAT1 (CST, Beverly, Ma, USA, #35695S) in the light of the
manufacturer’s manuals. After the membranes marking using a secondary antibody
for 1 h, we obtained images utilizing Imaging Systems of Bio-Rad ChemiDoc™ MP.
Animal experiments

In vivo experiments were authorized by the Institutional Animal Care and Use

Committee of Soochow University (Suzhou, China; SUDA20210918A02). Animal

10
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care and all experimental procedures were in the light of institutional ethical
guidelines for animal experiments. Stable circLDLR-overexpressing or
circLDLR-knockdown CRC cells and corresponding control cells were harvested and
suspended in PBS. Each BALB/c nude mouse (six weeks old, female) was implanted
subcutaneously with 5x10° cells in the right flank. The mice were monitored every
other day to measure tumor weight and tumor volume. About 3 weeks after injection,
we sacrificed the mice, then dissected and weighed the tumors. To bulid a metastasis
model, 7-week-old BALB/c nude mice (female) were administered stable
circLDLR-overexpressing or circLDLR-knockdown CRC cells (2x10° cells per
mouse) via tail intravenous injection. After forty days, the lungs were surgically
removed. Then, we fixed the lungs in 4% paraformaldehyde, then stained them with
hematoxylin and eosin (HE). Lung metastatic foci were counted by two experienced
pathologists.

Hematoxylin and eosin (HE) staining and immunohistochemistry (IHC) analysis
Paraffin sections (5-pum thick) from mouse tumor or lung tissues were used for HE
and IHC analyses. HE staining was conducted following the manufacturer’s
instructions (Beyotime, #CO0105). IHC analysis was conducted as described
previously [13, 14]. Sections were processed and stained with an anti-Ki-67 antibody
(BOSTER, California, USA, #BM4381, 1:50), anti-CD31 antibody (Abcam,

Cambridge, MA, USA, #ab32457, 1:1500) or anti-SOAT1 antibody (CST, Beverly,

Ma, USA, #356958, 1:50).
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Statistical analysis

GraphPad Prism version 6.0 (GraphPad Software, La Jolla, CA, USA) and SPSS

6]
version 26.0 (IBM Corp., Armonk, NY, USA) were adopted for statistical analysis.
Overall survival comparisons were conducted by the log-rank (Mantel-Cox) test for
Kaplan—Meier plots. The relationship between circLDLR and patient characteristics
was detected using the chi-squared test. Data are presented as the mean = standard
deviation (SD). Intergroup differences were analyzed by Student’s t test or one-way
ANOVA. P values of < 0.05 were considered statistically significant.
Results
CircLDLR is upregulated in CRC tissues and positively associated with a poor
prognosis in CRC patients.

a R

We first performed RNA-seq analysis of ribosomal RNA-depleted total RNA from
five clinic CRC tissue samples and the normal paired adjacent tissue samples. Then,
we obtained the constructed circRNA profiling database, and we found that the
detected circRNAs’ length was mostly less than 1000 nucleotides (Fig. 1a). In total,
differentially expressed 411 circRNAs £< 0.05 and fold change > 2.0) were
identified in the CRC tissues relative to the adjacent normal tissues (Fig. 1b). Among
these circRNAs, 184 were significantly elevated, and 277 were lessed (Fig. b, c,
Supplementary Fig. SI1). Next, we put attention to the upregulated circRNA
hsa_circ_0006877, which termed circLDLR in the remainder of the article and is

assumed to be derived from the low-density lipoprotein receptor (LDLR) gene.

Although circLDLR did not have the highest fold change value and P value among
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the 184 upregulated circRNAs in the circRNA profiling, compared with other
up-regulated circRNAs, the expression of circLDLR in 5 pairs of tissues has a better
consistency. The expression of circLDLR was re-examined in 80 human CRC and 15
normal tissue specimens. As Fig. 1d displayed, the expression of circLDLR was
obviously higher in CRC tissues than that in the adjacent tissues. Moreover, we
observed that the circLDLR level of most CRC cell lines tested (HCT116, SW480,
32
SW620, RKO, HCTS8, HT29, LoVo and Caco-2) was higher than that of the colonic
epithelial cell line NCM-460 (Fig. le).
Next, we investigated the relationships between clinicopathological characteristics
and circLDLR expression in CRC patients. Correlation analysis manifested the
expression of circLDLR was markedly related to the TNM stage of
clinicopathological parameter (Supplementary Table S3). Besides, CRC patients who
had higher circLDLR expression had poorer overall survival (OS) (Fig. 1g). Overall,
our data show that circLDLR is abnormally expressed in CRC tissues and cell lines,
has a positive relation to the poor prognosis of CRC patients.
Characterization of circLDLR
CircLDLR, a predicted length of 295 nt, arises from exons 13 and 14 of the LDLR
gene and is located at chromosome 19p13.2 (Fig. 2a). Its precise genomic location is
chr19:11,230,768-11,231,198 (GRCh38/hg38) (Fig. 2a). Subsequently, we used
gRT-PCR to amplified the back-spliced junction of circLDLR with divergent

primers, then verified them via Sanger sequencing (Fig. 2a). Furthermore, we

detected circLDLR expression in cDNA and genomic DNA (gDNA) of RKO cells
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using PCR with divergent primers or convergent primers and an agarose gel
electrophoresis assay. Our consequences suggested that circLDLR was amplified from
cDNA but not from gDNA by using divergent primers (Fig. 2b). A qRT-PCR assay
with oligo (dT)18 primers showed that circLDLR had no poly-A tail (Fig. 2c). To
investigate the stability of circLDLR, total RNA of RKO lls was ftreated with or
without RNase R. As shown in Fig. 2d, circLDLR could resist digestion by RNase R,
while linear LDLR mRNA (mLDLR) could be degraded by RNase R. Additionally,
circLDLR showed a longer half-life than mLDLR in RKO cells after we added
actinomycin D to them, which serves as an inhibitor of transcription (Fig. 2e).
Subsequently, nuclear and cytoplasmic fractionation followed by qRT-PCR or FISH
indicated that circLDLR was predominately positioned in the cytoplasm (Fig. 2f, g).
In conclusion, circLDLR was substantiated to be a stable circular RNA that was
principally positioned in the cytoplasm.

CircLDLR facilitates CRC malignant behaviour and increases cholesterol levels
in vitro.

Trying to identify the specific function of circLDLR in our study, gain- and
loss-of-function assays were executed. First, five short interfering RNAs (siRNAs)
which were devised to target the back-splice site of circLDLR (si-LDLR-1,
si-LDLR-2, si-LDLR-3, si-LDLR-4 and si-LDLR-5) were synthesized (Fig. 3a). Two
of them (si-LDLR-2 and si-LDLR-4) specifically downregulated the expression of
circLDLR in RKO and HCT116 cells without influencing the LDLR mRNA (mLDLR)

level (Fig. 3a). To explore the influence of circLDLR on CRC cell proliferation,
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CCK-8 and EdU assays were performed. We found knocking down circLDLR
expression suppressed the rates of proliferation in CRC cells (Fig. 3b, c). The roles of
circLDLR in modulating the CRC cell behaviour of migration and invasion was
further exploded via Transwell assays. Our findings confirmed that the migration and
invasion of CRC cells were significantly suppressed after transfection with
si-LDLR-2 and si-LDLR-4 (Fig. 3d). Since LDLR is an key regulator of cholesterol
homeostasis [15], we tried to discover whether circLDLR affects cholesterol
metabolism of CRC cells. We observed that circLDLR knockdown markedly reduced
the total cholesterol (T-CHO) and low-density lipoprotein cholesterol (LDL-C)
expression levels of in CRC cells (Fig. 3e).

Furthermore, we ectopically expressed circLDLR to identify its biological function
using a circLDLR-overexpression plasmid. As Fig. 4a shows, the content of
circLDLR was significantly upregulated in SW480 and HT29 cells after transfection
with circLDLR-overexpression plasmids. As expected, overexpression of circLDLR
(circLDLR-OE) significantly facilitated the growth of SW480 and HT29 cells (Fig.
4b-c), which also boosted the migrative and invasive behaviour of these cells (Fig. 4d).
Moreover, circLDLR overexpression led to the elevated contents of T-CHO and
LDL-C in SW480 and HT29 cells (Fig. 4e). Overall, our consequents signified that
circLDLR boosted cell proliferation and metastasis in CRC cells, and increased the
contents of T-CHO and LDL-C.

CircLDLR deeds as a miRNA sponge for miR-30a-3p.

Given that circLDLR was predominantly positioned in the cytoplasm, which lacked

15




331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

the ability to encode a  protein  (analyzed by circRNADDb,

http://202.195.183.4:8000/circrnadb/circRNADb.php) (Fig. 2f, g, Supplementary
Fig.S2), we surmised that it might deed as a miRNA sponge. Therefore, an RIP using
an anti-AGO2 antibody was performed. The findings suggested that circLDLR was
specifically enriched in SW480 and HT29 cells by the AGO2-specific antibody after
transfection with circLDLR-overexpression plasmids (Fig. 5a). Next, three public
databases (miRanda, TargetScan and RNAhybrid) were combined to search for
candidate target miRNAs of circLDLR. With these bioinformatic approaches, 109
candidate miRNAs potentially interacting with circLDLR were identified, as shown in
Fig. 5b and Supplementary Table S4. Among these miRNAs, eleven potential target
miRNAs, which were previously reported to be negatively associated with tumor
progression, were selected for further analysis (Supplementary Table S5). Then, stable
circLDLR-knockdown (sh-circLDLR) RKO and HCTI116 cells and stable
circLDLR-overexpressing SW480 and HT-29 cell lines were established
(Supplementary Fig. S3) and exploited to disclose the expression of the eleven
potential target miRNAs (Supplementary Fig. S4). As Fig. 5c¢c shows, only the
expression miR-30a-3p has the negative correlation with the circLDLR level in these
four CRC cell lines, suggesting that circLDLR might interact with miR-30a-3p.
Furthermore, the data of RNA pull-down assay evidenced that both circLDLR and
miR-30a-3p were specifically enriched by the circLDLR probe compared with a
negative control oligo probe in stable circLDLR-overexpressing SW480 and HT29

cells (Fig. 5d). We further confirmed that miR-30a-3p had a minimal modulatory role
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in circLDLR production in CRC cells (Fig. 5e). Moreover, FISH analysis indicated
miR-30a-3p colocalized with circLDLR in the CRC cell cytoplasm (Fig. 5f). To
further address whether circLDLR functions by sponging miR-30a-3p, we performed
a series of rescue experiments. An EdU assay indicated that circLDLR
knockdown-induced suppressive effects on cell proliferation were reversed by
treatment with miR-30a-3p inhibitors, while the promotive effects of circLDLR
overexpression was abolished by treatment with miR-30a-3p mimics (Fig. 5g). In
addition, the reduced cell migration and invasion of RKO arised from circLDLR
knockdown was effectively abolished by knockdown of miR-30a-3p (Fig. 5h).
Consistently, miR-30a-3p overexpression reversed the promotive consequences of
circLDLR overexpression on the migrative and invasive behaviour of SW480 cells
(Fig. 5h). Moreover, the introduction of a miR-30a-3p inhibitor abolished the
. . . 23] .
suppressive influences of circLDLR deletion on the T-CHO and LDL-C expression
(Fig. 5i). The decreased contents of T-CHO and LDL-C induced via circLDLR
overexpression were reversed by treatment with miR-30a-3p mimics (Fig. 6i). Taken
together, these data indicate that circLDLR facilitates CRC tumorigenesis and also
a

increases the levels of T-CHO and LDL-C by sponging miR-30a-3p.

SOAT1 is a downstream target gene of miR-30a-3p.

CircLDLR is assumed to be derived from the low-density lipoprotein receptor (LDLR)
gene, a key gene associated with cholesterol metabolism. Moreover, previous

researches have indicated that cholesterol metabolism exerts crucial roles in cancer

progression and metastasis [16, 17]. More importantly, we found that circLDLR not
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only facilitates tumorigenesis in CRC, but also increases the levels of T-CHO and
LDL-Cby sponging miR-30a-3p. Hence, we inferred that the circLDLR/miR-30a-3p
axis might regulate cholesterol metabolism-related genes. According to TargetScan

(http://www.targetscan.org/vert 72/), we screened out two key cholesterol

metabolism-associated genes (SOAT1 and HMGCR) as the predicted downstream
regulatory genes of miR-30a-3p. qRT-PCR results indicated that miR-30a-3p mimics
could obviously decrease the expression of SOATI, while miR-30a-3p inhibitors
markedly increased the level of SOAT in both RKO cells and SW480 cells (Fig. 6a).

However, the expression of miR-30a-3p had a smaller influence on the expression of

HMGCR (Supplementary Fig. S5a, b). The models of hybridization between the

SOAT 3’UTR and miR-30a-3p are illustrated in Fig. S5c. A luciferase reporter assay

showed that miR-30a-3p overexpression decreased the activity of the luciferase
reporter containing the wild-type SOAT1 3’UTR (Fig. 6b). Moreover, overexpression
of miR-30a-3p markedly decreased the SOATI protein level of RKO cells, and
downregulation of miR-30a-3p produced the opposite results in SW480 cells (Fig. 6¢).
These results propound that SOAT1 is a direct target gene of miR-30-3p. Next, we

explored whether circLDLR exerts a regulatory effect on SOAT! expression via

miR-30a-3p. Western blot data indicated that silencing of circLDLR obviously
reduced SOAT1 expression in RKO and HCTI116 cells, while overexpression of
circLDLR increased that in SW480 and HT29 cells (Fig. 6d). Furthermore, the
reduced SOAT1 expression caused by circLDLR knockdown was significantly

inverted by treatment with miR-30a-3p inhibitors in RKO cells (Fig. 6e). Moreover,
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overexpression of miR-30a-3p abolished the promotion of SOAT! protein expression
by circLDLR overexpression in SW480 cells (Fig. 6e). Collectively, these data
propose that SOAT'| is a downstream target of circLDLR/miR-30a-3p.

The circLDLR/miR-30a-3p/SOAT1 axis modulates malignant behaviour and
increases cholesterol levels in CRC.

To further explore the biological role of SOATI1, we examined whether SOAT1
participates in circLDLR-mediated CRC progression. EdU and Transwell assays were

performed and revealed that knocking down SOAT! inhibited cell growth, migration

and invasion, which were enhanced in HT29 cells and SW480 cells after treatment
with a miR-30a-3p inhibitor (Fig. 6f, g, Supplementary Fig. Sea, b). Moreover,
SOAT1 downregulation significantly reversed the promotive effect of miR-30a-3p
inhibitors on T-CHO and LDL-C contents in CRC cells (Fig. 6h). Consistently,
knockdown of SOAT! inverted the enhancement of proliferation, migration and
invasion induced by circLDLR overexpression (Fig. 6i, j, Supplementary Fig. Séc, d),
and reversed the promotive consequence of circLDLR overexpression on T-CHO and
LDL-C contents in CRC cells (Fig. 6k). Our findings indicated that SOAT1
suppression could obviously restrain circLDLR-mediated tumorigenesis and the
increase of cholesterol levels.

CircLDLR benefits tumor growth and metastasis of CRC in vivo

Our team further explored whether circLDLR contributes to CRC expansion in vivo,

so we constructed xenograft mouse models. Stable circLDLR-knockdown HCTI116

cells (sh-circLDLR) or stable circLDLR-overexpressing HT29 cells (circLDLR-OE)
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were infused into the subcutaneous of right hind flank of nude mice. The results

showed that circLDLR knockdown inhibited, while circLDLR overexpression
promoted, tumor growth in vivo, as evidenced by tumor imaging and results for tumor
volume and tumor weight (Fig. 7a-f). IHC staining showed that Ki-67, CD31 and
SOAT1 levels were significantly positively correlative with circLDLR contents in
xenograft tumor tissues (Supplementary Fig. S7). Conducting a tail vein injection
model, we then analyzed the action of circLDLR on CRC metastasis in vivo. The
findings pointed that circLDLR knockdown suppressed the metastasis of CRC cells to
the lungs (Fig. 7g-i). CircLDLR overexpression had the opposite effect (Fig. 7j-1).
Our findings suggest that circLDLR enhances CRC tumor expansion and metastasis
in vivo.

Discussion

Currently, numerous circular RNAs have been identified and are considered tumor
regulators in multiple cancers, including CRC [8]. For example, it has been reported
that circPPPIR12A enhances the proliferation ability, as well as migration and
invasive behaviours @ colon cancer via Hippo-YAP signaling [18]. Silencing
circDENNDA4C could block the miR-760/GLUTI axis, which obviously suppresses
cell expansion and migration, and glycolysis as well in CRC [19]. In our study,
circRNA profiling of CRC tissues was performed by RNA-seq analysis of ribosomal
RNA-depleted total RNA. Among the differential circRNAs, we focused on the
upregulated circRNA circLDLR, which was positively related to the OS and TNM

stage of CRC patients. Importantly, loss- and gain-of-function experiments signified

20




a1

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

that circLDLR facilitated the abilities of proliferation, migration, and invasion in CRC

cells in vitro and accelerated CRC tumorigenesis and metastasis in vivo. These results
revealed that circLDLR is a novel oncogenic circRNA in CRC.

In this study, we further probed into the roles of circLDLR, which is derived from the
LDLR gene, a key gene associated with cholesterol homeostasis. Cholesterol is an
indispensable lipid component of various cell types and exerts critical effects on cell
signaling. The cholesterol accumulation is a well-known feature of tumors, and

picking out cholesterol metabolism has been explored as a novel therapeutic scheme
for cancer treatment [20]. There are literatures that LDLR is the patriarch of the
LDLR family, orchestrating cholesterol homeostasis [15]. Interestingly, exosomal
circLDLR has been revealed to be associated with the production of estradiol in

polycystic ovary syndrome [21]. We found that circLDLR increased the contents of
T-CHO and LDL-C in CRC cells. However, we only detected the contents of T-CHO
and LDL-C while did not elaborate on the mechanism of circLDLR in cholesterol
metabolism in several parts of our study. We focused on the change of cholesterol
levels in CRC cells and tried to provide an insight into the possibility of circLDLR in
cholesterol metabolism. Collectively, our outcomes imply that circLDLR exerts a
significant role in modulating cholesterol levels, which may be a key regulator of
cholesterol metabolism in CRC.

CircRNAs have been demonstrated to play critical effects on CRC via various
mechanisms, such as miRNA sponges [22]. As a sponge for miR-200c-3p, knockdown

of Hsa circ_ 001783 markedly inhibits the ability of proliferation and the behavior
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invasion in breast cancer cells [23]. Circ-RanGAP1 sponges miR-877-3p to raise
VEGFA production and boosts gastric cancer invasion and metastasis [24]. Herein,
circLDLR was confirmed to be predominantly positioned in the cytoplasm of CRC
cells, representing that circLDLR might deed as a miRNA sponge. Our results showed
that among all the potential miRNAs bound by circLDLR, miR-30a-3p, which is
downregulated in CRC tissues[25], interacted with circLDLR in CRC cells. Moreover,
we demonstrated that circLDLR exerted its function as a ceRNA (competing
endogenous RNA) through competitive binding to miR-30a-3p. It has been reported
that circRNAs mediate their functions via other mechanisms, such as translation to
produce functional peptides and interaction with RNA-binding proteins [22]. We used
a detailed database named circRNADb, which contains human circRNAs with
protein-coding annotations [26], to investigate whether circLDLR can be translated
into a functional protein. Our results indicated circLDLR lacking a protein-coding
sequence (Supplementary Fig. S2). However, we could not exclude the possibility that
circLDLR exerts its function via other mechanisms.

%ATI, also known as cholesterol acyltransferase 1 (ACATI), is a key player in
cellular cholesterol homeostasis [20]. It has been informed that SOATI is widely
expressed in different types of cells, highly expressed in various tumors as well [27].
More importantly, nevanimibe HCI, a novel SOAT]! inhibitor, was used in a phase |
study of adrenocortical carcinoma [28]. In the current study, our findings showed that

the direct target gene of miR-30a-3p is SOATI1. CircLDLR could control SOAT1

production by restraining miR-30a-3p. Moreover, SOATI] suppression could
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significantly inhibit circLDLR-mediated tumorigenesis and the elevated contents of

T-CHO and LDL-C in CRC cells. Therefore, the circLDLR/miR-30a-3p axis
modulates CRC tumorigenesis and cholesterol levels via SOATI.

In conclusion, we first demonstrated the clinical significance of circLDLR and
revealed that circLDLR promoted CRC cell tumorigenesis and increased cholesterol
levels via miR-30a-3p/SOAT] signaling (Fig. 8). Based on our consequences, we trust
that circLDLR may serve as a encouraging curative gene and prognostic predictor in
CRC.
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Figure legends
Fig. 1 CircLDLR is elevated in CRC tissues and positively related with a poor
prognosis in patients with CRC. a The length distribution of exonic circRNAs. b, ¢

Schematic illustration of the differentially expressed circRNAs in CRC tissues. d The

fold change in circLDLR expression between CRC sues and normal adjacent
tissues was analyzed by qRT-PCR. e Relative expression of circLDLR in CRC cell
lines compared to that in the NCM-460 cell line. f Kaplan-Meier analysis of the
overall survival of CRC patients stratified into high and low circLDLR expression
groups. *P < 0.05; ***P < 0.001; NS, no significance.

Fig. 2 circLDLR characterization in colorectal cancer. a Schematic diagram of
circLDLR shows that it is generated by the circlization of LDLR exons 13 and 14.
CircLDLR was scouted by qRT-PCR, which sequence was confirmed via Sanger
sequencing. Red arrows used to indicate the special splicing junction of circLDLR. b
CircLDLR expression in RKO cells detected by qRT-PCR followed by arose gel
electrophoresis showing that divergent primers amplified circLDLR in cDNA but not
genomic DNA (gDNA). GAPDH served as a negative control. ¢ After Verse
transcription using random hexamer or oligo (dT)18 primers, the relative expression
of circLDLR and mLDLR was analyzed by qRT-PCR. d Relative RNA contents were
detected by qRT-PCR, then normalized to the value analyzed in the mock group. E
Relative expression of circLDLR and mLDLR was detected by qRT-PCR after we

treated them using actinomycin D at the several time points. f The abundance of

circLDLR and mLDLR in cytoplasmic and nuclear parts of RKO cells was evaluated

29




639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

by qRT-PCR. We applied U6 and GAPDH as positive controls for the cytoplasmic

and nuclear fractions, respectively. g The localization of circLDLR in RKO cells was
scouted by FISH. Nuclei were stained with DAPI (blue), and circLDLR probes were
labeled with Cy3 (red). Scale bar, 20 pm. CircLDLR, the ]’ClllEII RNA derived from
exons 13 and 14 of the LDLR gene; Data are presented as the mean+SD of three
independent experiments. **P < 0.01; ***P < 0.001.

Fig. 3 CircLDLR suppression inhibits CRC malignant behaviour and increases
cholesterol levels in vitro. a The circLDLR and mLDLR expression was assessed in
RKO and HCTIL6 cells transfected with five independent siRNAs targeting
circLDLR by qRT-PCR. b Cell proliferation was scouted at the indicated time points
by CCK-8 assays evaluating HCT116 cells and RKO cells stimulated with si-NC or

si-circLDLR. ¢ EdU analysis of the proliferative ability of HCT116 cells and RKO

1
cells treated with si-NC or si-circLDLR. Representative images are shown. Scale bar,
200 pm. Statistical analysis of the EdU-positive cell percentage in transfected GC
cells is shown in the bar graph. d The cell migration and invasion of CRC cells were
examined by Transwell assays after cells were transfected with si-circLDLR or si-NC.
Representative images are shown. Scale bar, 200 pum. Statistical analysis of the
migrated and invaded cell numbers is shown in the bar graph. e The production of
e
T-CHO and LDL-C was assessed in CRC cells transfected with si-NC or si-circLDLR.
Data are presented as the mean+SD of three independent experiments. *P < 0.05; **P

<0.01; #*P <0.001.

Fig. 4 CircLDLR overexpression facilitates CRC malignant behaviour and

30




661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

increases cholesterol levels in vitro. a The expression of circLDLR in RKO and

HCT116 cells transfected with a circLDLR-overexpression vector (circLDLR-OE) or

the control vector (Vector) was assessed by qRT-PCR. b Cell proliferation was
scouted at the indicated time points by CCK-8 assays evaluating RKO cells and
HCT116 cells transfected with circLDLR-OE or Vector. ¢ EdU analysis of the

proliferative ability of RKO cells and HCT116 cells transfected with circLDLR-OE or

Vector. Representative images are shown. Scale bar, 200 um. Statistical analysis of the

EdU-positive cell percentage in transfected CRC cells is shown in the bar graph. d

The cell migration and invasion of CRC cells were examined by Transwell assays

after cells were transfected with circLDLR-OE or Vector. Representative images are

shown. Scale bar, 200 pm. Statistical analysis of the migrated and invaded cell

numbers is shown in the bar graph. e The production of T-CHO and LDL-C in CRC

cells transfected with circLDLR-OE or Vector were appraised. Data are presented as
the mean+SD of three independent experiments. *P < 0.05; **P < 0.01; ***P < 0.001.
Fig. 5 CircLDLR acts as a miRNA sponge for miR-30a-3p. a RIP assays were
carried out using an AGO2-specific antibody and SW480 or HT29 cells, and the
richness of circLDLR was scouted by qRT-PCR. b Schematic illustration showing the
109 overlapping miRNAs with potential binding to circLDLR predicted by miRanda,
RNAhybrid and TargetScan. ¢ Schematic illustration showing that miR-30a-3p was

verified to be one of the 11 predicted miRNAs associated with tumor progression

among the 109 overlapping miRNAs in different CRC cell lines. d Lysates prepared

from circLDLR-OE SW480 and HT29 cells were incubated with biotinylated probes
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against circLDLR, and then an RNA pull-down assay was performed. qRT-PCR was

carried out to prove the contents of circLDLR and miR-30a-3p. e The production of

circLDLR in different CRC cell lines transfected with miR-30a-3p mimics or mimic

NC were evaluated by qRT-PCR. f The circLDLR and miR-30a-3p colocalization in

RKO cells was detected by RNA FISH. Nuclei were stained with DAPI (blue).

CircLDLR probes were labeled with Cy3 (red), and miR-30a-3p probes were labeled

with FAM (green). Scale bar, 20 pm. g EdU analysis of the proliferative ability of

RKO cells transfected with sh-circLDLR or cotransfected with sh-circLDLR and

miR-30a-3p inhibitors. EdU analysis of the proliferative ability of SW480 cells

treated with circLDLR-OE or co-transfected with circLDLR-OE and miR-30a-3p

mimics. Representative images are shown. Scale bar, 200 pm. Statistical analysis of

the EdU-positive cell percentage in transfected RKO and SW480 cells is displayed in

27
the bar graph. h The cell migration and invasion of RKO cells transfected with

sh-circLDLR or cotransfected with sh-circLDLR and miR-30a-3p inhibitors were

examined. The cell migration and invasion of SW480 cells transfected with

circLDLR-OE or co-stimulated with circLDLR-OE and miR-30a-3p mimics were

examined. Representative images are shown. Scale bar, 200 pm. Statistical analysis of
the migrated and invaded cell numbers is shown in the bar graph. i The T-CHO and
LDL-C contents in RKO cells transfected with sh-circLDLR or cotransfected with
sh-circLDLR and miR-30a-3p inhibitors were assessed. The T-CHO and LDL-C

contents in SW480 cells treated with circLDLR-OE or cotransfected with

circLDLR-OE and miR-30a-3p mimics were assessed. Data are presented as the
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mean+SD of three independent experiments. **P < 0.01; ***P < 0.001; NS, no

significance.

Fig. 6 SOAT1 is a downstream target of miR-30a-3p. a RKO and SW480 cells

were transfected with miR-30a-3p mimics or inhibitors. SOAT1 expression was

scouted by qRT-PCR. b Relative activities of luciferase were measured in HEK293T

cells after transfection with SOAT1-Mut or SOAT1-WT and miR-30a-3p mimics or

mimic NC. ¢ Overexpression of miR-30a-3p restrained the protein production of

SOAT!. Suppression of miR-30a-3p raised the expression of SOAT! protein. d

Knockdown of circLDLR (sh-circLDLR) inhibited the protein expression of SOAT1.
Overexpression of circLDLR (circLDLR-OE) increased the protein expression of

SOAT1. e Knockdown of miR-30a-3p reversed the sh-circLDLR-induced

downregulation of SOAT1 expression in RKO cells. Overexpression of miR-30a-3p

reversed the circLDLR-OE-induced upregulation of SOAT1 expression in SW480

cells. GAPDH deeded as a loading control. f EdU analysis of the cell proliferation

ability in SW480 and HT29 transfected with miR-30a-3p inhibitors or cotransfected
58

with si-SOAT1 and miR-30a-3p inhibitors. g.Cell migration and invasion in SW480

and HT29 transfected with miR-30a-3p inhibitors or cotransfected with si-SOAT] and

miR-30a-3p inhibitors were examined. h The contents of T-CHO and LDL-C in

SW480 and HT29 cells transfected with miR-30a-3p inhibitors or cotransfected with

si-SOAT1 and miR-30a-3p inhibitors were assessed. i EdU analysis of the cell
proliferation ability in SW480 and HT29 transfected with circLDLR-OE or

[ 60)
cotransfected with si-SOAT1 and circLDLR-OE. j Cell behaviors of migration and
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invasion in HT29 and SW480 cells transfected with circLDLR-OE or cotransfected

with si-SOAT! and circLDLR-OE were examined. k The contents of T-CHO and
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of three independent experiments. *P < 0.05; **P < 0.01; ***P < 0.001; NS, no

significance.

Fig. 7 CircLDLR knockdown restrains CRC tumor growth and metastasis in

vive. a Representative images of subcutaneous xenograft tumors from sh-circLDLR

group and the sh-NC group (n=5). b, ¢ In comparison with the sh-NC group, the

sh-circLDLR group had tumors with observably decreased volume (b) and weight (c).

d Representative images of subcutaneous xenograft tumors from the circLDLR-OE

group and the Vector group (n=5). e, f In comparison with the Vector group, the

circLDLR-OE group had tumors with observably increased volume (e) and weight (f).

g Representative images of mouse lungs six weeks after transplantation. h, i Images

of HE staining are shown (h), and the tumor area was measured (i). j Representative
1

images of mouse lungs six weeks after transplantation. k, 1 Images of HE staining are

shown (k), and the tumor area was measured (1). Data are presented as the mean=SD

of three independent experiments. *P < 0.05; **P < 0.01; ***P < 0.001.

Fig. 8 Schematic diagram showing the regulatory mechanisms of the

circLDLR/miR-30a-3p/SOAT1 axis in CRC.
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