

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Dietary antioxidant consumption and the risk of type 2 diabetes in South Korean adults: A prospective cohort study based on the Health Examinees study

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-065073
Article Type:	Original research
Date Submitted by the Author:	27-May-2022
Complete List of Authors:	TAN, LIJUAN; Chung Ang University - Anseong Campus, Department of Food and Nutrition Hwang, Su Bin; Chung-Ang University, Department of Food and Nutrition Jun, Shinyoung; Graduate School of Cancer Science and Policy, Department of Cancer Biomedical Science Joung, Hyojee; Seoul National University, Department of Public Health, Graduate School of Public Health Shin, Sangah; Chung-Ang University, Department of Food and Nutrition
Keywords:	DIABETES & ENDOCRINOLOGY, EPIDEMIOLOGY, NUTRITION & DIETETICS, PUBLIC HEALTH, STATISTICS & RESEARCH METHODS

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	
Δ	
-	
Э	
6	
7	
8	
0	
9	
10	
11	
12	
12	
15	
14	
15	
16	
17	
17	
١ð	
19	
20	
21	
ר <u>∼</u> ו רר	
22	
23	
24	
25	
25	
26	
27	
28	
29	
20	
30	
31	
32	
33	
24	
34	
35	
36	
37	
20	
38	
39	
40	
41	
יי ⊿ר	
42	
43	
44	
45	
16	
40	
47	
48	
49	
50	
50	
51	
52	
53	
51	
54 55	
55	
56	
57	
58	
50	
59	

1	Dietary antioxidant consumption and the risk of type 2 diabetes in South Korean adults:
2	A prospective cohort study based on the Health Examinees study
3	Li-Juan Tan ^{1*} , Su Bin Hwang ^{1*} , Shinyoung Jun ² , Hyojee Joung ³ , Sangah Shin ^{1§}
4	¹ Department of Food and Nutrition, Chung-Ang University, Gyeonggi-do 17546, South
5	Korea
6	² Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy,
7	Goyang 10408, South Korea
8	³ Department of Public Health, Graduate School of Public Health, Seoul National University,
9	Seoul 08826, South Korea
10	*Co-first authors: These authors contributed equally to this work
11	§Correspondence: Sangah Shin, Department of Food and Nutrition, Chung-Ang University,
12	Gyeonggi-do 17546, South Korea. E-mail: ivory8320@cau.ac.kr; Tel.: +82-31-670-3259;
13	Fax: +82-31-675-1381
14	ORCIDs
15	Li-Juan Tan: https://orcid.org/0000-0002-8970-0884
16	Su Bin Hwang: https://orcid.org/0000-0001-7266-3530
17	Shinyoung Jun: https://orcid.org/0000-0003-2452-4709
18	Hyojee Joung: https://orcid.org/0000-0003-1182-7786
19	Sangah Shin: <u>https://orcid.org/0000-0003-0094-1014</u>

20 Word count: 3,342 words

21 ABSTRACT

Objectives: Antioxidants are common dietary compounds with multiple health benefits. This study aimed to identify the association between dietary antioxidant consumption and the incidence of type 2 diabetes mellitus (T2D, defined using the Korean Diabetes Association criteria) in South Korean adults.

26 Design: Baseline and follow-up data from the Health Examinees (HEXA) study, a large27 scale community-based genomic cohort study conducted in South Korea

Setting: A South Korean community

Participants: A total of 20,594 participants, aged 40–79 years, who participated in the
baseline and follow-up surveys of the HEXA study were included. After an average of 5
years of follow-up, there were 332 men and 360 women with T2D.

Results: Participants with the highest total flavonoid consumption (Q5) had a lower risk of T2D (men: hazard ratio [HR], 0.63; 95% confidence interval [CI], 0.42–0.93; P for trend = 0.0169]; and women: HR, 0.54; 95% CI, 0.438–0.78; *P* for trend = 0.0001) than those with the lowest consumption (Q1). Dietary total antioxidant capacity was significantly inversely associated with the development of T2D mellitus in women participants alone (HR, 0.58; 95% CI, 0.40–0.83; P for trend = 0.0004). Stratified analyses according to age and body mass index showed that dietary total flavonoid consumption and total antioxidant capacity had a protective effect against the development of T2D in women aged > 52 years and women with BMI > 25 kg/m².

41 Conclusions: Dietary flavonoid consumption and total antioxidant capacity were associated
42 with a lower risk of T2D in South Korean adults, especially in women aged > 52 years and

43 overweight. The findings of this study may provide reference data for the modification of
44 dietary guidelines for South Koreans.

45 Strengths and limitations of the study

- 46 This study used a large-scale community-based genomic cohort study conducted in
- 47 South Korea with 5 years of follow-up.
- 48 Stratified analyses were conducted to focus on one certain exposure.
- 49 · Although this study reported a longitudinal relationship between antioxidant
- 50 consumption and diabetes incidence, we could not assess the causality.
- 51 Dietary measurement errors were inevitable due to using self-reported FFQ.
- 52 Keywords: Cohort study, Diabetes, Dietary antioxidant, Flavonoid, Health Examinees
- 53 study, South Korean adults, Total antioxidant capacity

54 INTRODUCTION

Diabetes is a metabolic disease characterized by high blood glucose levels, impaired glucose tolerance, impaired insulin secretion, and insulin resistance.(1, 2) Currently, > 400million people are living with type 2 diabetes (T2D) mellitus worldwide.(3) The prevalence of T2D mellitus increases with age. The 2018 Korean Diabetes Association diabetes fact sheet reported that the prevalence of T2D in the total population aged ≥ 65 years was 29.8%.(4) It is projected that T2D will be the seventh leading cause of death by 2030.(3) Given that T2D is accompanied by various serious complications, including cardiovascular disease, peripheral vascular disease, retinopathy, nephropathy, neuropathy, and recently, sarcopenia, its prevention and treatment are extremely important.(3, 5) Both genetic and environmental factors contribute to the development and progression of T2D mellitus. However, its growing prevalence is the result of result of changing dietary habits and lifestyles observed in modern societies.(6)

Dietary flavonoids, abundant in fruits and vegetables, are a group of naturally occurring polyphenolic compounds.(7, 8) There are seven subgroups of flavonoids: flavonols, flavanones, isoflavones, flavones, flavan-3-ols, anthocyanins, and proanthocyanidins.(9-11) Flavonoids are associated with various health-promoting effects, including antiinflammatory, antihypertensive, anti-obesity, and anti-diabetic.

Previous studies have reported that dietary antioxidants decreased oxidative stress, an important risk factor for T2D, played a key role as anti-inflammatory factors by blocking the nuclear factor kappa-light-chain-enhancer of the activated B (NF-κB) and mitogenactivated protein kinase (MAPK) cell signaling pathways. MAPK pathway was associated with the induction of proinflammatory genes and the promotion of Akt/protein kinase B, an insulin-signaling pathway.(12-15) As a result, antioxidants improve insulin resistance,

which is involved in the pathogenesis of T2D mellitus, by promoting the transportation ofGLUT4 through the regulation of the insulin-signaling pathway.(16, 17)

Previous studies have investigated the correlation between dietary antioxidants and obesity, dyslipidemia, and metabolic syndrome.(18-21) Azad et al. (22) showed that a diet high in antioxidants had protective effects against the development of T2D in the Iranian population. However, few studies have been conducted to determine the association between dietary antioxidant intake and T2D in South Korean populations. In addition, whether there is a dose-response relationship between dietary antioxidants and T2D is unclear. It is pertinent to determine whether a relationship exists between dietary antioxidant intake and T2D in South Korean adults. Moreover, the effect of dietary antioxidants on T2D has not been investigated according to the flavonoid subclasses, antioxidant capacities of flavonoids, or total antioxidant capacity (TAC), which is an index to indicate whole dietary antioxidant content.(23) Therefore, we conducted this study to explore the association between dietary antioxidant and the incidence of T2D by analyzing data from the Health Examinees (HEXA) study.

METHODS			

95 Patient and public involvement

Patients and public were not involved in the design of the study.

97 Study population

This study was based on the baseline and follow-up data from the HEXA study, a largescale community-based genomic cohort study conducted in South Korea. More specific details of the HEXA study design are described elsewhere.(24) A total of 173,357

BMJ Open

participants aged ≥ 40 years were initially included in the baseline survey, which was conducted from 2003 to 2014; 65,642 of these participants were included in the follow-up survey, which was conducted from 2012 to 2016. At baseline, we excluded participants who had T2D mellitus or had no information on fasting plasma glucose or HbA_{1C} levels (n = 41,311) and those with a history of diseases closely related to T2D mellitus (i.e., hyperlipidemia, stroke, transient ischemic attacks, angina pectoris, and myocardial infarction) (n = 3,082). At follow-up, we excluded those with missing information on biomarkers for T2D mellitus (fasting plasma glucose, HbA_{1C}) (n = 11), those who had an implausible energy intake (< 3,349 or \ge 16,743 kJ/day for men and < 2,093 or \ge 14,650 kJ/day for women; n = 630 (25)), and those who were missing values for covariables such as drinking (n = 9) and body mass index (BMI) (n = 5). Ultimately, a total of 20,594 participants (6,327 men and 14,267 women) were included in this study.

113 Dietary assessment and estimation of antioxidant components

Dietary intake was assessed using the self-administered, 106-item, food frequency questionnaire (FFQ) developed for the Korean Genome Epidemiologic Study.(24) Participants reported the frequencies and average portions of food or beverage items consumed during the last year before participating in the HEXA study. The reproducibility and validity of the FFQ have been assessed in a previous study using a reference method by collecting information on 12-day dietary records.(26) The median correlation coefficient for all nutrients was 0.39 between the FFQ and 12-day dietary record, and the researchers concluded that the FFQ could be an acceptable tool for dietary assessment.(26)

In this study, we estimated the participants' intake of antioxidant components using self-reported dietary data linked to the TAC database for common South Korean foods.(11, Dietary TAC and intake of each flavonoid component were expressed as vitamin C equivalent antioxidant capacity (mg VCE/100 g). The intake of individual antioxidant components from a food item was calculated by multiplying the antioxidant component per gram of food item by the total weight in grams of daily intake of this food item. The daily intake of individual total dietary antioxidant components was calculated as the sum of the intake of each antioxidant component from all the food sources reported in the HEXA FFQ data (mg VCE/day). After summing all individual total dietary antioxidant components, we obtained the dietary TAC per person per day.

Total flavonoid intake was classified into seven categories: anthocyanidins (cyanidin, delphinidin, pelargonidin, malvidin, peonidin, and petunidin), isoflavones (daidzein, genistein, and glycitein), proanthocyanidins (proanthocyanidin-dimer, proanthocyanidin-trimer, proanthocyanidin-4-6mers, proanthocyanidin-7-10mers, and proanthocyanidin-polymers), flavonols (quercetin, kaempferol, myricetin, and isorhamnetin), flavones (luteolin and apigenin), flavanones (eriodictyol, hesperetin, and naringenin), and flavan-3-ols (catechin, epicatechin, epigallocatechin, theaflavin, theaflavin-3-gallate, theaflavin-3'-gallate, and theaflavin-3-3-digallate).

Definition of type 2 diabetes

141 T2D was determined in accordance with the definition provided by the Korean Diabetes 142 Association.(28) T2D was defined as a diagnosis by a physician, increased fasting plasma 143 glucose level \geq 6.99 mmol/L (126 mg/dL), or elevated HbA_{1C} level \geq 47.5 mmol/mol (6.5%).

144 Covariables

In the HEXA study, the sociodemographic information of each participant was collected using a questionnaire. Our covariables of interest included age, BMI, level of education (middle school or lower, high school, or college or higher), and health-related Page 9 of 30

BMJ Open

behaviors, such as smoking (current smoker, past smoker, or non-smoker), alcohol consumption (never or current drinker), level of physical activity (inactive or active), and total energy intake (kJ/day). BMI was calculated as the quotient of the body weight (kg) and height (m) squared (kg/m²).(29) Smoking status was categorized into three groups based on the participants' responses to the question, "Have you smoked ≥ 20 packs (400 cigarettes) so far?" Participants who answered "never" were classified as "non-smokers," those who answered "yes" and were still smoking at the time of the survey were classified as "current smokers," and those who answered "yes" but had guit smoking at the time of the survey were classified as "past smokers." Alcohol consumption was classified based on the responses to the following question, "Are you unable to drink or refuse to do so for religious or other reasons?" in the HEXA survey. In the present analysis, we classified participants who replied "yes" as "alcohol non-drinkers;" the rest were classified as "alcohol drinkers." Regarding physical activity levels, participants were classified as "active" if they reported that they engaged in exercises resulting in sweating for ≥ 30 min twice a week.(30)

162 Statistical analyses

All statistical analyses were sex-stratified and performed using Statistical Analysis Systems software version 9.4 (SAS Institute, Cary, NC, USA). Statistical significance was set at P < 0.05. Continuous variables were presented as means \pm standard deviations (SD), and the difference between them in the outcome groups was tested using a generalized linear model (GLM). The categorical variables were presented as numbers (percentages), and the difference between them in the outcome groups was tested using the chi-square test. A multivariable Cox proportional-hazards regression model was used to estimate the hazard ratios (HRs) and 95% confidence intervals (CIs) for T2D after adjusting for categorical (educational level, current drinking status, current smoking status, and physical activity) and

> 172 continuous (age, BMI, and energy intake) covariables. The lowest quintile (Q1) of TAC or 173 flavonoid intake served as a reference group. The median value of each quintile group was 174 modeled as a continuous variable in the Cox model to test the trend. We also estimated the 175 HRs and 95% CIs for an SD increment in dietary TAC and flavonoid intake and conducted 176 stratified analyses according to BMI, age, smoking status, and alcohol consumption.

RESULTS

A total of 20,594 individuals (aged 40–79 years) were included in this study. After an average of 5 years of follow-up, the incidence of T2D mellitus was 5.25% in men and 2.52% in women. The baseline general characteristics of participants according to quintiles of total flavonoid intake are shown in Table 1. Among both men and women participants, the highest consumption group (Q5) included more non-smokers, more participants with higher education levels, and more participants who engaged in physical activity (all *p* value < 0.05).

184	Table 1. Baseline general	characteristics of partici	pants by total f	flavonoid consumption
-----	---------------------------	----------------------------	------------------	-----------------------

		AI	nioxidant consumpti			
	Q1	Q2	Q3	Q4	Q5	P-value
Men, n=6327						
Cases / person-years	80 / 5103.00	74 / 5060.60	60 / 4995.40	71 / 5110.50	47 / 5182.60	
Age, years	54.45 ± 8.64	54.97 ± 8.51	54.20 ± 8.37	54.55 ± 8.32	54.89 ± 7.97	0.0758
BMI, kg/m ²	24.07 ± 2.74	24.19 ± 2.73	24.21 ± 2.71	24.31 ± 2.65	24.32 ± 2.58	0.1348
Smoking status						<.0001
Never	357 (28.22%)	404 (31.91%)	395 (31.27%)	373 (29.56%)	426 (33.84%)	
Past	451 (35.65%)	516 (40.76%)	549 (43.47%)	586 (46.43%)	575 (45.67%)	
Current	457 (36.13%)	346 (27.33%)	319 (25.26%)	303 (24.01%)	258 (20.49%)	
Educational level						<.0001
Under middle school	382 (30.32%)	297 (23.52%)	244 (19.4 0 %)	186 (14.77%)	135 (10.69%)	
High school	503 (39.92%)	521 (41.25%)	492 (39.11%)	504 (40.03%)	422 (33.41%)	
College or above	375 (29.76%)	445 (35.23%)	522 (41.49%)	569 (45.19%)	706 (55.9 0 %)	
Physical activity						<.0001
Inactive	1070 (84.65%)	1024 (80.95%)	999 (79.03%)	976 (77.28%)	896 (70.94%)	
Active	194 (15.35%)	241 (19.05%)	265 (20.97%)	287 (22.72%)	367 (29.06%)	
Current alcohol consumption						0.2578
No	313 (24.74%)	337 (26.62%)	342 (27.04%)	340 (26.86%)	364 (28.77%)	
Yes	952 (75.26%)	929 (73.38%)	923 (72.96%)	926 (73.14%)	901 (71.23%)	
T-4-1	$1624.56 \pm$	$1764.89 \pm$	$1842.23 \pm$	$1926.29 \pm$	$2110.85 \pm$	< 0001
Total energy intake, kcal/day	401.00	417.55	431.57	442.88	499.16	<.0001
Carbohydrate, E%	72.51 ± 7.71	71.63 ± 7.10	71 .00 ± 7.33	70.49 ± 6.88	70.07 ± 7.09	<.0001
Protein, E%	12.99 ± 2.41	13.33 ± 2.12	13.52 ± 2.25	13.79 ± 2.26	13.97 ± 2.37	<.0001
Fat, E%	14.50 ± 5.73	15.04 ± 5.33	15.47 ± 5.48	15.73 ± 5.07	15.96 ± 5.15	<.0001
Dietary fiber intake, g/day	3.84 ± 1.12	4.72 ± 1.24	5.28 ± 1.33	5.91 ± 1.50	7.42 ± 2.14	<.0001
Total flavonoid, mg VCE/d	58.16 ± 15.38	97.92 ± 10.58	135.76 ± 11.78	185.20 ± 18.17	299.44 ± 77.77	<.0001
Anthocyanidins, mg VCE/d	11.73 ± 5.14	20.53 ± 6.74	28.17 ± 9.84	37.83 ± 13.24	62.90 ± 28.55	<.0001
Isoflavones, mg VCE/d	8.63 ± 4.74	11.56 ± 6.30	12.24 ± 6.53	13.16 ± 6.86	15.96 ± 9.48	<.0001
Proanthocyanidins, mg	22.50 ± 0.01	41.24 + 10.74	50 17 + 14 69	PO 74 + 21 27	125 10 + 47 92	< 0001
VCE/d	25.39 ± 9.01	41.24 ± 10.74	39.17 ± 14.08	80.74 ± 21.27	$155.10 \pm 4/.85$	~.0001
Flavonols, mg VCE/d	7.50 ± 4.38	10.58 ± 6.08	13.18 ± 6.82	16.78 ± 9.23	24.31 ± 16.28	<.0001
Flavones, mg VCE/d	0.29 ± 0.15	0.45 ± 0.18	0.60 ± 0.22	0.79 ± 0.29	1.19 ± 0.49	<.0001
Flavanones, mg VCE/d	1.80 ± 1.52	3.20 ± 1.96	4.56 ± 2.74	6.01 ± 3.76	10.29 ± 6.33	<.0001
Flavan-3-ols, mg VCE/d	4.63 ± 4.40	10.35 ± 9.70	17.84 ± 15.94	29.88 ± 23.91	49.69 ± 37.80	<.0001
TAC ma VCE/d	112.06 + 22.02	195 25 + 20 65	252 44 + 27 19	242 26 + 51 65	$542.84 \pm$	~ 0001
TAC, mg VCE/a	113.90 ± 32.02	163.23 ± 30.65	252.44 ± 57.18	343.20 ± 31.05	149.10	<.0001

Women, n=14267

2								
3		Cases / person-vears	89 / 11021.20	82 / 11303.30	76 / 11322.20	59 / 11526.80	54 / 11650.80	
4		Age, years	52.64 ± 8.04	52.31 ± 7.84	52.19 ± 7.68	52.01 ± 7.23	52.18 ± 7.02	0.0832
5		BMI, kg/m ² Smoking status	23.44 ± 3.05	23.40 ± 2.93	23.32 ± 2.85	23.27 ± 2.80	23.19 ± 2.72	0.8879
6		Never	2746 (96.32%)	2784 (97.72%)	2788 (97.82%)	2806 (98.39%)	2768 (97.23%)	<.0001
0		Past	31 (1.09%)	21 (0.74%)	24 (0.84%)	21 (0.74%)	35 (1.23%)	
/		Current Educational level	74 (2.60%)	44 (1.54%)	38 (1.33%)	25 (0.88%)	44 (1.55%)	< 0001
8		Under middle school	1150 (40.41%)	977 (34.33%)	901 (31.74%)	760 (26.73%)	625 (22.01%)	<.0001
9		High school	1236 (43.43%)	1305 (45.85%)	1297 (45.69%)	1368 (48.12%)	1341 (47.23%)	
10		College or above	460 (16.16%)	564 (19.82%)	641 (22.58%)	715 (25.15%)	873 (30.75%)	< 0001
11		Inactive	2449 (85.96%)	2355 (82.63%)	2294 (80.46%)	2239 (78.48%)	2120 (74.49%)	<.0001
12		Active	400 (14.04%)	495 (17.37%)	557 (19.54%)	614 (21.52%)	726 (25.51%)	
13		Current alcohol consumption	1900 (66 6 0 %)	1967 (68 92%)	1932 (67 72%)	1928 (67 55%)	1966 (68 91%)	0.2756
14		Yes	953 (33.4 0 %)	887 (31.08%)	921 (32.28%)	926 (32.45%)	887 (31.09%)	
15		Total energy intake, kcal/day	1429.83 ±	1577.31 ±	1659.22 ±	1761.14 ±	1947.92 ±	<.0001
10		Carbohydrate F%	392.78 71.87 + 8.06	420.56 71 25 + 7 93	437.45 70.67 + 7.63	460.69 70 3 0 + 7 36	497.29 69 97 + 7 3 0	< 0001
16		Protein, E%	13.39 ± 2.47	13.59 ± 2.42	13.76 ± 2.38	13.89 ± 2.33	14.01 ± 2.43	<.0001
17		Fat, E%	14.74 ± 6.03	15.16 ± 5.91	15.57 ± 5.65	15.81 ± 5.45	16.02 ± 5.33	<.0001
18		Dietary fiber intake, g/day Total flavonoid mg VCF/d	3.80 ± 1.11 71 44 + 17 73	4.61 ± 1.21 116 97 + 11 49	5.13 ± 1.30 159.39 ± 13.42	5.97 ± 1.52 213 52 + 19 24	7.38 ± 2.10 333 98 + 94 24	<.0001 < 0001
19		Anthocyanidins, mg VCE/d	15.24 ± 6.21	25.89 ± 8.12	35.35 ± 11.02	46.82 ± 14.12	74.77 ± 32.62	<.0001
20		Isoflavones, mg VCE/d	8.63 ± 4.48	10.67 ± 5.74	11.70 ± 6.42	13.28 ± 7.25	15.09 ± 9.07	<.0001
21		Proanthocyanidins, mg	31.11 ± 10.57	52.62 ± 11.64	73.61 ± 15.79	101.51 ± 21.34	161.00 ± 54.19	<.0001
22		Flavonols, mg VCE/d	8.09 ± 4.63	11.18 ± 5.92	13.54 ± 7.50	16.94 ± 9.30	24.05 ± 16.19	<.0001
22		Flavones, mg VCE/d	0.35 ± 0.18	0.55 ± 0.23	0.71 ± 0.28	0.89 ± 0.34	1.31 ± 0.62	<.0001
23		Flavanones, mg VCE/d	2.56 ± 1.91 5.45 ± 4.85	4.37 ± 2.55	5.98 ± 3.19 18 51 + 14 74	7.70 ± 3.84 26.38 + 20.18	12.62 ± 8.04 45.13 ± 36.98	<.0001 < 0001
24		TAC (ma NCE/d)	125 (1 + 2(42	11.00 ± 10	10.51 ± 14.74	20.33 ± 20.18	43.13 ± 30.98 587.77 ±	<.0001
25		TAC (mg VCE/d)	135.01 ± 30.42	210.20 ± 31.08	$289.3 \pm 38./1$	380.21 ± 51.07	176.53	<.0001
26	185	Values are presented as	means \pm stan	dard deviatior	ns or numbers	(%). <i>P</i> -value	s were calcula	ited using a
27	186	generalized linear model	for continuou	s variables and	d Chi-square t	est for catego	rical variables.	<i>p</i> <0.05 are
28	187	shown in bold.						
29	188	Total flavonoid intake wa	as the sum of	anthocyanidin	s, isoflavones	proanthocya	nidins, flavonol	ls, flavones,
30	189	flavanones, and flavan-3-	ols.			1		
31	190	Total antioxidant capacit	v (TAC) was	obtained by c	ombining the	individual an	tioxidant capa	city of each
27	191	antioxidant derived from	every food iter	n BMI [,] body	mass index V	CE: vitamin C	equivalents	
5Z	192	untioxidant derived from	every lood her	II. Divil. obuy	mass maex, v	ell. vitainin e	equivalents.	
33	102	Table 2 sharrys 4	ha managa af	distant out	invident int	lea her arrie	tiles. The es	aasistisma
34	193	Table 2 shows t	ne range of	dietary ant	ioxidant inta	ake by quin	thes. The as	sociations
35								
36	194	between dietary antic	xidant intak	te and the H	IRs of T2D	mellitus are	presented in	n Table 3.
37		5					1	
38	105	A 11 (*** (**1	41 1 1 1	4 4 1 1 4	a		• 1 1 1	• 1 0
39	195	All participants with	the nignest	total dietai	ry flavonoid	intake (Q:	b) had a low	er risk of
40								
40	196	developing T2D mell	itus (men [.] F	$\frac{1}{100} = 0.63 \cdot 95$	5% CL 042-	-0.93 and w	omen [.] HR (0 54. 95%
41	170		itus (inten: 1	iit, 0.05, 90	, o ei, o. i 2	0.95 und W	o	0.01, 2070
42							a	
43	197	CI, 0.38–0.78; both <i>I</i>	for trend <	< 0.05) than	those with	the lowest	flavonoid inf	take (Q1).
44								
45	108	Consumption of mor	e flavonols	and proanth	ocvanidins	had a protec	tive effect a	gainst the
46	190	Consumption of more		and produin	ocyaniunis i			igamst the
47								
18	199	development of T2D) mellitus ir	n men parti	cipants, and	consumpti	on of antho	cyanidins,
40		1		1	1 ,	1		,
49	200				а	.1		
50	200	proanthocyanidins, fi	avonois, fia	vones, and	flavanones s	snowed a pr	otective effe	ect against
51								
52	201							0.110
53	201	T2D mellitus in wor	nen narticir	ants (all P	for trend <	< 0.05) Afi	er estimatio	n of HRs
F 4		T2D mellitus in wor	nen particip	oants (all P	for trend <	< 0.05). Af	ter estimatio	n of HRs
54		T2D mellitus in wor	nen particip	oants (all P	for trend <	< 0.05). Af	ter estimatio	n of HRs
54 55	202	T2D mellitus in wor according to quintiles	nen particip of TAC, the	pants (all P e Q5 group c	for trend <	< 0.05). Aft articipants st	ter estimatio ill showed a	n of HRs lower risk
54 55 56	202	T2D mellitus in wor according to quintiles	nen particip of TAC, the	oants (all <i>P</i> e Q5 group c	for trend <	< 0.05). Aft	ter estimatio	n of HRs lower risk
54 55 56	202	T2D mellitus in wor according to quintiles	of TAC, the	e Q5 group c	for trend < of women pa	< 0.05). After $rticipants$ st	ter estimatio ill showed a	n of HRs lower risk
55 56 57	202 203	T2D mellitus in wor according to quintiles of T2D mellitus (HR	nen particip of TAC, the , 0.58; 95%	oants (all <i>P</i> e Q5 group c CI, 0.40–0.	for trend < of women pa 83; <i>P</i> for tr	< 0.05). Aft articipants st end = 0.000	ter estimatio ill showed a 04) than the 0	n of HRs lower risk Q1 group.
54 55 56 57 58	202 203	T2D mellitus in wor according to quintiles of T2D mellitus (HR	nen particip of TAC, the , 0.58; 95%	oants (all <i>P</i> e Q5 group c CI, 0.40–0.	for trend < of women pa 83; <i>P</i> for tr	< 0.05). Aft articipants st end = 0.000	ter estimatio ill showed a 04) than the 0	n of HRs lower risk Q1 group.
54 55 56 57 58 59	202 203 204	T2D mellitus in wor according to quintiles of T2D mellitus (HR However, although th	nen particip of TAC, the , 0.58; 95% he TAC Q5	oants (all <i>P</i> e Q5 group c CI, 0.40–0. group of n	for trend < of women pa .83; <i>P</i> for tr nen participa	< 0.05). Aft articipants st end = 0.000 ants did not	ter estimatio ill showed a 04) than the t show any s	n of HRs lower risk Q1 group. significant
54 55 56 57 58 59 60	202 203 204	T2D mellitus in wor according to quintiles of T2D mellitus (HR However, although th	men particip of TAC, the , 0.58; 95% he TAC Q5	oants (all <i>P</i> e Q5 group o CI, 0.40–0. group of n	for trend < of women pa .83; <i>P</i> for tr nen participa	< 0.05). Aft articipants st end = 0.000 ants did not	ter estimatio ill showed a (4) than the t show any s	n of HRs lower risk Q1 group. significant

association with T2D mellitus, they had an approximately 15% reduced risk of developing
T2D mellitus for an SD increment in TAC (HR, 0.85; 95% CI, 0.75–0.96). After further
adjustment for energy percent from carbohydrate, fat, and protein and dietary fiber intake,
the results remained largely unchanged (Supplementary Table S1 and Table S2).

209 <u>Table 2. Range of each dietary antioxidant intake by quintile</u>

	QI	Q2	Q3	Q4	Q5
Men					
Total flavonoid (mg VCE/d)	58 16 (13 07 - 80 30)	97 92 (80 32 - 116 38)	135.76 (116.38 -	185.20 (156.80 -	299.44 (221.46
rotar navonolu (nig vCE/u)	58.10 (15.07 - 80.50)	97.92 (80.32 - 110.38)	156.75)	221.23)	1150.79)
Anthocyanidins (mg VCE/d)	9.69 (0.75 – 14.14)	17.94 (14.14 – 21.97)	26.58 (21.97 - 31.57)	38.62 (31.57 - 46.86)	68.33 (46.89 - 378.83)
Isoflavones (mg VCE/d)	5.07 (0.10 - 6.80)	8.07 (6.80 - 9.35)	10.78 (9.35 – 12.22)	14.16 (12.22 – 16.57)	23.48 (16.57 - 94.05)
Proanthocyanidins (mg VCE/d)	21.28 (1.43 - 31.14)	39.10 (31.15 – 47.5)	56.93 (47.52 - 67.33)	81.94 (67.35 - 99.38)	140.58 (99.41 - 723.02)
Flavonols (mg VCE/d)	5.25 (0.69 - 7.30)	8.81 (7.30 - 10.32)	11.89 (10.33 – 13.65)	16.14 (13.65 – 19.27)	30.25 (19.27 - 231.83)
Flavones (mg VCE/d)	0.23 (0.02 - 0.33)	0.40 (0.33 - 0.48)	0.57 (0.48 - 0.67)	0.79 (0.67 - 0.93)	1.32 (0.93 – 4.37)
Flavanones (mg VCE/d)	1.03 (0.00 – 1.77)	2.43 (1.77 - 3.09)	3.93 (3.09 - 4.89)	6.16 (4.89 - 7.80)	12.33 (7.80 - 62.77)
Flavan-3-ols (mg VCE/d)	2.98 (0.10 - 4.91)	6.82 (4.92 - 8.87)	11.79 (8.87 – 15.54)	23.54 (15.56 - 41.05)	67.26 (41.06 - 252.89)
	111.21 (21.57 –	182.54 (150.45 -	251.21 (215.61 -	343.27 (289.98 -	549.53 (406.14
TAC (mg VCE/d)	150.38)	215.60)	289.93)	406.09)	1811.29)
Women					
Total flavonoid (mg VCE/d)	71.44 (7.28 – 96.65)	116.97 (96.66 – 136.81)	159.39 (136.81 – 183.19)	213.52 (183.20 – 250.56)	1263.46) (250.59
Anthocyanidins (mg VCE/d)	12.85 (0.44 – 18.47)	23.33 (18.48 - 28.19)	34.01 (28.19 - 40.07)	47.64 (40.07 - 56.64)	80.24 (56.65 - 372.08)
Isoflavones (mg VCE/d)	4.83 (0.43 - 6.50)	7.73 (6.50 – 8.96)	10.31 (8.96 – 11.72)	13.67 (11.72 – 16.02)	22.83 (16.02 - 85.19)
Proanthocyanidins (mg VCE/d)	28.89 (2.21 - 41.00)	50.74 (41.01 - 60.82)	72.48 (60.83 – 84.94)	101.70 (84.95 – 121.70)	166.05 (121.73 – 633.15
Flavonols (mg VCE/d)	5.72 (1.00 - 7.65)	9.09 (7.65 - 10.55)	12.11 (10.55 – 13.81)	16.26 (13.81 - 19.38)	30.62 (19.38 - 195.47)
Flavones (mg VCE/d)	0.28 (0.01 - 0.39)	0.48 (0.39 - 0.57)	0.67 (0.57 – 0.77)	0.89 (0.77 – 1.05)	1.50 (1.05 - 7.62)
Flavanones (mg VCE/d)	1.58 (0.00 - 2.58)	3.44 (2.58 - 4.35)	5.38 (4.35 - 6.55)	7.95 (6.55 – 9.73)	14.88 (9.73 – 132.99)
Flavan-3-ols (mg VCE/d)	3.82 (0.25 - 6.06)	8.18 (6.06 - 10.41)	13.17 (10.41 – 16.31)	21.85 (16.31 - 30.72)	60.14 (30.72 - 376.53)
ГАС	132.65 (13.04 – 178.98)	214.39 (178.99 – 248.73)	287.62 (248.74 – 328.90)	380.46 (328.94 – 442.53)	594.04 (442.54 2240.46)

BMJ Open

2 3		Total flavonoid	Ref	0.98 (0.71, 1.34)	0.90 (0.64, 1.26)	0.91 (0.65, 1.27)	0.63 (0.42, 0.93)	0.0169	0.85 (0.75, 0.97)
4 5		Anthocyanidins	Ref	0.79 (0.56, 1.11)	0.99 (0.72, 1.36)	0.86 (0.62, 1.20)	0.71 (0.50, 1.03)	0 1167	0 87 (0 77 0 99)
6		Annocyaniuns	Rei	0.77 (0.50, 1.11)	0.77 (0.72, 1.50)	0.00 (0.02, 1.20)	0.71 (0.30, 1.03)	0.1107	0.07 (0.77, 0.99)
7 8		Isoflavones	Ref	1.45 (1.03, 2.06)	1.12 (0.78, 1.60)	1.19 (0.83, 1.71)	1.36 (0.94, 1.97)	0.3151	1.05 (0.94, 1.17)
9		Proanthocyanidins	Ref	1.04 (0.76, 1.44)	0.97 (0.70, 1.36)	0.77 (0.54, 1.09)	0.72 (0.50, 1.05)	0.0247	0.88 (0.77, 0.99)
10 11		Flavonols	Ref	1 49 (1 08, 2 05)	0 90 (0 63, 1.30)	0 97 (0 68, 1, 38)	0.82 (0.56, 1.19)	0.0381	0 84 (0 73 0 97)
12				, (,)					(,)
13 14		Flavones	Ref	1.01 (0.73, 1.41)	1.01 (0.72, 1.41)	0.84 (0.59, 1.20)	0.85 (0.59, 1.22)	0.2322	0.90 (0.80, 1.01)
15		Flavanones	Ref	0.83 (0.59, 1.17)	1.23 (0.89, 1.68)	0.94 (0.67, 1.31)	0.82 (0.57, 1.18)	0.3313	0.94 (0.83, 1.06)
16		Flavan-3-ols	Ref	0.89 (0.64, 1.24)	1.12 (0.81, 1.55)	0.79 (0.55, 1.12)	0.75 (0.52, 1.08)	0.0744	0.90 (0.79, 1.01)
18									
19 20		TAC	Ref	1.08 (0.78, 1.49)	0.95 (0.68, 1.33)	0.87 (0.62, 1.24)	0.73 (0.50, 1.06)	0.0448	0.85 (0.75, 0.96)
21									
22 23		X 7							
23		women							
25		Total flavonoid	Ref	0.90 (0.66, 1.22)	0.82 (0.60, 1.12)	0.61 (0.44, 0.87)	0.54 (0.38, 0.78)	0.0001	0.80 (0.70, 0.90)
26 27									
27		Anthocyanidins	Ref	0.91 (0.68, 1.23)	0.63 (0.45, 0.87)	0.71 (0.52, 0.99)	0.56 (0.39, 0.79)	0.0006	0.85 (0.75, 0.97)
29		Isoflavones	Ref	0.98 (0.71, 1.34)	0.71 (0.51, 0.99)	0.81 (0.58, 1.13)	0.78 (0.56, 1.10)	0.1353	0.92 (0.82, 1.04)
30 31		Proanthocyanidins	Ref	0 90 (0 66 1.23)	1.04 (0.77, 1.41)	0 66 (0 47, 0 93)	0.50 (0.34, 0.72)	< 0001	0 79 (0 70 0 90)
32						,,			(, (
33 34		Flavonols	Ref	0.83 (0.61, 1.12)	0.68 (0.49, 0.94)	0.57 (0.41, 0.80)	0.61 (0.43, 0.86)	0.0040	0.88 (0.77, 1.00)
35 36		Flavones	Ref	0.81 (0.60, 1.10)	0.74 (0.54, 1.01)	0.54 (0.38, 0.76)	0.56 (0.39, 0.79)	0.0003	0.81 (0.71, 0.93)
37		Flavanones	Ref	0.73 (0.54, 0.98)	0.56 (0.41, 0.77)	0.57 (0.41, 0.78)	0.54 (0.39, 0.76)	0.0005	0.83 (0.73, 0.95)
38									
40		Flavan-3-ols	Ref	0.83 (0.60, 1.13)	0.79 (0.57, 1.08)	0.64 (0.45, 0.90)	0.79 (0.57, 1.10)	0.3681	0.93 (0.82, 1.05)
41 42		TAC	Ref	0.82 (0.60, 1.11)	0.86 (0.64, 1.17)	0.51 (0.36, 0.73)	0.58 (0.40, 0.83)	0.0004	0.81 (0.71, 0.92)
43	215	Doculta ara progon	tada	the horard re	tia (IID) for a	standard davis	tion (SD) in a	romont in	distant antiquidant
44	215	capacity using a co	$a = \frac{1}{2}$	odel	шо (пк) юг а	standard devia	uion (SD) nic		
45	217	The multivariable	Cox	proportional h	azards regress	ion model was	adjusted for a	age, body	mass index (BMI),
46	218	educational level,	physi	cal activity, dr	inking status,	smoking status	, and total ene	ergy intake	•
4/	219	Total flavonoid in	take	was the sum o	of anthocyanid	ins, isoflavone	es, proanthocy	vanidins, f	lavonols, flavones,
40	220	flavanones, and fla	avan-	3-0 ls.	a obtained by	a amhining th	a individual	ontiovidor	t composite of cook
50	221	antioxidant derive	d fror	n every food it	tem	combining th		annoxiuan	i capacity of each
51	223								
52									
53 54	224	We also p	erfoi	med stratifi	ed analyses	according to	age BMI	drinking	status for both
55		n e uise p		Suuull				<i></i>	
56 57	225	sexes, and smol	king	status for m	nen participa	nts. Figure	l shows the	HRs of	T2D mellitus in
58 59 60	226	the Q5 and Q1	grou	ps accordin	g to baseline	e age, baselin	ne BMI, and	d alcohol	drinking status

in the HEXA study. There was almost no significant association between T2D mellitus and dietary intake of antioxidant components in men participants. However, total flavonoid intake and dietary TAC showed a protective effect against the development of T2D mellitus in women participants who were aged > 52 years, had a BMI \ge 25 kg/m², and regardless of alcohol consumption.

Discussion

In this study, we discovered that dietary total flavonoid consumption and TAC are both associated with a reduced risk of developing T2D mellitus. After further analysis stratified according to age, and BMI, we found that dietary total flavonoid consumption and TAC had a protective effect against the development of type 2 diabetes mellitus in women participants who were overweight or aged > 52 years.

Oxidative stress, which is an imbalance between the production of reactive oxygen species (free radicals) and antioxidant defense mechanism, is a risk factor for T2D.(17) Previous studies have shown that oxidative stress impairs the secretion of insulin by pancreatic beta cells and interferes with the insulin signaling pathway, thereby accelerating the development and progression of T2D by increasing insulin resistance. (2, 3, 6, 31, 32) Oxidative stress can be regulated by antioxidants, which react with reactive oxygen species.(33) The consumption of dietary flavonoids has been shown to be associated with lower incidences of T2D. Several previous studies have indicated that flavonoids decrease plasma glucose levels and improve lipid profile, insulin secretion, and insulin resistance, factors which are implicated in the development of T2D.(2, 3, 8, 34) In a previous study, higher flavonol intake was associated with a 26% lower incidence of T2D.(35)(35) In addition, the authors observed a marginally significant inverse association between flavan-3-ol intake and the risk of T2D, but there was no association with anthocyanin intake.(35)(35)

Page 15 of 30

BMJ Open

Knekt et al.(36) reported a marginally significant inverse association between the intake of the flavonols guercetin, and myricetin, but not kaempferol, and the incidence of T2D in Finnish men and women. Quercetin, in particular, is known to decrease plasma glucose concentration, improve insulin concentration, preserve the integrity of pancreatic beta cells, alleviate T2D symptoms, and reduce hepatic gene expression in streptozotocin-induced diabetic models.(37)-Flavan-3-ol and isoflavone intake is associated with a reduced risk of T2D and improved insulin resistance and serum insulin concentrations.(38) Dietary flavone intake is negatively associated with systolic blood pressure, triglyceride level, triglyceride/high-density lipoprotein-cholesterol level, and homeostatic model assessment of insulin resistance. Flavone intake may have some beneficial effects in the reduction of the prevalence of T2D in South Korean women.(8) Consumption of foods rich in anthocyanins, particularly blueberries, apples, and pears, is also inversely associated with the risk of T2D in the United States.(39)

A key potential mechanism for the protective effect of flavonoids against T2D is the protection of tissues from free oxygen radicals and lipid peroxidation through their antioxidant activity.(40) In addition, anti-inflammatory functions, improvement of endothelial functions, reduction of blood cholesterol concentration, and nicotinamide adenine dinucleotide phosphate oxidase activity are also associated with a reduced risk of T2D mellitus.(40) Flavonoids are known to interact with molecular targets and affect NF-κB and MAPK signaling pathways.(34) Furthermore, flavonoids modulate postprandial glucose levels by reducing the activities of digestive enzymes (a-amylase and a-glucosidase), decreasing the active transport of glucose across the intestinal brush border membrane, and inhibiting glucose transporters.(31) Antioxidant-rich fruits and vegetables contain relatively high fiber content, which can influence the beneficial effects of antioxidants against T2D.(41)

Furthermore, it has been reported that flavonoids inhibit α-glucosidase activity to alleviate
hyperglycemia.(42, 43)

The effect of each type of flavonoid intake on the risk of T2D varies by sex. In this study, there was a correlation between anthocyanidin and proanthocyanidin intake and the risk of developing T2D in men. However, there was a greater correlation between the risk of T2D and intake of flavonoids, such as anthocyanidins, proanthocyanidins, flavonols, flavones, and flavanones, in women than in men. These sex-specific results are often seen in other phytochemical-related studies. In a previous study conducted using 2008–2011 data from the Korea National Health and Nutrition Examination Survey, a high intake of flavonoids did not reduce the incidence of obesity and abdominal obesity in men but significantly reduced obesity (18%) in women. In addition, high flavonoid intake was reported to reduce the incidence of abdominal obesity (19%) in that study.(2, 44, 45) The variations in these results appear to be due to differences between the dietary intake patterns of South Korean men and women. Sex-specific dietary patterns have been reported in previous studies; namely, men consume the recommended amount of vegetables more than women, whereas women consume the recommended amount of fruit more than men.(46) In addition, women generally consume higher amounts of dietary antioxidants than men.(2, 47) Higher intake of dietary antioxidants can induce high plasma concentrations of antioxidants and more beneficial effects on preventing development of T2D. Furthermore, gonadal hormones (menopausal estrogen and testosterone) have been implicated in sex-specific differences in glucose homeostasis.(48) Healthy women have lower skeletal muscle mass, higher adipose tissue mass, more circulating free fatty acids, and higher intramyocellular lipid content than men of the same age. These are all factors that could promote increased insulin resistance in women compared with men.(48)

Page 17 of 30

BMJ Open

Various factors, such as age and lifestyle, are known to contribute to the development and progression of T2D.(17) The prevalence of T2D in South Koreans increases rapidly with age.(4) Unhealthy lifestyle habits, such as smoking, excessive alcohol consumption, and inactivity, are known to contribute to the development of diabetes.(3, 49) We found that men with T2D were older and more likely to be current drinkers and current smokers than those without diabetes. However, our stratified analysis showed that there was no correlation between these factors except for current alcohol consumption. On the other hand, women with T2D were significantly older and had significantly higher BMI than those without diabetes. Furthermore, the stratified analysis showed that antioxidant consumption was inversely related to the HR of T2D in older women (> 52 years), women with a BMI > 25 kg/m², regardless of alcohol consumption. Although it is difficult to fully explain these variations in South Korean adults, these findings suggest that high antioxidant intake may be related to a decreased risk of T2D, especially in women with specific lifestyle habits.

312 Strengths and limitations

The main strength of this study was that it was conducted using a large-scale community-based genomic cohort study with 5 years of follow-up on average. Stratified analyses were conducted in the current study to focus on one certain exposure. This study had some limitations. First, although this study reported a longitudinal relationship between dietary antioxidant consumption and T2D incidence, we did not assess the causality. Second, we obtained dietary information and information on the intake of antioxidant components using self-reported FFQ; thus, dietary measurement errors were inevitable. However, the 106-item FFQ has been previously verified.(26) In addition, further studies are needed to measure the flavonoid concentration to verify the data. Third, we did not quantify the amount of alcohol consumption and smoking. Nevertheless, we found no association

between smoking status and T2D after stratification analyses. Dietary antioxidants showed

a protective effect against the development of T2D only in women who were non-drinkers.

325 Conclusions

The findings of this large-scale prospective cohort study suggest that dietary antioxidant consumption is associated with a lower risk of T2D in South Korean adults. The findings of this study can serve as a reference or guide for the modification of food intake recommendations in dietary guideline policies in South Korea. However, further studies are needed to validate the results of this study.

Declarations

333 Ethics approval and consent to participate

All participants voluntarily signed an informed written consent form before enrollment. This study was performed in accordance with the guidelines specified in the Declaration of Helsinki, and the study protocol was approved by the local Institutional Review Board (IRB) of the Ethics Committee of the Korean Genome and Epidemiology Study of the Korea National Institute of Health (IRB no. 2014-08-02-3C-A).

Consent for publication

341 Not applicable.

343 Availability of data and materials

Page 19 of 30

BMJ Open

The data that support the findings of this study are available from the National Genome Research Institute, Korea Centers for Disease Control and Prevention. How ever, restrictions apply to the availability of these data, which were used under lice nse for this study, and as such are not publicly available. Data are however availa ble from the authors upon reasonable request and with permission of the National Genome Research Institute, Korea Centers for Disease Control and Prevention. Competing interests The authors declare that they have no competing interests. Funding This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No.2020R1C1C1014286). MSIT: Ministry of Science and ICT. The study sponsor/funder was not involved in the design of the study; the collection, analysis, and interpretation of data; writing the report; and did not impose any restrictions regarding the publication of the report.

361 Authors' contributions

362 S.S. supervised the project. S.S. contributed to the conceptualization or design of this

363 study. S.J. and H.J. were contributed to establish the antioxidants database. L.J.T

364 conducted the formal analysis. S.S. verified and validated the outcomes. L.J.T and S.B.H.

365 co-wrote the first draft of the manuscript. S.J. and H.J. reviewed and revised the article

critically. All authors approved the final version of the article for publication. S.S. and

L.J.T had full access to all the data in the study and take full responsibility for the integrity

of the data and accuracy of the data analysis.

Acknowledgments

This study was performed using data from the HEXA study, which was suppor ted by the National Genome Research Institute, Korea Centers for Disease Control Toreteries only and Prevention.

BMJ Open

1 2 3 4	375	References
5 6 7	376	1. Bacanli M., Dilsiz S. A., Başaran N., Başaran A. A. Effects of phytochemicals against
8 9	377	diabetes. Advances in Food and Nutrition Research 2019; 89: 209-238.
10 11	378	2. Yeon JY, Bae YJ, Kim EY, Lee EJ. Association between flavonoid intake and diabetes
12 13 14	379	risk among the Koreans. Clin Chim Acta 2015; 439: 225-230.
15 16	380	3. Quansah DY, Ha K, Jun S, et al. Associations of dietary antioxidants and risk of type 2
17 18	381	diabetes: data from the 2007–2012 Korea National Health and Nutrition Examination
19 20 21	382	Survey. Molecules 2017; 22(10): 1664.
22 23	383	4. Kim BY, Won JC, Lee JH, et al. Diabetes Fact Sheets in Korea, 2018: An Appraisal of
24 25	384	Current Status. Diabetes Metab J 2019; 43(4): 487-494.
26 27 28	385	5. Kim DH, Yu TY. Diabetes and Sarcopenia. J Korean Diabetes 2017; 18(4): 239-247.
28 29 30	386	6. Burton-Freeman B., Brzeziński M., Park E., et al. A selective role of dietary
31 32	387	anthocyanins and flavan-3-ols in reducing the risk of type 2 diabetes mellitus: a review
33 34 25	388	of recent evidence. Nutrients 2019; 11(4): 841.
35 36 37	389	7. Girish Sharma, Dhan Prakash, Charu Gupta, Phytochemicals of nutraceutical
38 39	390	importance: do they defend against diseases, in Phytochemicals of nutraceutical
40 41	391	importance, Prakash D. and Sharma G., Editors. 2014, CABI, Nosworthy Way. p. 1-24.
42 43 44	392	10.1079/9781780643632.0001.
45 46	393	8. Oh JS, Kim H, Vijayakumar A, et al. Association of dietary flavonoid intake with
47 48	394	prevalence of type 2 diabetes mellitus and cardiovascular disease risk factors in Korean
49 50 51 52	395	women aged≥ 30 years. J Nutr Sci Vitaminol (Tokyo) 2017; 63(1): 51-58.
52 53 54	396	9. Kawser Hossain M, Abdal Dayem A, Han J, et al. Molecular mechanisms of the anti-
55 56	397	obesity and anti-diabetic properties of flavonoids. Int J Mol Sci 2016; 17(4): 569.
57 58 59	398	10. Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci 2016; 5: e47.
60		20

2	
2	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
1.0	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
50 27	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
77 10	
40	
49	
50	
51	
52	
53	
54	
55	
56	
57	
52, 52	
50	
22	
οU	

1

399 11. Jun S., Shin S., Joung H. Estimation of dietary flavonoid intake and major food sources
400 of Korean adults. Br J Nutr 2016; 115(3): 480-489.

401 12. Jafari Azad B., Yaseri M., Daneshzad E., Koohdani F. Interaction between Apo A-II 265T>C polymorphism and dietary total antioxidant capacity on some anthropometric
403 indices and serum lipid profile in patients with type 2 diabetes mellitus. J Nutr Sci 2021;
404 10: e9.

- 405 13. Qi S., Xin Y., Guo Y., et al. Ampelopsin reduces endotoxic inflammation via repressing
 406 ROS-mediated activation of PI3K/Akt/NF-kappaB signaling pathways. Int
 407 Immunopharmacol 2012; 12(1): 278-87.
- 408 14. Arulselvan P., Fard M. T., Tan W. S., et al. Role of Antioxidants and Natural Products
 409 in Inflammation. Oxid Med Cell Longev 2016; 2016: 5276130.
- 410 15. Ramachandran V., Saravanan R. Glucose uptake through translocation and activation of
 411 GLUT4 in PI3K/Akt signaling pathway by asiatic acid in diabetic rats. Hum Exp Toxicol

412 2015; 34(9): 884-93.

- 413 16. Li SS, Wu J, Chen LG, et al. Biogenesis of C-glycosyl flavones and profiling of
 414 flavonoid glycosides in lotus (Nelumbo nucifera). PLoS One 2014; 9(10): e108860.
- 415 17. Halim M., Halim A. The effects of inflammation, aging and oxidative stress on the
- 416 pathogenesis of diabetes mellitus (type 2 diabetes). Diabetes & Metabolic Syndrome:
- 417 Clinical Research & Reviews, 2019; 13(2): 1165-1172.
 - 18. Kim SA, Kim J, Jun S, et al. Association between dietary flavonoid intake and obesity
 among adults in Korea. Appl Physiol Nutr Metab 2020; 45(2): 203-212.
 - 420 19. Kim SA, Joung H, Shin S. Dietary pattern, dietary total antioxidant capacity, and
 421 dyslipidemia in Korean adults. Nutr J 2019; 18(1): 37.
 - 422 20. Park S, Ham JO, Lee BK. Effects of total vitamin A, vitamin C, and fruit intake on risk
- 423 for metabolic syndrome in Korean women and men. Nutrition 2015; 31(1): 111-118.

Page 23 of 30

1

BMJ Open

2		
3	424	21. Kim S, Song Y, Lee JE, et al. Total antioxidant capacity from dietary supplement
4 5		
6	425	decreases the likelihood of having metabolic syndrome in Korean adults. Nutrients 2017;
7	10(0(10), 1055
8 9	426	9(10): 1055.
10	427	22 Jafari Azad B. Vaseri M. Daneshzad F. Koohdani F. Interaction between Ano A-II -
11	127	22. Juliur Fizika D., Fusici M., Dunesnizua D., Roonaum F. Interaction between Fipo FF II
12	428	265T > C polymorphism and dietary total antioxidant capacity on some oxidative stress
14		
15	429	and inflammatory markers in patients with type 2 diabetes mellitus. Br J Nutr 2021: 1-
16 17		17
17	430	17.
19	121	23 Daneshzad F. Keshavarz S. A. Oorbani M. Larijani B. Azadbakht I. Dietary total
20	431	25. Danesiizad E., Kesiavarz S. A., Qorbani M., Lanjani B., Azadoakhi E. Dietary totar
21 22	432	antioxidant capacity and its association with sleep, stress, anxiety, and depression score:
22		
24	433	A cross-sectional study among diabetic women. Clin Nutr ESPEN 2020; 37: 187-194.
25		
26 27	434	24. Health Examinees Study Group. The Health Examinees (HEXA) study: rationale, study
28		
29	435	design and baseline characteristics. Asian Pac J Cancer Prev 2015; 16(4): 1591-1597.
30 21	126	25 Shin S. Lim I. Lee HW, et al. Association between the prevalence of metabolic syndrome.
32	430	25. Shin S, Ehn J, Eee H W, et al. Association between the prevalence of metabolic syndrome
33	437	and coffee consumption among Korean adults: results from the Health Examinees study.
34		
35 36	438	Appl Physiol Nutr Metab 2019; 44(12): 1371-1378.
37		
38	439	26. Ahn Y., Kwon E., Shim J. E., et al. Validation and reproducibility of food frequency
39		
40 41	440	questionnaire for Korean genome epidemiologic study. Eur J Clin Nutr 2007; 61(12):
42	441	1425 41
43	441	1453-41.
44	442	27 Jun S. Chun OK. Joung H. Estimation of dietary total antioxidant canacity of Korean
45 46	-1-12	27. Juli 5, Chuli Olk, Joung 11. Estimation of alculy total antioxidant capacity of Rolean
47	443	adults. Eur J Nutr 2018; 57(4): 1615-1625.
48		
49 50	444	28. Ko S. H., Kim S. R., Kim D. J., et al. 2011 clinical practice guidelines for type 2 diabetes
50 51		
52	445	in Korea. Diabetes Metab J 2011; 35(5): 431-436.
53		
54	446	29. Korea Disease Control and Prevention Agency. Obesity.
55 56	4 4 7	https://haalth.l.dag.co.l.r./haalthinfo/hig/haalth/garlzUaalthInfo/garlzUaalthInfo/garlzUa
57	44 /	mups.//neatun.kuca.go.ku/neatunnio/oiz/neatun/gnrizmeatunnio/gnrizmeatunnio/gnrizme
58	448	althInfoView do Published 15 July 2021 Accessed 2021 06 01
59 60	110	<u></u>
00		22

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3 4	449	30
5	450	
7 0	451	31
8 9	431	51
10 11	452	
12 13	453	
14 15	454	32
16 17	455	
18 19 20	456	33
20 21 22	457	
23 24	458	
25 26	459	
27 28	460	34
29 30	400	54
31 32	461	
33 34	462	35
35 36	463	
37 38	464	36
39 40	465	
41 42	466	37
43 44	467	
45 46	407	
47 48	468	38
49 50	469	
51 52	470	
53 54	471	
55 56	472	39
57 58	473	
59 60		

1

. Shin S, Lee HW, Kim CE, et al. Egg Consumption and Risk of Metabolic Syndrome in Korean Adults: Results from the Health Examinees Study. Nutrients 2017; 9(7): 687.

. Chen J, Mangelinckx S, Adams A, et al. Natural flavonoids as potential herbal medication for the treatment of diabetes mellitus and its complications. Natural Product Communications 2015; 10(1): 187-200.

. Rehman K., Akash M.S.H. Mechanisms of inflammatory responses and development of insulin resistance: how are they interlinked? J Biomed Sci 2016; 23(1): 87.

Ham D, Jun S, Kang M, et al. Consumption of Korean Foods with High Flavonoid Contents Reduces the Likelihood of Having Elevated C-Reactive Protein Levels: Data from the 2015–2017 Korea National Health and Nutrition Examination Survey. Nutrients 2019; 11(10): 2370.

- . Liu YJ, Zhan J, Liu XL, et al. Dietary flavonoids intake and risk of type 2 diabetes: a meta-analysis of prospective cohort studies. Clin Nutr 2014; 33(1): 59-63.
- Jacques P. F., Cassidy A., Rogers G., et al. Higher dietary flavonol intake is associated with lower incidence of type 2 diabetes. J Nutr 2013; 143(9): 1474-80.
- . Knekt P., Kumpulainen J., Jarvinen R., et al. Flavonoid intake and risk of chronic diseases. Am J Clin Nutr 2002; 76(3): 560-8.
- . Dhanya R. Quercetin for managing type 2 diabetes and its complications, an insight into multitarget therapy. Biomed Pharmacother 2022; 146: 112560.
- . Curtis P. J., Sampson M., Potter J., et al. Chronic ingestion of flavan-3-ols and isoflavones improves insulin sensitivity and lipoprotein status and attenuates estimated
- 10-year CVD risk in medicated postmenopausal women with type 2 diabetes: a 1-year,
- double-blind, randomized, controlled trial. Diabetes Care 2012; 35(2): 226-32.
- . Reiland H., Slavin J. Systematic Review of Pears and Health. Nutr Today 2015; 50(6):
- 301-305.

Page 25 of 30

1

BMJ Open

2	
3	
4	
5	
c	
0	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
∠∪ ว1	
21	
22	
23	
24	
25	
26	
27	
27	
20	
29	
30	
31	
32	
33	
34	
25	
22	
36	
37	
38	
39	
40	
41	
⊿ר	
+∠ ∕\?	
43	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
57	
57	
20	
59	
60	

474	40. Hussain T., Tan B., Murtaza G., et al. Flavonoids and type 2 diabetes: Evidence of
47:	efficacy in clinical and animal studies and delivery strategies to enhance their therapeutic
47	6 efficacy. Pharmacol Res 2020; 152: 104629.
47′	41. Wang PY, Fang JC, Gao ZH, Zhang C, SY. Xie. Higher intake of fruits, vegetables or
473	their fiber reduces the risk of type 2 diabetes: A meta-analysis. J Diabetes Investig 2016;
47	9 7(1): 56-69.
48	42. Li YQ, Zhou FC, Gao F, Bian JS, Shan F. Comparative evaluation of quercetin,
48	isoquercetin and rutin as inhibitors of α -glucosidase. J Agric Food Chem 2009; 57(24):
482	2 11463-11468.
48.	43. Liu S, Li D, Huang B, et al. Inhibition of pancreatic lipase, α -glucosidase, α -amylase,
484	and hypolipidemic effects of the total flavonoids from Nelumbo nucifera leaves. J
48:	5 Ethnopharmacol 2013; 149(1): 263-269.
48	44. Wedick NM, Pan A, Cassidy A, et al. Dietary flavonoid intakes and risk of type 2
48′	diabetes in US men and women. Am J Clin Nutr 2012; 95(4): 925-933.
48	45. Im J, Kim M, Park K. Association between the Phytochemical Index and Lower
489	Prevalence of Obesity/Abdominal Obesity in Korean Adults. Nutrients 2020; 12(8):
49	2312.
49	46. Lee HS, Cho YH, Park J, Shin HR, Sung MK. Dietary intake of phytonutrients in relation
492	to fruit and vegetable consumption in Korea. J Acad Nutr Diet 2013; 113(9): 1194-1199.
49.	47. Kim YJ, Park MY, Chang N, Kwon O. Intake and major sources of dietary flavonoid in
494	Korean adults: Korean National Health and Nutrition Examination Survey 2010-2012.
49:	5 Asia Pac J Clin Nutr 2015; 24(3): 456-463.
49	48. Mauvais-Jarvis F Gender differences in glucose homeostasis and diabetes. Physiol
49′	7 Behav 2018; 187: 20-23.

49. American Diabetes Association. Nutrition recommendations and interventions for
diabetes: a position statement of the American Diabetes Association. Diabetes Care 2008;
31(Supplement 1): S61-S78.

502 Figure Legend

Figure 1. Hazard ratios (HR) with 95% confidence intervals (CIs) for type 2 diabetes mellitus after comparison of antioxidant consumption in the Q5 and Q1 groups according to baseline age, baseline body mass index (BMI), alcohol consumption, smoking status in the Health Examinees study. TAC: total antioxidant capacity

Men Fotal flavonoid		HRs (95%CIs)	<i>P</i> for interaction
Age≤55 Yr Age>55 Yr	-	0.49 (0.27, 0.89) 0.79 (0.47, 1.32)	0.4997
$BMI < 25 \text{ kg/m}^2$ $BMI \ge 25 \text{ kg/m}^2$	-	0.55 (0.30, 1.01) 0.83 (0.50, 1.38)	0.8579
Non-drinker Current-drinker	-	0.77 (0.38, 1.57) 0.58 (0.36, 0.92)	0.6508
Non-smoker Past-smoker Current-smoker	-	0.72 (0.34, 1.54) 0.55 (0.28, 1.06) 0.88 (0.47, 1.65)	0.4096
TAC Age ≤ 55 Yr Age > 55 Yr		0.56 (0.31, 1.01) 0.90 (0.55, 1.49)	0.3598
$\begin{array}{l} BMI < 25 \ kg/m^2 \\ BMI \geq 25 \ kg/m^2 \end{array}$	•	0.71 (0.39, 1.28) 0.74 (0.44, 1.22)	0.8597
Non-drinker Current-drinker	•	0.74 (0.36, 1.53) 0.68 (0.44, 1.07)	
Non-smoker Past-smoker Current-smoker		0.69 (0.32, 1.48) 0.58 (0.31, 1.08) 0.91 (0.48, 1.73)	0.2740
Women Total flavonoid Age ≤ 52 Yr Age > 52 Yr		- 0.59 (0.33, 1.05) 0.48 (0.30, 0.77)	0.8215
$BMI < 25 \text{ kg/m}^2$ $BMI \ge 25 \text{ kg/m}^2$		0.64 (0.38, 1.08) 0.43 (0.26, 0.72)	0.8995
Non-drinker Current-drinker	-	0.61 (0.39, 0.94) 0.46 (0.24, 0.90)	0.6482
TAC Age ≤ 52 Yr Age > 52 Yr	•	0.58 (0.32, 1.03) 0.55 (0.34, 0.87)	0.6982
$BMI < 25 \text{ kg/m}^2$ $BMI \ge 25 \text{ kg/m}^2$	+	0.61 (0.37, 1.02) 0.49 (0.30, 0.82)	0.9398
Non-drinker Current-drinker	•	0.65 (0.42, 1.00) 0.46 (0.24, 0.89)	0.6026
	0 0.25 0.5 0.75	1 1.25 1.5 1.75 2	

202x277mm (300 x 300 DPI)

		Antioxidant consumption					
	Q1	Q2	Q3	Q4	Q5	P for trend	HR for a SD increment
Men							
Total flavonoid	Ref	0.97 (0.71, 1.34)	0.89 (0.63, 1.25)	0.89 (0.64, 1.24)	0.62 (0.42, 0.92)	0.0136	0.85 (0.75, 0.97)
Anthocyanidins	Ref	0.78 (0.56, 1.10)	0.98 (0.71, 1.35)	0.85 (0.61, 1.19)	0.70 (0.49, 1.01)	0.0994	0.87 (0.76, 0.99)
Isoflavones	Ref	1.44 (1.01, 2.04)	1.10 (0.76, 1.59)	1.18 (0.81, 1.70)	1.32 (0.90, 1.95)	0.4245	1.04 (0.92, 1.17)
Proanthocyanidins	Ref	1.04 (0.76, 1.44)	0.97 (0.70, 1.36)	0.77 (0.54, 1.09)	0.72 (0.50, 1.04)	0.0226	0.87 (0.77, 0.99)
Flavonols	Ref	1.46 (1.06, 2.00)	0.88 (0.61, 1.27)	0.93 (0.64, 1.33)	0.77 (0.52, 1.14)	0.0218	0.82 (0.71, 0.95)
Flavones	Ref	1.00 (0.72, 1.38)	1.00 (0.71, 1.40)	0.82 (0.57, 1.17)	0.83 (0.57, 1.21)	0.1941	0.89 (0.79, 1.01)
Flavanones	Ref	0.83 (0.59, 1.17)	1.21 (0.88, 1.67)	0.93 (0.66, 1.30)	0.81 (0.56, 1.16)	0.2998	0.93 (0.83, 1.05)
Flavan-3-ols	Ref	0.88 (0.63, 1.23)	1.11 (0.80, 1.54)	0.78 (0.55, 1.11)	0.74 (0.51, 1.08)	0.0719	0.89 (0.79, 1.01)
TAC	Ref	1.07 (0.77, 1.47)	0.94 (0.67, 1.31)	0.85 (0.59, 1.20)	0.71 (0.48, 1.05)	0.0347	0.84 (0.74, 0.96)
Women							
Total flavonoid	Ref	0.92 (0.68, 1.24)	0.84 (0.62, 1.15)	0.63 (0.45, 0.89)	0.55 (0.38, 0.80)	0.0002	0.80 (0.71, 0.91)
Anthocyanidins	Ref	0.92 (0.68, 1.24)	0.64 (0.46, 0.89)	0.72 (0.52, 1.00)	0.56 (0.39, 0.80)	0.0007	0.86 (0.75, 0.97)
Isoflavones	Ref	0.99 (0.72, 1.35)	0.72 (0.51, 1.02)	0.84 (0.60, 1.17)	0.83 (0.58, 1.18)	0.2885	0.94 (0.84, 1.07)
Proanthocyanidins	Ref	0.92 (0.67, 1.25)	1.07 (0.79, 1.45)	0.67 (0.48, 0.95)	0.51 (0.35, 0.74)	<.0001	0.79 (0.70, 0.90)
Flavonols	Ref	0.85 (0.62, 1.15)	0.69 (0.50, 0.96)	0.59 (0.42, 0.83)	0.62 (0.44, 0.89)	0.0066	0.89 (0.78, 1.02)
Flavones	Ref	0.82 (0.60, 1.11)	0.75 (0.55, 1.03)	0.54 (0.38, 0.77)	0.57 (0.40, 0.81)	0.0004	0.82 (0.71, 0.93)
Flavanones	Ref	0.74 (0.55, 1.00)	0.57 (0.41, 0.79)	0.58 (0.42, 0.80)	0.55 (0.40, 0.77)	0.0008	0.84 (0.73, 0.96)
Flavan-3-ols	Ref	0.84 (0.62, 1.15)	0.81 (0.59, 1.12)	0.66 (0.47, 0.92)	0.81 (0.58, 1.13)	0.4157	0.93 (0.82, 1.06)
TAC	Ref	0.84 (0.62, 1.14)	0.89 (0.65, 1.21)	0.53 (0.37, 0.75)	0.60 (0.42, 0.86)	0.0007	0.81 (0.71, 0.93)

Table S1. Hazard ratios of type 2 diabetes during follow-up according to quintile of cumulative average antioxidant consumption in model 2

The multivariable Cox proportional-hazards regression model was adjusted for age, body mass index (BMI), educational level, physical activity, alcohol consumption, smoking status, total energy intake, energy percent from carbohydrate, energy percent from protein, and energy percent from fat.

Total flavonoid intake was the sum of anthocyanidins, isoflavones, proanthocyanidins, flavonols, flavones, flavanones, and flavan-3-ols.

Total antioxidant capacity (TAC) was obtained by combining the individual antioxidant capacity of each antioxidant derived from every food item.

3	
4	
5	
ر م	
0	
/	
8	
9	
1	0
1	1
1	2
1	3
1	4
1	5
1	ر د
1	7
1	/
1	8
1	9
2	0
2	1
2	2
2	3
2	Δ
2	5
2	ر د
2	0
2	/
2	8
2	9
3	0
3	1
3	2
3	3
2	л
2	-
	`
3	2
3	6
3 3 3	6 7
3 3 3 3	6 7 8
3 3 3 3 3 3	5 6 7 8 9
3 3 3 3 3 4	5 6 7 8 9
3 3 3 3 3 4 4	5 6 7 8 9 0
3 3 3 3 3 4 4 4 4	6 7 8 9 0 1 2
3 3 3 3 4 4 4 4 4	5 6 7 8 9 0 1 2 3
3 3 3 3 4 4 4 4 4 4	5 6 7 8 9 0 1 2 3
3 3 3 3 3 4 4 4 4 4 4 4	5678901234
3 3 3 3 3 4 4 4 4 4 4 4 4 4	6789012345
3 3 3 3 4 4 4 4 4 4 4 4 4 4	67890123456
3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4	678901234567
3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4	6789012345678
3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4	67890123456789
333344444444445	678901234567890
3333444444444455	6789012345678901
3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5	67890123456789012
3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5	678901234567890123
333344444444455555	6789012345678901234
3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5	67890123456789012345
333344444444455555555555555555555555555	678901234567890123456
3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5	678901234567890123456-
3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5	6789012345678901234567
333334444444444555555555555555555555555	67890123456789012345678

60

Table S2. Hazard ratios of type 2 diabetes during follow-up according to quintile of cumulative av	erage
antioxidant consumption in model 3	

	Antioxidant consumption						
	Q1	Q2	Q3	Q4	Q5	P for trend	HR for a SD increment
Men							
Total flavonoid	Ref	1.00 (0.72, 1.39)	0.94 (0.66, 1.34)	0.98 (0.68, 1.40)	0.71 (0.45, 1.13)	0.1553	0.89 (0.76, 1.04)
Anthocyanidins	Ref	0.82 (0.58, 1.15)	1.06 (0.76, 1.47)	0.96 (0.67, 1.37)	0.85 (0.56, 1.30)	0.6471	0.92 (0.79, 1.08)
Isoflavones	Ref	1.53 (1.08, 2.18)	1.22 (0.84, 1.76)	1.31 (0.90, 1.89)	1.61 (1.09, 2.38)	0.0731	1.12 (0.99, 1.26)
Proanthocyanidins	Ref	1.06 (0.77, 1.46)	1.02 (0.72, 1.43)	0.83 (0.58, 1.20)	0.81 (0.54, 1.22)	0.1640	0.92 (0.79, 1.06)
Flavonols	Ref	1.54 (1.12, 2.13)	0.96 (0.66, 1.39)	1.05 (0.72, 1.54)	0.97 (0.62, 1.52)	0.3271	0.88 (0.74, 1.05)
Flavones	Ref	1.06 (0.76, 1.48)	1.09 (0.77, 1.54)	0.95 (0.65, 1.38)	1.07 (0.69, 1.65)	0.9493	0.96 (0.83, 1.11)
Flavanones	Ref	0.85 (0.61, 1.21)	1.29 (0.94, 1.79)	1.03 (0.73, 1.47)	0.95 (0.64, 1.40)	0.8985	0.98 (0.87, 1.11)
Flavan-3-ols	Ref	0.93 (0.66, 1.29)	1.19 (0.86, 1.66)	0.85 (0.59, 1.23)	0.84 (0.57, 1.23)	0.2206	0.92 (0.81, 1.05)
TAC	Ref	1.13 (0.81, 1.57)	1.02 (0.71, 1.45)	0.98 (0.67, 1.44)	0.88 (0.55, 1.40)	0.3967	0.88 (0.75, 1.04)
Women							
Total flavonoid	Ref	0.90 (0.66, 1.23)	0.82 (0.59, 1.13)	0.62 (0.43, 0.89)	0.54 (0.35, 0.83)	0.0015	0.79 (0.68, 0.93)
Anthocyanidins	Ref	0.93 (0.69, 1.25)	0.64 (0.46, 0.90)	0.73 (0.52, 1.04)	0.58 (0.39, 0.86)	0.0054	0.88 (0.77, 1.02)
Isoflavones	Ref	1.01 (0.74, 1.39)	0.75 (0.53, 1.06)	0.88 (0.63, 1.23)	0.89 (0.62, 1.27)	0.4969	0.97 (0.86, 1.10)
Proanthocyanidins	Ref	0.91 (0.67, 1.25)	1.05 (0.78, 1.43)	0.67 (0.47, 0.96)	0.51 (0.34, 0.77)	0.0003	0.80 (0.69, 0.92)
Flavonols	Ref	0.83 (0.61, 1.14)	0.69 (0.49, 0.97)	0.58 (0.40, 0.85)	0.62 (0.41, 0.96)	0.0355	0.92 (0.78, 1.09)
Flavones	Ref	0.81 (0.60, 1.11)	0.75 (0.54, 1.03)	0.55 (0.38, 0.79)	0.57 (0.38, 0.85)	0.0029	0.82 (0.70, 0.96)
Flavanones	Ref	0.74 (0.55, 1.00)	0.57 (0.42, 0.79)	0.58 (0.42, 0.81)	0.58 (0.40, 0.82)	0.0038	0.86 (0.74, 0.99)
Flavan-3-ols	Ref	0.85 (0.62, 1.17)	0.83 (0.60, 1.15)	0.69 (0.48, 0.98)	0.87 (0.61, 1.23)	0.7719	0.96 (0.84, 1.09)
TAC	Ref	0.82 (0.60, 1.12)	0.86 (0.62, 1.19)	0.51 (0.34, 0.75)	0.57 (0.36, 0.89)	0.0039	0.80 (0.67, 0.95)

The multivariable Cox proportional-hazards regression model was adjusted for age, body mass index (BMI), educational level, physical activity, drinking status, smoking status, and dietary fiber intake.

Total flavonoid intake was the sum of anthocyanidins, isoflavones, proanthocyanidins, flavonols, flavones, flavanones, and flavan-3-ols.

Total antioxidant capacity (TAC) was obtained by combining the individual antioxidant capacity of each antioxidant derived from every food item.

STROBE Statement-checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Page number
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	Page 1
		(b) Provide in the abstract an informative and balanced summary of what was	Pages
		done and what was found	2–3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being	Pages
Objectives	3	State specific objectives, including any prespecified hypotheses	Pages
			5–6
Methods	ſ		
Study design	4	Present key elements of study design early in the paper	
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	Page 6
Participants Variables	6 7 2*	 (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants (b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and the number of controls per case Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable 	Pages 6–7 Pages 7–9
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if	Pages 7–9
Bias	9	Describe any efforts to address potential sources of bias	Pages 17–18
Study size	10	Explain how the study size was arrived at	Pages 6–7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	Page 9
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(<i>d</i>) Cohort study—If applicable, explain how loss to follow-up was addressed Case-control study—If applicable, explain how matching of cases and controls was addressed	Page 9

2
3
4
5
6
-
/
8
9
10
11
17
12
13
14
15
16
17
10
10
19
20
21
22
23
21
24
25
26
27
28
29
30
31
27
32
33
34
35
36
37
38
20
39
40
41
42
43
44
45
46
47
4/
48
49
50
51
52
53
51
54 57
55
56
57
58
59
60

		Cross-sectional study—If applicable, describe analytical methods taking	
		account of sampling strategy	
		(<u>e</u>) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	Pages
		eligible, examined for eligibility, confirmed eligible, included in the study, completing	10-14
		follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	Pages
		information on exposures and potential confounders	10-12
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	Page 11
		Case-control study—Report numbers in each exposure category, or summary measures	
		of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	Pages
		their precision (eg, 95% confidence interval). Make clear which confounders were	12-13
		adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity	Page 14
		analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	Page 14
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	Pages
		imprecision. Discuss both direction and magnitude of any potential bias	17–18
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	Pages
		multiplicity of analyses, results from similar studies, and other relevant evidence	14-17
Generalisability	21	Discuss the generalisability (external validity) of the study results	Page 18
Other informatio	n		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	Page 19
-		applicable, for the original study on which the present article is based	-

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Dietary antioxidant consumption and the risk of type 2 diabetes in South Korean adults: A prospective cohort study based on the Health Examinees study

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-065073.R1
Article Type:	Original research
Date Submitted by the Author:	23-Jun-2022
Complete List of Authors:	TAN, LIJUAN; Chung Ang University - Anseong Campus, Department of Food and Nutrition Hwang, Su Bin; Chung-Ang University, Department of Food and Nutrition Jun, Shinyoung; Graduate School of Cancer Science and Policy, Department of Cancer Biomedical Science Joung, Hyojee; Seoul National University, Department of Public Health, Graduate School of Public Health Shin, Sangah; Chung-Ang University, Department of Food and Nutrition
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Diabetes and endocrinology, Nutrition and metabolism, Public health
Keywords:	DIABETES & ENDOCRINOLOGY, EPIDEMIOLOGY, NUTRITION & DIETETICS, PUBLIC HEALTH, STATISTICS & RESEARCH METHODS

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	
Δ	
-	
Э	
6	
7	
8	
0	
9	
10	
11	
12	
12	
15	
14	
15	
16	
17	
17	
١ð	
19	
20	
21	
ר <u>∼</u> ו רר	
22	
23	
24	
25	
25	
26	
27	
28	
29	
20	
30	
31	
32	
33	
24	
34	
35	
36	
37	
20	
38	
39	
40	
41	
יי ⊿ר	
42	
43	
44	
45	
16	
40	
47	
48	
49	
50	
50	
51	
52	
53	
51	
54 55	
55	
56	
57	
58	
50	
59	

1	Dietary antioxidant consumption and the risk of type 2 diabetes in South Korean adults:
2	A prospective cohort study based on the Health Examinees study
3	Li-Juan Tan ^{1*} , Su Bin Hwang ^{1*} , Shinyoung Jun ² , Hyojee Joung ³ , Sangah Shin ^{1§}
4	¹ Department of Food and Nutrition, Chung-Ang University, Gyeonggi-do 17546, South
5	Korea
6	² Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy,
7	Goyang 10408, South Korea
8	³ Department of Public Health, Graduate School of Public Health, Seoul National University,
9	Seoul 08826, South Korea
10	*Co-first authors: These authors contributed equally to this work
11	§Correspondence: Sangah Shin, Department of Food and Nutrition, Chung-Ang University,
12	Gyeonggi-do 17546, South Korea. E-mail: ivory8320@cau.ac.kr; Tel.: +82-31-670-3259;
13	Fax: +82-31-675-1381
14	ORCIDs
15	Li-Juan Tan: <u>https://orcid.org/0000-0002-8970-0884</u>
16	Su Bin Hwang: https://orcid.org/0000-0001-7266-3530
17	Shinyoung Jun: https://orcid.org/0000-0003-2452-4709
18	Hyojee Joung: https://orcid.org/0000-0003-1182-7786
19	Sangah Shin: <u>https://orcid.org/0000-0003-0094-1014</u>

20 Word count: 3,342 words

21 ABSTRACT

Objectives: Antioxidants are common dietary compounds with multiple health benefits. 23 This study aimed to identify the association between dietary antioxidant consumption and 24 the incidence of type 2 diabetes mellitus (T2D, defined using the Korean Diabetes 25 Association criteria) in South Korean adults.

26 Design: Baseline and follow-up data from the Health Examinees (HEXA) study, a large27 scale community-based genomic cohort study conducted in South Korea

28 Setting: A South Korean community

Participants: A total of 20,594 participants, aged 40–79 years, who participated in the baseline and follow-up surveys of the HEXA study were included. After an average of 5 years of follow-up, there were 332 men and 360 women with T2D.

Results: Participants with the highest total flavonoid consumption (Q5) had a lower risk of T2D (men: hazard ratio [HR], 0.63; 95% confidence interval [CI], 0.42–0.93; P for trend = 0.0169]; and women: HR, 0.54; 95% CI, 0.438–0.78; *P* for trend = 0.0001) than those with the lowest consumption (Q1). Dietary total antioxidant capacity was significantly inversely associated with the development of T2D mellitus in women participants alone (HR, 0.58; 95% CI, 0.40–0.83; P for trend = 0.0004). Stratified analyses according to age and body mass index showed that dietary total flavonoid consumption and total antioxidant capacity had a negative association with the development of T2D in women aged > 52 years and women with BMI > 25 kg/m².

41 Conclusions: Dietary flavonoid consumption and total antioxidant capacity were associated
42 with a lower risk of T2D in South Korean adults, especially in women aged > 52 years and

43 overweight. The findings of this study may provide reference data for the modification of
44 dietary guidelines for South Koreans.

45 Strengths and limitations of the study

- 46 This study used a large-scale community-based genomic cohort study conducted in
- 47 South Korea with 5 years of follow-up.
- 48 Stratified analyses were conducted to focus on one certain exposure.
- 49 · Although this study reported a longitudinal relationship between antioxidant
- 50 consumption and diabetes incidence, we could not assess the causality.
- 51 Dietary measurement errors were inevitable due to using self-reported FFQ.
- 52 Keywords: Cohort study, Diabetes, Dietary antioxidant, Flavonoid, Health Examinees
- 53 study, South Korean adults, Total antioxidant capacity

54 INTRODUCTION

Diabetes is a metabolic disease characterized by high blood glucose levels, impaired glucose tolerance, impaired insulin secretion, and insulin resistance.(1, 2) Currently, > 400million people are living with type 2 diabetes (T2D) mellitus worldwide.(3) The prevalence of T2D mellitus increases with age. The 2018 Korean Diabetes Association diabetes fact sheet reported that the prevalence of T2D in the total population aged ≥ 65 years was 29.8%.(4) It is projected that T2D will be the seventh leading cause of death by 2030.(3) Given that T2D is accompanied by various serious complications, including cardiovascular disease, peripheral vascular disease, retinopathy, nephropathy, neuropathy, and recently, sarcopenia, its prevention and treatment are extremely important.(3, 5) Both genetic and environmental factors contribute to the development and progression of T2D mellitus. However, its growing prevalence is the result of result of changing dietary habits and lifestyles observed in modern societies.(6)

Dietary flavonoids, abundant in fruits and vegetables, are a group of naturally occurring polyphenolic compounds.(7, 8) There are seven subgroups of flavonoids: flavonols, flavanones, isoflavones, flavones, flavan-3-ols, anthocyanins, and proanthocyanidins.(9-11) Flavonoids are associated with various health-promoting effects, including antiinflammatory, antihypertensive, anti-obesity, and anti-diabetic.

Previous studies have reported that dietary antioxidants decreased oxidative stress, an important risk factor for T2D, played a key role as anti-inflammatory factors by blocking the nuclear factor kappa-light-chain-enhancer of the activated B (NF-κB) and mitogenactivated protein kinase (MAPK) cell signaling pathways. MAPK pathway was associated with the induction of proinflammatory genes and the promotion of Akt/protein kinase B, an insulin-signaling pathway.(12-15) As a result, antioxidants improve insulin resistance,

which is involved in the pathogenesis of T2D mellitus, by promoting the transportation ofGLUT4 through the regulation of the insulin-signaling pathway.(16, 17)

Previous studies have investigated the correlation between dietary antioxidants and obesity, dyslipidemia, and metabolic syndrome.(18-21) Azad et al. (22) showed that a diet high in antioxidants had protective effects against the development of T2D in the Iranian population. However, few studies have been conducted to determine the association between dietary antioxidant intake and T2D in South Korean populations. In addition, whether there is a dose-response relationship between dietary antioxidants and T2D is unclear. It is pertinent to determine whether a relationship exists between dietary antioxidant intake and T2D in South Korean adults. Moreover, the effect of dietary antioxidants on T2D has not been investigated according to the flavonoid subclasses, antioxidant capacities of flavonoids, or total antioxidant capacity (TAC), which is an index to indicate whole dietary antioxidant content.(23) Therefore, we conducted this study to explore the association between dietary antioxidant and the incidence of T2D by analyzing data from the Health Examinees (HEXA) study.

METHODS			

95 Patient and public involvement

Patients and public were not involved in the design of the study.

97 Study population

This study was based on the baseline and follow-up data from the HEXA study, a largescale community-based genomic cohort study conducted in South Korea. More specific details of the HEXA study design are described elsewhere.(24) A total of 173,357

BMJ Open

participants aged ≥ 40 years were initially included in the baseline survey, which was conducted from 2003 to 2014; 65,642 of these participants were included in the follow-up survey, which was conducted from 2012 to 2016. At baseline, we excluded participants who had T2D mellitus or had no information on fasting plasma glucose or HbA_{1C} levels (n = 41,311) and those with a history of diseases closely related to T2D mellitus (i.e., hyperlipidemia, stroke, transient ischemic attacks, angina pectoris, and myocardial infarction) (n = 3,082). At follow-up, we excluded those with missing information on biomarkers for T2D mellitus (fasting plasma glucose, HbA_{1C}) (n = 11), those who had an implausible energy intake (< 3,349 or \ge 16,743 kJ/day for men and < 2,093 or \ge 14,650 kJ/day for women; n = 630 (25)), and those who were missing values for covariables such as drinking (n = 9) and body mass index (BMI) (n = 5). Ultimately, a total of 20,594 participants (6,327 men and 14,267 women) were included in this study.

113 Dietary assessment and estimation of antioxidant components

Dietary intake was assessed using the self-administered, 106-item, food frequency questionnaire (FFQ) developed for the Korean Genome Epidemiologic Study.(24) Participants reported the frequencies and average portions of food or beverage items consumed during the last year before participating in the HEXA study. The reproducibility and validity of the FFQ have been assessed in a previous study using a reference method by collecting information on 12-day dietary records.(26) The median correlation coefficient for all nutrients was 0.39 between the FFQ and 12-day dietary record, and the researchers concluded that the FFQ could be an acceptable tool for dietary assessment.(26)

In this study, we estimated the participants' intake of antioxidant components using self-reported dietary data linked to the TAC database for common South Korean foods.(11, Dietary TAC and intake of each flavonoid component were expressed as vitamin C equivalent antioxidant capacity (mg VCE/100 g). The intake of individual antioxidant components from a food item was calculated by multiplying the antioxidant component per gram of food item by the total weight in grams of daily intake of this food item. The daily intake of individual total dietary antioxidant components was calculated as the sum of the intake of each antioxidant component from all the food sources reported in the HEXA FFQ data (mg VCE/day). After summing all individual total dietary antioxidant components, we obtained the dietary TAC per person per day.

Total flavonoid intake was classified into seven categories: anthocyanidins (cyanidin, delphinidin, pelargonidin, malvidin, peonidin, and petunidin), isoflavones (daidzein, genistein, and glycitein), proanthocyanidins (proanthocyanidin-dimer, proanthocyanidin-trimer, proanthocyanidin-4-6mers, proanthocyanidin-7-10mers, and proanthocyanidin-polymers), flavonols (quercetin, kaempferol, myricetin, and isorhamnetin), flavones (luteolin and apigenin), flavanones (eriodictyol, hesperetin, and naringenin), and flavan-3-ols (catechin, epicatechin, epigallocatechin, theaflavin, theaflavin-3-gallate, theaflavin-3'-gallate, and theaflavin-3-3-digallate).

Definition of type 2 diabetes

141 T2D was determined in accordance with the definition provided by the Korean Diabetes 142 Association.(28) T2D was defined as a diagnosis by a physician, increased fasting plasma 143 glucose level \geq 6.99 mmol/L (126 mg/dL), or elevated HbA_{1C} level \geq 47.5 mmol/mol (6.5%).

144 Covariables

In the HEXA study, the sociodemographic information of each participant was collected using a questionnaire. Our covariables of interest included age, BMI, level of education (middle school or lower, high school, or college or higher), and health-related Page 9 of 30

BMJ Open

behaviors, such as smoking (current smoker, past smoker, or non-smoker), alcohol consumption (never or current drinker), level of physical activity (inactive or active), and total energy intake (kJ/day). BMI was calculated as the quotient of the body weight (kg) and height (m) squared (kg/m²).(29) Smoking status was categorized into three groups based on the participants' responses to the question, "Have you smoked ≥ 20 packs (400 cigarettes) so far?" Participants who answered "never" were classified as "non-smokers," those who answered "yes" and were still smoking at the time of the survey were classified as "current smokers," and those who answered "yes" but had guit smoking at the time of the survey were classified as "past smokers." Alcohol consumption was classified based on the responses to the following question, "Are you unable to drink or refuse to do so for religious or other reasons?" in the HEXA survey. In the present analysis, we classified participants who replied "yes" as "alcohol non-drinkers;" the rest were classified as "alcohol drinkers." Regarding physical activity levels, participants were classified as "active" if they reported that they engaged in exercises resulting in sweating for ≥ 30 min twice a week.(30)

162 Statistical analyses

All statistical analyses were sex-stratified and performed using Statistical Analysis Systems software version 9.4 (SAS Institute, Cary, NC, USA). Statistical significance was set at P < 0.05. Continuous variables were presented as means \pm standard deviations (SD), and the difference between them in the outcome groups was tested using a generalized linear model (GLM). The categorical variables were presented as numbers (percentages), and the difference between them in the outcome groups was tested using the chi-square test. A multivariable Cox proportional-hazards regression model was used to estimate the hazard ratios (HRs) and 95% confidence intervals (CIs) for T2D after adjusting for categorical (educational level, current drinking status, current smoking status, and physical activity) and

continuous (age, BMI, and energy intake) covariables. The lowest quintile (Q1) of TAC or flavonoid intake served as a reference group. The median value of each quintile group was modeled as a continuous variable in the Cox model to test the trend. We also estimated the HRs and 95% CIs for an SD increment in dietary TAC and flavonoid intake and conducted stratified analyses according to BMI, age, smoking status, and alcohol consumption. The strata indices for continuous variables (BMI and age) were median value referred to a previous study.(31)

RESULTS

A total of 20,594 individuals (aged 40–79 years) were included in this study. After an average of 5 years of follow-up, the incidence of T2D mellitus was 5.25% in men and 2.52%in women. The baseline general characteristics of participants according to quintiles of total flavonoid intake are shown in Table 1. Among both men and women participants, the highest consumption group (Q5) included more non-smokers, more participants with higher education levels, and more participants who engaged in physical activity (all *p* value < 0.05).

100 Table 1. Dasenne general characteristics of participants by total navonoid consumption	186	Table 1. Baseline genera	l characteristics of r	participants by to	tal flavonoid	consumption
--	-----	--------------------------	------------------------	--------------------	---------------	-------------

		Aı	ntioxidant consumpt	ion		
	Q1	Q2	Q3	Q4	Q5	P-value
Men, n=6327						
Cases / person-years	80 / 5103.00	74 / 5060.60	60 / 4995.40	71 / 5110.50	47 / 5182.60	
Age, years	54.45 ± 8.64	54.97 ± 8.51	54.20 ± 8.37	54.55 ± 8.32	54.89 ± 7.97	0.0758
BMI, kg/m ²	24.07 ± 2.74	24.19 ± 2.73	24.21 ± 2.71	24.31 ± 2.65	24.32 ± 2.58	0.1348
Smoking status						<.0001
Never	357 (28.22%)	404 (31.91%)	395 (31.27%)	373 (29.56%)	426 (33.84%)	
Past	451 (35.65%)	516 (40.76%)	549 (43.47%)	586 (46.43%)	575 (45.67%)	
Current	457 (36.13%)	346 (27.33%)	319 (25.26%)	303 (24.01%)	258 (20.49%)	
Educational level						<.0001
Under middle school	382 (30.32%)	297 (23.52%)	244 (19.40%)	186 (14.77%)	135 (10.69%)	
High school	503 (39.92%)	521 (41.25%)	492 (39.11%)	504 (40.03%)	422 (33.41%)	
College or above	375 (29.76%)	445 (35.23%)	522 (41.49%)	569 (45.19%)	706 (55.9 0 %)	
Physical activity	· · · ·	()	, ,	. ,	· · · · ·	<.0001
Inactive	1070 (84.65%)	1024 (80.95%)	999 (79.03%)	976 (77.28%)	896 (70.94%)	
Active	194 (15.35%)	241 (19.05%)	265 (20.97%)	287 (22.72%)	367 (29.06%)	
Current alcohol consumption	. ()	(,				0.2578
No	313 (24.74%)	337 (26.62%)	342 (27.04%)	340 (26.86%)	364 (28.77%)	
Yes	952 (75.26%)	929 (73.38%)	923 (72.96%)	926 (73.14%)	901 (71.23%)	
	$1624.56 \pm$	$1764.89 \pm$	$1842.23 \pm$	1926.29 ±	2110.85 ±	
l otal energy intake, kcal/day	401.00	417.55	431.57	442.88	499.16	<.0001
Carbohydrate, E%	72.51 ± 7.71	71.63 ± 7.10	71.00 ± 7.33	70.49 ± 6.88	70.07 ± 7.09	<.0001
Protein, E%	12.99 ± 2.41	13.33 ± 2.12	13.52 ± 2.25	13.79 ± 2.26	13.97 ± 2.37	<.0001
Fat, E%	14.50 ± 5.73	15.04 ± 5.33	15.47 ± 5.48	15.73 ± 5.07	15.96 ± 5.15	<.0001
Dietary fiber intake, g/day	3.84 ± 1.12	4.72 ± 1.24	5.28 ± 1.33	5.91 ± 1.50	7.42 ± 2.14	<.0001
Total flavonoid, mg VCE/d	58.16 ± 15.38	97.92 ± 10.58	135.76 ± 11.78	185.20 ± 18.17	299.44 ± 77.77	<.0001
Anthocyanidins, mg VCE/d	11.73 ± 5.14	20.53 ± 6.74	28.17 ± 9.84	37.83 ± 13.24	62.90 ± 28.55	<.0001
Isoflavones, mg VCE/d	8.63 ± 4.74	11.56 ± 6.30	12.24 ± 6.53	13.16 ± 6.86	15.96 ± 9.48	<.0001
Proanthocyanidins, mg VCE/d	23.59 ± 9.01	41.24 ± 10.74	59.17 ± 14.68	80.74 ± 21.27	135.10 ± 47.83	<.0001
Flavonols, mg VCE/d	7.50 ± 4.38	10.58 ± 6.08	13.18 ± 6.82	16.78 ± 9.23	24.31 ± 16.28	<.0001

2								
3		Flavones, mg VCE/d	0.29 ± 0.15	0.45 ± 0.18	0.60 ± 0.22	0.79 ± 0.29	1.19 ± 0.49	<.0001
4		Flavanones, mg VCE/d Flavan-3-ols, mg VCE/d	1.80 ± 1.52 4.63 ± 4.40	3.20 ± 1.96 10.35 ± 9.70	4.56 ± 2.74 17.84 ± 15.94	6.01 ± 3.76 29.88 ± 23.91	10.29 ± 6.33 49.69 ± 37.80	<.0001 <.0001
5		TAC, mg VCE/d	113.96 ± 32.02	185.25 ± 30.65	252.44 ± 37.18	343.26 ± 51.65	542.84 ±	<.0001
6							149.10	
7		Women, n=14267						
8		Cases / person-years	89 / 11021.20	82 / 11303.30	76 / 11322.20	59 / 11526.80	54 / 11650.80	0.0000
0		Age, years	52.64 ± 8.04	52.31 ± 7.84	52.19 ± 7.68	52.01 ± 7.23	52.18 ± 7.02	0.0832
9		BMI, kg/m ²	23.44 ± 3.05	23.40 ± 2.93	23.32 ± 2.85	23.27 ± 2.80	23.19 ± 2.72	0.8879
10		Never	2746 (96 32%)	2784 (07 72%)	2788 (07 82%)	2806 (08 30%)	2768 (07 23%)	<.0001
11		Past	31 (1.09%)	21 (0 74%)	24 (0 84%)	21 (0 74%)	35 (1 23%)	
10		Current	74 (2.60%)	44 (1.54%)	38 (1.33%)	25 (0.88%)	44 (1.55%)	
12		Educational level	, (,)	((0.000,0)	(1007,7)	<.0001
13		Under middle school	1150 (40.41%)	977 (34.33%)	901 (31.74%)	760 (26.73%)	625 (22.01%)	
14		High school	1236 (43.43%)	1305 (45.85%)	1297 (45.69%)	1368 (48.12%)	1341 (47.23%)	
17		College or above	460 (16.16%)	564 (19.82%)	641 (22.58%)	715 (25.15%)	873 (30.75%)	
15		Physical activity						<.0001
16		Inactive	2449 (85.96%)	2355 (82.63%)	2294 (80.46%)	2239 (78.48%)	2120 (74.49%)	
17		Active	400 (14.04%)	495 (17.37%)	557 (19.54%)	614 (21.52%)	726 (25.51%)	0.0000
17		Current alcohol consumption	1000 ((((00)))	10(7 ((0.030))	1022 ((7.720))	1000 ((7.559/)	10((((0.010/)	0.2756
18		N0 Vac	1900(66.60%)	196/(68.92%)	1932(67.72%)	1928(67.55%)	1966 (68.91%)	
19		ies	935 (55.40%)	007 (31.0070) 1577 21 ±	921(52.26%) 1650.22 ±	920(32.43%)	$1047.02 \pm$	
20		Total energy intake, kcal/day	392 78	420.56	437.45	460.69	497.29 497.29	<.0001
20		Carbohydrate F%	71.87 ± 8.06	7125 + 793	70.67 ± 7.63	70.30 + 7.36	69.97 ± 7.30	< 0001
21		Protein E%	13.39 ± 2.47	13.59 ± 2.42	13.76 ± 2.38	13.89 ± 2.33	14.01 ± 2.43	<.0001
22		Fat, E%	14.74 ± 6.03	15.16 ± 5.91	15.57 ± 5.65	15.81 ± 5.45	16.02 ± 5.33	<.0001
22		Dietary fiber intake, g/day	3.80 ± 1.11	4.61 ± 1.21	5.13 ± 1.30	5.97 ± 1.52	7.38 ± 2.10	<.0001
23		Total flavonoid, mg VCE/d	71.44 ± 17.73	116.97 ± 11.49	159.39 ± 13.42	213.52 ± 19.24	333.98 ± 94.24	<.0001
24		Anthocyanidins, mg VCE/d	15.24 ± 6.21	25.89 ± 8.12	35.35 ± 11.02	46.82 ± 14.12	74.77 ± 32.62	<.0001
25		Isoflavones, mg VCE/d	8.63 ± 4.48	10.67 ± 5.74	11.70 ± 6.42	13.28 ± 7.25	15.09 ± 9.07	<.0001
25 26		Proanthocyanidins, mg VCE/d	31.11 ± 10.57	52.62 ± 11.64	73.61 ± 15.79	101.51 ± 21.34	161.00 ± 54.19	<.0001
20		Flavonols, mg VCE/d	8.09 ± 4.63	11.18 ± 5.92	13.54 ± 7.50	16.94 ± 9.30	24.05 ± 16.19	<.0001
27		Flavones, mg VCE/d	0.35 ± 0.18	0.55 ± 0.23	0.71 ± 0.28	0.89 ± 0.34	1.31 ± 0.62	<.0001
28		Flavanones, mg VCE/d	2.56 ± 1.91	4.37 ± 2.55	5.98 ± 3.19	7.70 ± 3.84	12.62 ± 8.04	<.0001
20		Flavan-3-ols, mg VCE/d	5.45 ± 4.85	11.68 ± 10	18.51 ± 14.74	26.38 ± 20.18	45.13 ± 36.98	<.0001
30		TAC (mg VCE/d)	135.61 ± 36.42	216.26 ± 31.08	289.3 ± 38.71	380.21 ± 51.07	587.77 ± 176.53	<.0001
31 32 33 34 35	187 188 189 190 191	Values are presented as generalized linear model shown in bold. Total flavonoid intake wa flavanones, and flavan-3-	means \pm stan for continuou as the sum of ols.	dard deviation s variables an anthocyanidir	ns or numbers d Chi-square ns, isoflavones	s (%). <i>P</i> -value test for catego s, proanthocya	es were calcula orical variables nidins, flavono	ated using a $p < 0.05$ are ls, flavones,
36 37	192 193 194	antioxidant derived from	y (TAC) was every food iter	m. BMI: body	mass index, V	CE: vitamin (C equivalents.	city of each

Table 2 shows the range of dietary antioxidant intake by quintiles. The associations between dietary antioxidant intake and the HRs of T2D mellitus are presented in Table 3. All participants with the highest total dietary flavonoid intake (Q5) had a lower risk of developing T2D mellitus (men: HR, 0.63; 95% CI, 0.42-0.93 and women: HR, 0.54; 95% CI, 0.38–0.78; both P for trend < 0.05) than those with the lowest flavonoid intake (Q1). Consumption of more flavonols and proanthocyanidins had a protective effect against the development of T2D mellitus in men participants, and consumption of anthocyanidins, proanthocyanidins, flavonols, flavones, and flavanones showed a protective effect against T2D mellitus in women participants (all P for trend < 0.05). After estimation of HRs

according to quintiles of TAC, the Q5 group of women participants still showed a lower risk
of T2D mellitus (HR, 0.58; 95% CI, 0.40–0.83; *P* for trend = 0.0004) than the Q1 group.
However, although the TAC Q5 group of men participants did not show any significant
association with T2D mellitus, they had an approximately 15% reduced risk of developing
T2D mellitus for an SD increment in TAC (HR, 0.85; 95% CI, 0.75–0.96). After further
adjustment for energy percent from carbohydrate, fat, and protein and dietary fiber intake,
the results remained largely unchanged (Supplementary Table S1 and Table S2).

- Table 2. Range of each dietary antioxidant intake by quintile

			Antioxidant consumption		
	Q1	Q2	Q3	Q4	Q5
Men)			
Total flavonoid (mg VCE/d)	58 16 (13 07 - 80 30)	97 92 (80 32 - 116 38)	135.76 (116.38 -	185.20 (156.80 -	299.44 (221.46 -
Total navonola (ing VeL/a)	50.10 (15.07 00.50)	71.52 (00.52 110.50)	156.75)	221.23)	1150.79)
Anthocyanidins (mg VCE/d)	9.69 (0.75 – 14.14)	17.94 (14.14 – 21.97)	26.58 (21.97 - 31.57)	38.62 (31.57 - 46.86)	68.33 (46.89 - 378.83)
Isoflavones (mg VCE/d)	5.07 (0.10 - 6.80)	8.07 (6.80 - 9.35)	10.78 (9.35 – 12.22)	14.16 (12.22 – 16.57)	23.48 (16.57 - 94.05)
Proanthocyanidins (mg VCE/d)	21.28 (1.43 - 31.14)	39.10 (31.15 - 47.5)	56.93 (47.52 - 67.33)	81.94 (67.35 - 99.38)	140.58 (99.41 - 723.02)
Flavonols (mg VCE/d)	5.25 (0.69 - 7.30)	8.81 (7.30 – 10.32)	11.89 (10.33 – 13.65)	16.14 (13.65 – 19.27)	30.25 (19.27 - 231.83)
Flavones (mg VCE/d)	0.23 (0.02 - 0.33)	0.40 (0.33 - 0.48)	0.57 (0.48 – 0.67)	0.79 (0.67 – 0.93)	1.32 (0.93 – 4.37)
Flavanones (mg VCE/d)	1.03 (0.00 – 1.77)	2.43 (1.77 – 3.09)	3.93 (3.09 – 4.89)	6.16 (4.89 – 7.80)	12.33 (7.80 - 62.77)
Flavan-3-ols (mg VCE/d)	2.98 (0.10 - 4.91)	6.82 (4.92 - 8.87)	11.79 (8.87 – 15.54)	23.54 (15.56 - 41.05)	67.26 (41.06 – 252.89)
	111.21 (21.57 –	182.54 (150.45 -	251.21 (215.61 -	343.27 (289.98 -	549.53 (406.14 -
TAC (mg VCE/d)	150.38)	215.60)	289.93)	406.09)	1811.29)
Women					
T-t-1 flammer i d (ma WOE/d)	71 44 (7 28 06 65)	116.97 (96.66 - 136.81)	159.39 (136.81 -	213.52 (183.20 -	333.98 (250.59 -
Total havonoid (mg vCE/d)	/1.44 (7.28 – 96.65)	110.97 (90.00 - 130.81)	183.19)	250.56)	1263.46)
Anthocyanidins (mg VCE/d)	12.85 (0.44 – 18.47)	23.33 (18.48 - 28.19)	34.01 (28.19 - 40.07)	47.64 (40.07 – 56.64)	80.24 (56.65 - 372.08)
Isoflavones (mg VCE/d)	4.83 (0.43 - 6.50)	7.73 (6.50 - 8.96)	10.31 (8.96 – 11.72)	13.67 (11.72 – 16.02)	22.83 (16.02 - 85.19)
Proanthocyanidins (mg	20.00 (2.21 41.00)	50.74 (41.01 (0.02)	70 48 ((0.82 84.04)	101 70 (04 05 101 70)	166 05 (101 50 - 600 15)
VCE/d)	28.89 (2.21 - 41.00)	50.74 (41.01 - 60.82)	/2.48 (60.83 - 84.94)	101.70 (84.95 – 121.70)	100.05 (121.75 - 055.15)
Flavonols (mg VCE/d)	5.72 (1.00 - 7.65)	9.09 (7.65 – 10.55)	12.11 (10.55 – 13.81)	16.26 (13.81 – 19.38)	30.62 (19.38 - 195.47)
Flavones (mg VCE/d)	0.28 (0.01 - 0.39)	0.48 (0.39 - 0.57)	0.67 (0.57 – 0.77)	0.89 (0.77 – 1.05)	1.50 (1.05 – 7.62)
Flavanones (mg VCE/d)	1.58 (0.00 - 2.58)	3.44 (2.58 - 4.35)	5.38 (4.35 - 6.55)	7.95 (6.55 – 9.73)	14.88 (9.73 – 132.99)
Flavan-3-ols (mg VCE/d)	3.82 (0.25 - 6.06)	8.18 (6.06 - 10.41)	13.17 (10.41 – 16.31)	21.85 (16.31 - 30.72)	60.14 (30.72 - 376.53)
TAC	132.65 (13.04 -	214.39 (178.99 -	287.62 (248.74 -	380.46 (328.94 -	594.04 (442.54 -
IAU	178.98)	248.73)	328.90)	442.53)	2240.46)

BMJ Open

60

Flavan-3-ols

TAC

0.83 (0.60, 1.13)

0.82 (0.60, 1.11)

Ref

Ref

0.79 (0.57, 1.08)

0.86 (0.64, 1.17)

212 Values were presented as mean (min-max). TAC: Total antioxidant capacity, VCE: vitamin C equivalents.

213 214

> HR for an SD Q4 Q1 Q2 Q3 05 P for trend increment Men Total flavonoid Ref 0.98 (0.71, 1.34) 0.90 (0.64, 1.26) 0.91 (0.65, 1.27) 0.63 (0.42, 0.93) 0.0169 0.85 (0.75, 0.97) 0.87 (0.77, 0.99) Anthocyanidins 0.79 (0.56, 1.11) 0.99 (0.72, 1.36) 0.86 (0.62, 1.20) 0.71 (0.50, 1.03) 0.1167 Ref Isoflavones Ref 1.45 (1.03, 2.06) 1.12 (0.78, 1.60) 1.19 (0.83, 1.71) 1.36 (0.94, 1.97) 0.3151 1.05 (0.94, 1.17) Proanthocyanidins 1.04 (0.76, 1.44) 0.97 (0.70, 1.36) 0.77 (0.54, 1.09) 0.72 (0.50, 1.05) 0.0247 0.88 (0.77, 0.99) Ref Flavonols 1.49 (1.08, 2.05) Ref 0.90 (0.63, 1.30) 0.97 (0.68, 1.38) 0.82 (0.56, 1.19) 0.0381 0.84 (0.73, 0.97) Flavones Ref 1.01 (0.73, 1.41) 1.01 (0.72, 1.41) 0.84 (0.59, 1.20) 0.85 (0.59, 1.22) 0.2322 0.90 (0.80, 1.01) Flavanones 0.83 (0.59, 1.17) 1.23 (0.89, 1.68) 0.94 (0.67, 1.31) 0.82 (0.57, 1.18) 0.3313 0.94 (0.83, 1.06) Ref Flavan-3-ols Ref 0.89 (0.64, 1.24) 1.12 (0.81, 1.55) 0.79 (0.55, 1.12) 0.75 (0.52, 1.08) 0.0744 0.90 (0.79, 1.01) TAC 1.08 (0.78, 1.49) 0.73 (0.50, 1.06) 0.0448 0.85 (0.75, 0.96) 0.95 (0.68, 1.33) 0.87 (0.62, 1.24) Ref Women Total flavonoid 0.90 (0.66, 1.22) 0.82 (0.60, 1.12) 0.61 (0.44, 0.87) 0.54 (0.38, 0.78) 0.0001 0.80 (0.70, 0.90) Ref Anthocyanidins Ref 0.91 (0.68, 1.23) 0.63 (0.45, 0.87) 0.71 (0.52, 0.99) 0.56 (0.39, 0.79) 0.0006 0.85 (0.75, 0.97) Isoflavones 0.98 (0.71, 1.34) 0.81 (0.58, 1.13) 0.78 (0.56, 1.10) 0.1353 0.92 (0.82, 1.04) 0.71 (0.51, 0.99) Ref Proanthocyanidins Ref 0.90 (0.66, 1.23) 1.04 (0.77, 1.41) 0.66 (0.47, 0.93) 0.50 (0.34, 0.72) <.0001 0.79 (0.70, 0.90) Flavonols 0.83 (0.61, 1.12) 0.68 (0.49, 0.94) 0.57 (0.41, 0.80) 0.61 (0.43, 0.86) 0.0040 0.88 (0.77, 1.00) Ref Flavones Ref 0.81 (0.60, 1.10) 0.74 (0.54, 1.01) 0.54 (0.38, 0.76) 0.56 (0.39, 0.79) 0.0003 0.81 (0.71, 0.93) Flavanones Ref 0.73 (0.54, 0.98) 0.56 (0.41, 0.77) 0.57 (0.41, 0.78) 0.54 (0.39, 0.76) 0.0005 0.83 (0.73, 0.95)

0.93 (0.82, 1.05)

0.81 (0.71, 0.92)

0.64 (0.45, 0.90)

0.51 (0.36, 0.73)

0.79 (0.57, 1.10)

0.58 (0.40, 0.83)

0.3681

0.0004

 Results are presented as the hazard ratio (HR) for a standard deviation (SD) increment in dietary antioxidant capacity using a cox model. The multivariable Cox proportional hazards regression model was adjusted for age, body mass index (BMI), educational level, physical activity, drinking status, smoking status, and total energy intake. Total flavonoid intake was the sum of anthocyanidins, isoflavones, proanthocyanidins, flavonols, flavones, flavanones, and flavan-3-ols. Total antioxidant capacity (TAC) was obtained by combining the individual antioxidant capacity of each antioxidant derived from every food item. We also performed stratified analyses according to age, BMI, drinking status for both sexes, and smoking status for men participants. Figure 1 shows the HRs of T2D mellitus in the Q5 and Q1 groups according to baseline age, baseline BMI, and alcohol drinking status in the HEXA study. There was almost no significant association between T2D mellitus and dietary intake of antioxidant components in men participants. However, total flavonoid intake and dietary TAC showed a protective effect against the development of T2D mellitus in women participants who were aged > 52 years, had a BMI \ge 25 kg/m², and regardless of alcohol consumption. Q. Discussion In this study, we discovered that dietary total flavonoid consumption and TAC are both associated with a reduced risk of developing T2D mellitus. After further analysis stratified

according to age, and BMI, we found that dietary total flavonoid consumption and TAC had
a protective effect against the development of type 2 diabetes mellitus in women participants
who were overweight or aged > 52 years.

Oxidative stress, which is an imbalance between the production of reactive oxygen species (free radicals) and antioxidant defense mechanism, is a risk factor for T2D.(17) Previous studies have shown that oxidative stress impairs the secretion of insulin by pancreatic beta cells and interferes with the insulin signaling pathway, thereby accelerating the development and progression of T2D by increasing insulin resistance.(2, 3, 6, 32, 33)

Page 15 of 30

BMJ Open

Oxidative stress can be regulated by antioxidants, which react with reactive oxygen species.(34) The consumption of dietary flavonoids has been shown to be associated with lower incidences of T2D. Several previous studies have indicated that flavonoids decrease plasma glucose levels and improve lipid profile, insulin secretion, and insulin resistance, factors which are implicated in the development of T2D.(2, 3, 8, 35) In a previous study, higher flavonol intake was associated with a 26% lower incidence of T2D.(36)(35) In addition, the authors observed a marginally significant inverse association between flavan-3-ol intake and the risk of T2D, but there was no association with anthocyanin intake. (36)(35) Knekt et al.(37) reported a marginally significant inverse association between the intake of the flavonols quercetin, and myricetin, but not kaempferol, and the incidence of T2D in Finnish men and women. Quercetin, in particular, is known to decrease plasma glucose concentration, improve insulin concentration, preserve the integrity of pancreatic beta cells, alleviate T2D symptoms, and reduce hepatic gene expression in streptozotocin-induced diabetic models.(38)-Flavan-3-ol and isoflavone intake is associated with a reduced risk of T2D and improved insulin resistance and serum insulin concentrations.(39) Dietary flavone intake is negatively associated with systolic blood pressure, triglyceride level, triglyceride/high-density lipoprotein-cholesterol level, and homeostatic model assessment of insulin resistance. Flavone intake may have some beneficial effects in the reduction of the prevalence of T2D in South Korean women.(8) Consumption of foods rich in anthocyanins, particularly blueberries, apples, and pears, is also inversely associated with the risk of T2D in the United States.(40)

A key potential mechanism for the protective effect of flavonoids against T2D is the protection of tissues from free oxygen radicals and lipid peroxidation through their antioxidant activity.(41) In addition, anti-inflammatory functions, improvement of

endothelial functions, reduction of blood cholesterol concentration, and nicotinamide adenine dinucleotide phosphate oxidase activity are also associated with a reduced risk of T2D mellitus.(41) Flavonoids are known to interact with molecular targets and affect NFκB and MAPK signaling pathways.(42) Furthermore, flavonoids modulate postprandial glucose levels by reducing the activities of digestive enzymes (a-amylase and a-glucosidase), decreasing the active transport of glucose across the intestinal brush border membrane, and inhibiting glucose transporters.(32) Antioxidant-rich fruits and vegetables contain relatively high fiber content, which can influence the beneficial effects of antioxidants against T2D.(43) Furthermore, it has been reported that flavonoids inhibit α -glucosidase activity to alleviate hyperglycemia.(44, 45)

The effect of each type of flavonoid intake on the risk of T2D varies by sex. In this study, there was a correlation between anthocyanidin and proanthocyanidin intake and the risk of developing T2D in men. However, there was a greater correlation between the risk of T2D and intake of flavonoids, such as anthocyanidins, proanthocyanidins, flavonols, flavones, and flavanones, in women than in men. These sex-specific results are often seen in other phytochemical-related studies. In a previous study conducted using 2008–2011 data from the Korea National Health and Nutrition Examination Survey, a high intake of flavonoids did not reduce the incidence of obesity and abdominal obesity in men but significantly reduced obesity (18%) in women. In addition, high flavonoid intake was reported to reduce the incidence of abdominal obesity (19%) in that study. (2, 46, 47) The variations in these results appear to be due to differences between the dietary intake patterns of South Korean men and women. Sex-specific dietary patterns have been reported in previous studies; namely, men consume the recommended amount of vegetables more than women, whereas women consume the recommended amount of fruit more than men.(48) In

Page 17 of 30

BMJ Open

addition, women generally consume higher amounts of dietary antioxidants than men. (2, 49) Higher intake of dietary antioxidants can induce high plasma concentrations of antioxidants and more beneficial effects on preventing development of T2D. Furthermore, gonadal hormones (menopausal estrogen and testosterone) have been implicated in sex-specific differences in glucose homeostasis.(50) Healthy women have lower skeletal muscle mass, higher adipose tissue mass, more circulating free fatty acids, and higher intramyocellular lipid content than men of the same age. These are all factors that could promote increased insulin resistance in women compared with men.(50)

Various factors, such as age and lifestyle, are known to contribute to the development and progression of T2D.(17) The prevalence of T2D in South Koreans increases rapidly with age.(4) Unhealthy lifestyle habits, such as smoking, excessive alcohol consumption, and inactivity, are known to contribute to the development of diabetes. (3, 51) We found that men with T2D were older and more likely to be current drinkers and current smokers than those without diabetes. However, our stratified analysis showed that there was no correlation between these factors except for current alcohol consumption. On the other hand, women with T2D were significantly older and had significantly higher BMI than those without diabetes. Furthermore, the stratified analysis showed that antioxidant consumption was inversely related to the HR of T2D in older women (> 52 years), women with a BMI > 25 kg/m^2 , regardless of alcohol consumption. Although it is difficult to fully explain these variations in South Korean adults, these findings suggest that high antioxidant intake may be related to a decreased risk of T2D, especially in women with specific lifestyle habits.

314 Strengths and limitations

The main strength of this study was that it was conducted using a large-scale community-based genomic cohort study with 5 years of follow-up on average. Stratified

analyses were conducted in the current study to focus on one certain exposure. This study had some limitations. First, although this study reported a longitudinal relationship between dietary antioxidant consumption and T2D incidence, we did not assess the causality. Second, we obtained dietary information and information on the intake of antioxidant components using self-reported FFQ; thus, dietary measurement errors were inevitable. However, the 106-item FFQ has been previously verified.(26) In addition, further studies are needed to measure the flavonoid concentration to verify the data. Third, we did not quantify the amount of alcohol consumption and smoking. Nevertheless, we found no association between smoking status and T2D after stratification analyses. Dietary antioxidants showed a protective effect against the development of T2D only in women who were non-drinkers.

327 Conclusions

The findings of this large-scale prospective cohort study suggest that dietary antioxidant consumption is associated with a lower risk of T2D in South Korean adults. The findings of this study can serve as a reference or guide for the modification of food intake recommendations in dietary guideline policies in South Korea. However, further studies are needed to validate the results of this study.

Declarations

335 Ethics approval and consent to participate

All participants voluntarily signed an informed written consent form before enrollment. This study was performed in accordance with the guidelines specified in the Declaration of Helsinki, and the study protocol was approved by the local Institutional Review Board (IRB)

2		
3 4	339	of the Ethics Committee of the Korean Genome and Epidemiology Study of the Korea
5 6 7	340	National Institute of Health (IRB no. 2014-08-02-3C-A).
8 9 10	341	
11 12	342	Consent for publication
13 14 15	343	Not applicable.
16 17 18	344	
19 20 21	345	Availability of data and materials
22 23 24	346	The data that support the findings of this study are available from the National
25 26	347	Genome Research Institute, Korea Centers for Disease Control and Prevention. How
27 28 29	348	ever, restrictions apply to the availability of these data, which were used under lice
30 31	349	nse for this study, and as such are not publicly available. Data are however availa
32 33	350	ble from the authors upon reasonable request and with permission of the National
34 35 36	351	Genome Research Institute, Korea Centers for Disease Control and Prevention.
37 38	352	
39 40 41 42	353	Competing interests
43 44 45	354	The authors declare that they have no competing interests.
46 47 48	355	
49 50 51	356	Funding
52 53	357	This research was supported by the National Research Foundation of Korea (NRF) grant
54 55 56	358	funded by the Korea government (MSIT) (No.2020R1C1C1014286). MSIT: Ministry of
57 58	359	Science and ICT. The study sponsor/funder was not involved in the design of the study; the
59 60		18

collection, analysis, and interpretation of data; writing the report; and did not impose any
restrictions regarding the publication of the report. This research was supported by the
Chung-Ang University Young Scientist Scholarship (CAYSS) in 2021.

365 Authors' contributions

S.S. supervised the project. S.S. contributed to the conceptualization or design of this
study. S.J. and H.J. were contributed to establish the antioxidants database. L.J.T
conducted the formal analysis. S.S. verified and validated the outcomes. L.J.T and S.B.H.
co-wrote the first draft of the manuscript. S.J. and H.J. reviewed and revised the article
critically. All authors approved the final version of the article for publication. S.S. and
L.J.T had full access to all the data in the study and take full responsibility for the integrity
of the data and accuracy of the data analysis.

374 Acknowledgments

This study was performed using data from the HEXA study, which was suppor ted by the National Genome Research Institute, Korea Centers for Disease Control and Prevention.

1 2 3 4	379	References
5 6 7	380	1. Bacanli M., Dilsiz S. A., Başaran N., Başaran A. A. Effects of phytochemicals against
8 9	381	diabetes. Advances in Food and Nutrition Research 2019; 89: 209-238.
10 11 12	382	2. Yeon JY, Bae YJ, Kim EY, Lee EJ. Association between flavonoid intake and diabetes
12 13 14 15 16 17 18 19	383	risk among the Koreans. Clin Chim Acta 2015; 439: 225-230.
	384	3. Quansah DY, Ha K, Jun S, et al. Associations of dietary antioxidants and risk of type 2
	385	diabetes: data from the 2007–2012 Korea National Health and Nutrition Examination
20 21	386	Survey. Molecules 2017; 22(10): 1664.
22 23	387	4. Kim BY, Won JC, Lee JH, et al. Diabetes Fact Sheets in Korea, 2018: An Appraisal of
24 25	388	Current Status. Diabetes Metab J 2019; 43(4): 487-494.
26 27 28	389	5. Kim DH, Yu TY. Diabetes and Sarcopenia. J Korean Diabetes 2017; 18(4): 239-247.
29 30	390	6. Burton-Freeman B., Brzeziński M., Park E., et al. A selective role of dietary
31 32	391	anthocyanins and flavan-3-ols in reducing the risk of type 2 diabetes mellitus: a review
33 34 25	392	of recent evidence. Nutrients 2019; 11(4): 841.
35 36 37	393	7. Girish Sharma, Dhan Prakash, Charu Gupta, Phytochemicals of nutraceutical
38 39	394	importance: do they defend against diseases, in Phytochemicals of nutraceutical
40 41	395	importance, Prakash D. and Sharma G., Editors. 2014, CABI, Nosworthy Way. p. 1-24.
42 43 44	396	10.1079/9781780643632.0001.
45 46	397	8. Oh JS, Kim H, Vijayakumar A, et al. Association of dietary flavonoid intake with
47 48	398	prevalence of type 2 diabetes mellitus and cardiovascular disease risk factors in Korean
49 50 51 52	399	women aged≥ 30 years. J Nutr Sci Vitaminol (Tokyo) 2017; 63(1): 51-58.
52 53 54	400	9. Kawser Hossain M, Abdal Dayem A, Han J, et al. Molecular mechanisms of the anti-
55 56	401	obesity and anti-diabetic properties of flavonoids. Int J Mol Sci 2016; 17(4): 569.
57 58 59	402	10. Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci 2016; 5: e47.
60		20

2
2
4
5
6
7
8
9
10
11
12
12
13
14
15
16
17
18
19
20
21
22
22
20
24
25
26
27
28
29
30
31
32
33
24
24
35
36
37
38
39
40
41
42
43
ΔΛ
44
45
46
47
48
49
50
51
52
53
54
54
55
50
57
58
59
60

1

403 11. Jun S., Shin S., Joung H. Estimation of dietary flavonoid intake and major food sources
404 of Korean adults. Br J Nutr 2016; 115(3): 480-489.

405 12. Jafari Azad B., Yaseri M., Daneshzad E., Koohdani F. Interaction between Apo A-II 406 265T>C polymorphism and dietary total antioxidant capacity on some anthropometric 407 indices and serum lipid profile in patients with type 2 diabetes mellitus. J Nutr Sci 2021; 408 10: e9.

- 409 13. Qi S., Xin Y., Guo Y., et al. Ampelopsin reduces endotoxic inflammation via repressing
 410 ROS-mediated activation of PI3K/Akt/NF-kappaB signaling pathways. Int
 411 Immunopharmacol 2012; 12(1): 278-87.
- 412 14. Arulselvan P., Fard M. T., Tan W. S., et al. Role of Antioxidants and Natural Products
 413 in Inflammation. Oxid Med Cell Longev 2016; 2016: 5276130.
- 414 15. Ramachandran V., Saravanan R. Glucose uptake through translocation and activation of
 - GLUT4 in PI3K/Akt signaling pathway by asiatic acid in diabetic rats. Hum Exp Toxicol
 2015; 34(9): 884-93.
 - 417 16. Li SS, Wu J, Chen LG, et al. Biogenesis of C-glycosyl flavones and profiling of
 418 flavonoid glycosides in lotus (Nelumbo nucifera). PLoS One 2014; 9(10): e108860.
 - 419 17. Halim M., Halim A. The effects of inflammation, aging and oxidative stress on the
 - 420 pathogenesis of diabetes mellitus (type 2 diabetes). Diabetes & Metabolic Syndrome:
- 421 Clinical Research & Reviews, 2019; 13(2): 1165-1172.
 - 18. Kim SA, Kim J, Jun S, et al. Association between dietary flavonoid intake and obesity
 among adults in Korea. Appl Physiol Nutr Metab 2020; 45(2): 203-212.
 - 424 19. Kim SA, Joung H, Shin S. Dietary pattern, dietary total antioxidant capacity, and
 425 dyslipidemia in Korean adults. Nutr J 2019; 18(1): 37.
 - 426 20. Park S, Ham JO, Lee BK. Effects of total vitamin A, vitamin C, and fruit intake on risk
- 427 for metabolic syndrome in Korean women and men. Nutrition 2015; 31(1): 111-118.

Page 23 of 30

BMJ Open

1 ว		
2 3 4	428	21. Kim S, Song Y, Lee JE, et al. Total antioxidant capacity from dietary supplement
5 6	429	decreases the likelihood of having metabolic syndrome in Korean adults. Nutrients 2017;
7 8	430	9(10): 1055.
9 10 11	431	22. Jafari Azad B., Yaseri M., Daneshzad E., Koohdani F. Interaction between Apo A-II -
12 13	432	265T > C polymorphism and dietary total antioxidant capacity on some oxidative stress
14 15	433	and inflammatory markers in patients with type 2 diabetes mellitus. Br J Nutr 2021: 1-
16 17 18	434	17.
19 20	435	23. Daneshzad E., Keshavarz S. A., Qorbani M., Larijani B., Azadbakht L. Dietary total
21 22	436	antioxidant capacity and its association with sleep, stress, anxiety, and depression score:
23 24	437	A cross-sectional study among diabetic women. Clin Nutr ESPEN 2020; 37: 187-194.
25 26 27	438	24. Health Examinees Study Group. The Health Examinees (HEXA) study: rationale, study
27 28 29	439	design and baseline characteristics. Asian Pac J Cancer Prev 2015; 16(4): 1591-1597.
30 31	440	25. Shin S, Lim J, Lee HW, et al. Association between the prevalence of metabolic syndrome
32 33	441	and coffee consumption among Korean adults: results from the Health Examinees study.
34 35	442	Appl Physiol Nutr Metab 2019 [.] 44(12) [.] 1371-1378
36 37	112	
38 39	443	26. Ahn Y., Kwon E., Shim J. E., et al. Validation and reproducibility of food frequency
40 41	444	questionnaire for Korean genome epidemiologic study. Eur J Clin Nutr 2007; 61(12):
42 43	445	1435-41.
44 45	446	27. Jun S, Chun OK, Joung H. Estimation of dietary total antioxidant capacity of Korean
46 47	447	adults. Eur J Nutr 2018; 57(4): 1615-1625.
48 49 50	448	28. Ko S. H., Kim S. R., Kim D. J., et al. 2011 clinical practice guidelines for type 2 diabetes
50 51 52	449	in Korea. Diabetes Metab J 2011; 35(5): 431-436.
53 54	450	29. Korea Disease Control and Prevention Agency. Obesity.
55 56 57	451	https://health.kdca.go.kr/healthinfo/biz/health/gnrlzHealthInfo/gnrlzHealthInfo/gnrlzHe
58 59	452	althInfoView.do. Published 15 July 2021. Accessed 2021.06.01.
60		22

30. Shin S, Lee HW, Kim CE, et al. Egg Consumption and Risk of Metabolic Syndrome in
Korean Adults: Results from the Health Examinees Study. Nutrients 2017; 9(7): 687.

- 31. Ratjen I., Schafmayer C., Enderle J., et al. Health-related quality of life in long-term
 survivors of colorectal cancer and its association with all-cause mortality: a German
 cohort study. BMC Cancer 2018; 18(1): 1156.
- 32. Chen J, Mangelinckx S, Adams A, et al. Natural flavonoids as potential herbal
 medication for the treatment of diabetes mellitus and its complications. Natural Product
 Communications 2015; 10(1): 187-200.
 - 33. Rehman K., Akash M.S.H. Mechanisms of inflammatory responses and development of
 insulin resistance: how are they interlinked? J Biomed Sci 2016; 23(1): 87.
- 34. Ham D, Jun S, Kang M, et al. Consumption of Korean Foods with High Flavonoid
 Contents Reduces the Likelihood of Having Elevated C-Reactive Protein Levels: Data
 from the 2015–2017 Korea National Health and Nutrition Examination Survey.
 Nutrients 2019; 11(10): 2370.
 - 467 35. Liu YJ, Zhan J, Liu XL, et al. Dietary flavonoids intake and risk of type 2 diabetes: a
 468 meta-analysis of prospective cohort studies. Clin Nutr 2014; 33(1): 59-63.
 - 36. Jacques P. F., Cassidy A., Rogers G., et al. Higher dietary flavonol intake is associated
 with lower incidence of type 2 diabetes. J Nutr 2013; 143(9): 1474-80.
 - 37. Knekt P., Kumpulainen J., Jarvinen R., et al. Flavonoid intake and risk of chronic
 diseases. Am J Clin Nutr 2002; 76(3): 560-8.
 - 38. Dhanya R. Quercetin for managing type 2 diabetes and its complications, an insight into
 multitarget therapy. Biomed Pharmacother 2022; 146: 112560.
 - 39. Curtis P. J., Sampson M., Potter J., et al. Chronic ingestion of flavan-3-ols and
 isoflavones improves insulin sensitivity and lipoprotein status and attenuates estimated

BMJ Open

477	10-year CVD risk in medicated postmenopausal women with type 2 diabetes: a 1-year,
478	double-blind, randomized, controlled trial. Diabetes Care 2012; 35(2): 226-32.
479	40. Reiland H., Slavin J. Systematic Review of Pears and Health. Nutr Today 2015; 50(6):
480	301-305.
481	41. Hussain T., Tan B., Murtaza G., et al. Flavonoids and type 2 diabetes: Evidence of
482	efficacy in clinical and animal studies and delivery strategies to enhance their therapeutic
483	efficacy. Pharmacol Res 2020; 152: 104629.
484	42. Mansuri M. L., Parihar P., Solanki I., Parihar M. S. Flavonoids in modulation of cell
485	survival signalling pathways. Genes Nutr 2014; 9(3): 400.
486	43. Wang PY, Fang JC, Gao ZH, Zhang C, SY. Xie. Higher intake of fruits, vegetables or
487	their fiber reduces the risk of type 2 diabetes: A meta-analysis. J Diabetes Investig 2016;
488	7(1): 56-69.
489	44. Li YQ, Zhou FC, Gao F, Bian JS, Shan F. Comparative evaluation of quercetin,
490	isoquercetin and rutin as inhibitors of α -glucosidase. J Agric Food Chem 2009; 57(24):
491	11463-11468.
492	45. Liu S, Li D, Huang B, et al. Inhibition of pancreatic lipase, α -glucosidase, α -amylase,
493	and hypolipidemic effects of the total flavonoids from Nelumbo nucifera leaves. J
494	Ethnopharmacol 2013; 149(1): 263-269.
495	46. Wedick NM, Pan A, Cassidy A, et al. Dietary flavonoid intakes and risk of type 2
496	diabetes in US men and women. Am J Clin Nutr 2012; 95(4): 925-933.
497	47. Im J, Kim M, Park K. Association between the Phytochemical Index and Lower
498	Prevalence of Obesity/Abdominal Obesity in Korean Adults. Nutrients 2020; 12(8):
499	2312.

48. Lee HS, Cho YH, Park J, Shin HR, Sung MK. Dietary intake of phytonutrients in relation

- to fruit and vegetable consumption in Korea. J Acad Nutr Diet 2013; 113(9): 1194-1199.
- 502 49. Kim YJ, Park MY, Chang N, Kwon O. Intake and major sources of dietary flavonoid in
- 503 Korean adults: Korean National Health and Nutrition Examination Survey 2010-2012.
- 504 Asia Pac J Clin Nutr 2015; 24(3): 456-463.
- 505 50. Mauvais-Jarvis F Gender differences in glucose homeostasis and diabetes. Physiol
 506 Behav 2018; 187: 20-23.
- 507 51. American Diabetes Association. Nutrition recommendations and interventions for
 508 diabetes: a position statement of the American Diabetes Association. Diabetes Care 2008;
 509 31(Supplement 1): S61-S78.

511 Figure Legend

Figure 1. Hazard ratios (HR) with 95% confidence intervals (CIs) for type 2 diabetes mellitus after comparison of antioxidant consumption in the Q5 and Q1 groups according to baseline age, baseline body mass index (BMI), alcohol consumption, smoking status in the Health Examinees study. TAC: total antioxidant capacity

1 2 3 4 5 6 М 7 То 8 A A 9 B 10 В 11 12 N C 13 14 N Pa 15 C 16 17 TA 18 A A 19 20 B 21 B 22 N 23 C 24 N 25 Pa C 26 27 w 28 То 29 A 30 A 31 B 32 B 33 N 34 C 35 36 TA A 37 A 38 B 39 В 40 41 N C 42 43 44 45 46 47 48 49 50 51 52 53 54

60

len otal flavonoid	HRs (95	%CIs) <i>P</i> for interaction
$ge \le 55 Yr$	• 0.49 (0.2	7, 0.89)
ge > 55 Yr	• 0.79 (0.4	7, 1.32) 0.4997
MI < 25 kg/m ²	• 0.55 (0.3)	0, 1.01)
$MI \ge 25 \text{ kg/m}^2$	0.83 (0.5)	0, 1.38) 0.8579
on-drinker	• 0.77 (0.33	8, 1.57)
urrent-drinker	0.58 (0.3)	5, 0.92) 0.6508
on-smoker	• 0.72 (0.3	4, 1.54)
ast-smoker	• 0.55 (0.2)	8, 1.06)
urrent-smoker	0.88 (0.4	7, 1.65) 0.4096
AC	0.55 (0.2	1 1 01)
$ge \le 55 Yr$	0.56 (0.3	I, I.0I) 5 1 40) 0 2508
ge > 55 Yr		5, 1.49) 0.3598
$MI < 25 \text{ kg/m}^2$	0.71 (0.3)	9, 1.28)
$MI \ge 25 \text{ kg/m}^2$	• 0.74 (0.4	4, 1.22) 0.8597
on-drinker	0.74 (0.3)	5 1 53)
urrent-drinker	• 0.68 (0.4	4, 1.07) .
on-smoker		2, 1.48)
ast-smoker	• 0.58 (0.3	1, 1.08)
urrent-smoker	• 0.91 (0.4	8, 1.73) 0.2740
omen		
otal flavonoid		
$ge \le 52 Yr$	• 0.59 (0.3	3, 1.05)
ge > 52 Yr	0.48 (0.30	0, 0.77) 0.8215
$MI < 25 \text{ kg/m}^2$	• 0.64 (0.3)	8, 1.08)
$MI \ge 25 \text{ kg/m}^2$	0.43 (0.2)	6, 0.72) 0.8995
on-drinker	0.61 (0.3	9, 0.94)
urrent-drinker		4, 0.90) 0.6482
AC = 52 Vr	0.58 (0.2)	2 1 02)
$ge \ge 52$ Yr	0.58 (0.5)	2, 1.05) 1 0.87) 0.6082
ge > 52 11		, 0.87) 0.0982
$MI \le 25 \text{ kg/m}^2$	• 0.61 (0.3	7, 1.02)
$MI \ge 25 \text{ kg/m}^2$	0.49 (0.3)	0, 0.82) 0.9398
on-drinker	0.65 (0.4)	2, 1.00)
urrent-drinker	0.46 (0.2-	4, 0.89) 0.6026
	0 0.25 0.5 0.75 1 1.25 1.5 1.75 2	

202x277mm (330 x 330 DPI)

				Antioxidant co	nsumption		
	Q1	Q2	Q3	Q4	Q5	P for trend	HR for a SD increment
Men							
Total flavonoid	Ref	0.97 (0.71, 1.34)	0.89 (0.63, 1.25)	0.89 (0.64, 1.24)	0.62 (0.42, 0.92)	0.0136	0.85 (0.75, 0.97)
Anthocyanidins	Ref	0.78 (0.56, 1.10)	0.98 (0.71, 1.35)	0.85 (0.61, 1.19)	0.70 (0.49, 1.01)	0.0994	0.87 (0.76, 0.99)
Isoflavones	Ref	1.44 (1.01, 2.04)	1.10 (0.76, 1.59)	1.18 (0.81, 1.70)	1.32 (0.90, 1.95)	0.4245	1.04 (0.92, 1.17)
Proanthocyanidins	Ref	1.04 (0.76, 1.44)	0.97 (0.70, 1.36)	0.77 (0.54, 1.09)	0.72 (0.50, 1.04)	0.0226	0.87 (0.77, 0.99)
Flavonols	Ref	1.46 (1.06, 2.00)	0.88 (0.61, 1.27)	0.93 (0.64, 1.33)	0.77 (0.52, 1.14)	0.0218	0.82 (0.71, 0.95)
Flavones	Ref	1.00 (0.72, 1.38)	1.00 (0.71, 1.40)	0.82 (0.57, 1.17)	0.83 (0.57, 1.21)	0.1941	0.89 (0.79, 1.01)
Flavanones	Ref	0.83 (0.59, 1.17)	1.21 (0.88, 1.67)	0.93 (0.66, 1.30)	0.81 (0.56, 1.16)	0.2998	0.93 (0.83, 1.05)
Flavan-3-ols	Ref	0.88 (0.63, 1.23)	1.11 (0.80, 1.54)	0.78 (0.55, 1.11)	0.74 (0.51, 1.08)	0.0719	0.89 (0.79, 1.01)
TAC	Ref	1.07 (0.77, 1.47)	0.94 (0.67, 1.31)	0.85 (0.59, 1.20)	0.71 (0.48, 1.05)	0.0347	0.84 (0.74, 0.96)
Women							
Total flavonoid	Ref	0.92 (0.68, 1.24)	0.84 (0.62, 1.15)	0.63 (0.45, 0.89)	0.55 (0.38, 0.80)	0.0002	0.80 (0.71, 0.91)
Anthocyanidins	Ref	0.92 (0.68, 1.24)	0.64 (0.46, 0.89)	0.72 (0.52, 1.00)	0.56 (0.39, 0.80)	0.0007	0.86 (0.75, 0.97)
Isoflavones	Ref	0.99 (0.72, 1.35)	0.72 (0.51, 1.02)	0.84 (0.60, 1.17)	0.83 (0.58, 1.18)	0.2885	0.94 (0.84, 1.07)
Proanthocyanidins	Ref	0.92 (0.67, 1.25)	1.07 (0.79, 1.45)	0.67 (0.48, 0.95)	0.51 (0.35, 0.74)	<.0001	0.79 (0.70, 0.90)
Flavonols	Ref	0.85 (0.62, 1.15)	0.69 (0.50, 0.96)	0.59 (0.42, 0.83)	0.62 (0.44, 0.89)	0.0066	0.89 (0.78, 1.02)
Flavones	Ref	0.82 (0.60, 1.11)	0.75 (0.55, 1.03)	0.54 (0.38, 0.77)	0.57 (0.40, 0.81)	0.0004	0.82 (0.71, 0.93)
Flavanones	Ref	0.74 (0.55, 1.00)	0.57 (0.41, 0.79)	0.58 (0.42, 0.80)	0.55 (0.40, 0.77)	0.0008	0.84 (0.73, 0.96)
Flavan-3-ols	Ref	0.84 (0.62, 1.15)	0.81 (0.59, 1.12)	0.66 (0.47, 0.92)	0.81 (0.58, 1.13)	0.4157	0.93 (0.82, 1.06)
TAC	Ref	0.84 (0.62, 1.14)	0.89 (0.65, 1.21)	0.53 (0.37, 0.75)	0.60 (0.42, 0.86)	0.0007	0.81 (0.71, 0.93)

Table S1. Hazard ratios of type 2 diabetes during follow-up according to quintile of cumulative average antioxidant consumption in model 2

The multivariable Cox proportional-hazards regression model was adjusted for age, body mass index (BMI), educational level, physical activity, alcohol consumption, smoking status, total energy intake, energy percent from carbohydrate, energy percent from protein, and energy percent from fat.

Total flavonoid intake was the sum of anthocyanidins, isoflavones, proanthocyanidins, flavonols, flavones, flavanones, and flavan-3-ols.

Total antioxidant capacity (TAC) was obtained by combining the individual antioxidant capacity of each antioxidant derived from every food item.

3	
4	
5	
ر م	
0	
/	
8	
9	
1	0
1	1
1	2
1	3
1	4
1	5
1	ر د
1	7
1	/
1	8
1	9
2	0
2	1
2	2
2	3
2	Δ
2	5
2	5 6
2	0
2	/
2	8
2	9
3	0
3	1
3	2
3	3
2	л
ר ר	-
С	
2	~
3	6
3 3	6 7
3 3 3	6 7 8
3 3 3 3	6 7 8 9
3 3 3 4	6 7 8 9
3 3 3 4 4	6 7 8 9 0
3 3 3 4 4 4	6 7 8 9 0 1 2
3 3 3 4 4 4 4 4	6 7 8 9 0 1 2 3
3 3 3 4 4 4 4 4	67890123
3 3 3 4 4 4 4 4 4	678901234
3 3 3 4 4 4 4 4 4 4 4	6789012345
3 3 3 4 4 4 4 4 4 4 4 4	67890123456
3 3 3 4 4 4 4 4 4 4 4 4 4 4	678901234567
3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4	6789012345678
3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4	67890123456789
3 3 3 4 4 4 4 4 4 4 4 4 5	678901234567890
3 3 3 4 4 4 4 4 4 4 4 5 5	6789012345678901
3 3 3 4 4 4 4 4 4 4 4 4 5 5 5	67890123456789012
3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5	678901234567890123
3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5	6789012345678901234
3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5	67890123456789012345
3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5	678901234567890123456
3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5	678901234567890123456-
3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5	6789012345678901234567
3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5	67890123456789012345678

60

Table S2. Hazard ratios of type 2 diabetes during follow-up according to quintile of cumulative avera	age
antioxidant consumption in model 3	

	Antioxidant consumption						
	Q1	Q2	Q3	Q4	Q5	P for trend	HR for a SD increment
Men							
Total flavonoid	Ref	1.00 (0.72, 1.39)	0.94 (0.66, 1.34)	0.98 (0.68, 1.40)	0.71 (0.45, 1.13)	0.1553	0.89 (0.76, 1.04)
Anthocyanidins	Ref	0.82 (0.58, 1.15)	1.06 (0.76, 1.47)	0.96 (0.67, 1.37)	0.85 (0.56, 1.30)	0.6471	0.92 (0.79, 1.08)
Isoflavones	Ref	1.53 (1.08, 2.18)	1.22 (0.84, 1.76)	1.31 (0.90, 1.89)	1.61 (1.09, 2.38)	0.0731	1.12 (0.99, 1.26)
Proanthocyanidins	Ref	1.06 (0.77, 1.46)	1.02 (0.72, 1.43)	0.83 (0.58, 1.20)	0.81 (0.54, 1.22)	0.1640	0.92 (0.79, 1.06)
Flavonols	Ref	1.54 (1.12, 2.13)	0.96 (0.66, 1.39)	1.05 (0.72, 1.54)	0.97 (0.62, 1.52)	0.3271	0.88 (0.74, 1.05)
Flavones	Ref	1.06 (0.76, 1.48)	1.09 (0.77, 1.54)	0.95 (0.65, 1.38)	1.07 (0.69, 1.65)	0.9493	0.96 (0.83, 1.11)
Flavanones	Ref	0.85 (0.61, 1.21)	1.29 (0.94, 1.79)	1.03 (0.73, 1.47)	0.95 (0.64, 1.40)	0.8985	0.98 (0.87, 1.11)
Flavan-3-ols	Ref	0.93 (0.66, 1.29)	1.19 (0.86, 1.66)	0.85 (0.59, 1.23)	0.84 (0.57, 1.23)	0.2206	0.92 (0.81, 1.05)
TAC	Ref	1.13 (0.81, 1.57)	1.02 (0.71, 1.45)	0.98 (0.67, 1.44)	0.88 (0.55, 1.40)	0.3967	0.88 (0.75, 1.04)
Women							
Total flavonoid	Ref	0.90 (0.66, 1.23)	0.82 (0.59, 1.13)	0.62 (0.43, 0.89)	0.54 (0.35, 0.83)	0.0015	0.79 (0.68, 0.93)
Anthocyanidins	Ref	0.93 (0.69, 1.25)	0.64 (0.46, 0.90)	0.73 (0.52, 1.04)	0.58 (0.39, 0.86)	0.0054	0.88 (0.77, 1.02)
Isoflavones	Ref	1.01 (0.74, 1.39)	0.75 (0.53, 1.06)	0.88 (0.63, 1.23)	0.89 (0.62, 1.27)	0.4969	0.97 (0.86, 1.10)
Proanthocyanidins	Ref	0.91 (0.67, 1.25)	1.05 (0.78, 1.43)	0.67 (0.47, 0.96)	0.51 (0.34, 0.77)	0.0003	0.80 (0.69, 0.92)
Flavonols	Ref	0.83 (0.61, 1.14)	0.69 (0.49, 0.97)	0.58 (0.40, 0.85)	0.62 (0.41, 0.96)	0.0355	0.92 (0.78, 1.09)
Flavones	Ref	0.81 (0.60, 1.11)	0.75 (0.54, 1.03)	0.55 (0.38, 0.79)	0.57 (0.38, 0.85)	0.0029	0.82 (0.70, 0.96)
Flavanones	Ref	0.74 (0.55, 1.00)	0.57 (0.42, 0.79)	0.58 (0.42, 0.81)	0.58 (0.40, 0.82)	0.0038	0.86 (0.74, 0.99)
Flavan-3-ols	Ref	0.85 (0.62, 1.17)	0.83 (0.60, 1.15)	0.69 (0.48, 0.98)	0.87 (0.61, 1.23)	0.7719	0.96 (0.84, 1.09)
TAC	Ref	0.82 (0.60, 1.12)	0.86 (0.62, 1.19)	0.51 (0.34, 0.75)	0.57 (0.36, 0.89)	0.0039	0.80 (0.67, 0.95)

The multivariable Cox proportional-hazards regression model was adjusted for age, body mass index (BMI), educational level, physical activity, drinking status, smoking status, and dietary fiber intake.

Total flavonoid intake was the sum of anthocyanidins, isoflavones, proanthocyanidins, flavonols, flavones, flavanones, and flavan-3-ols.

Total antioxidant capacity (TAC) was obtained by combining the individual antioxidant capacity of each antioxidant derived from every food item.

STROBE Statement-checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Page number
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	Page 1
		(b) Provide in the abstract an informative and balanced summary of what was	Pages
		done and what was found	2–3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being	Pages
Objectives	3	State specific objectives, including any prespecified hypotheses	Pages
			5–6
Methods	ſ		
Study design	4	Present key elements of study design early in the paper	
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	Page 6
Participants Variables	6 7 8*	 (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants (b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and the number of controls per case Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable 	Pages 6–7 Pages 7–9
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if	Pages 7–9
Bias	9	Describe any efforts to address potential sources of bias	Pages 17–18
Study size	10	Explain how the study size was arrived at	Pages 6–7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	Page 9
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(<i>d</i>) Cohort study—If applicable, explain how loss to follow-up was addressed Case-control study—If applicable, explain how matching of cases and controls was addressed	Page 9

2
3
1
-
5
6
7
Q
0
9
10
11
12
12
13
14
15
16
17
17
18
19
20
21
∠ I 22
22
23
24
25
25
26
27
28
20
29
30
31
32
22
22
34
35
36
27
57
38
39
40
/1
41
42
43
44
45
40
46
47
48
49
50
51
52
53
55
54
55
56
57
50
20
59
60

		Cross-sectional study—If applicable, describe analytical methods taking	
		account of sampling strategy	
		(<u>e</u>) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	Pages
		eligible, examined for eligibility, confirmed eligible, included in the study, completing	10-14
		follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	Pages
		information on exposures and potential confounders	10-12
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	Page 11
		Case-control study—Report numbers in each exposure category, or summary measures	
		of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	Pages
		their precision (eg, 95% confidence interval). Make clear which confounders were	12-13
		adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity	Page 14
		analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	Page 14
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	Pages
		imprecision. Discuss both direction and magnitude of any potential bias	17–18
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	Pages
		multiplicity of analyses, results from similar studies, and other relevant evidence	14-17
Generalisability	21	Discuss the generalisability (external validity) of the study results	Page 18
Other informatio	n		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	Page 19
-		applicable, for the original study on which the present article is based	-

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.