Polar mutagenesis of polycistronic bacterial transcriptional units using Cas12a

Antoine Graffeuil^{1,3,¶}, Julio Guerrero-Castro^{1,3¶}, Aster Assefa^{1,3}, Bernt Eric Uhlin^{1,2,3} and David A. Cisneros^{1,3*}

¹Department of Molecular Biology, Umeå University, Umeå , Sweden.

²The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden.

³Umeå Centre for Microbial Research (UCMR), Umeå , Sweden.

*Corresponding author: <u>david.cisneros@umu.se</u>

[¶]These authors contributed equally.

Supplementary material

 Table 1. Strains used in this study

Strain	Reference
Escherichia coli K-12 substr. MG1655	[1]
Shigella flexneri 5A M90T	[2]
Escherichia coli fimA _{A106T}	This study
Escherichia coli fimA _{T103A,T104A}	This study
Escherichia coli fimA _{A158T,A159T,A160T,C161A,C162A}	This study
Escherichia coli ΔfimA ₇₅	This study
Escherichia coli ΔfimA ₇₅ ::L3S2P56	This study
Escherichia coli ΔfimA1::L3S2P56	This study
∆atpIBEFHAGDC	This study
$\Delta atpB$	This study
atpB::L3S3P41	This study
atpIp::L3S2P56	This study

 Table 1. Strains used in this study

Table 2. Oligos used

Name (description)	Sequence
fimA genotyping (Figure 1 primer F1)	GGCAATCGTTGTTCTGTCGG
fimA genotyping (Figure 1 primer R1)	GAAGGTCGCATCCGCATTAG
ΔfimA1::L3S2P56 for terminator genotyping	
(Figure 1 primer F2)	CTGGAACCGTAACGCAGACT
ΔfimA1::L3S2P56 for terminator genotyping	
(Figure 1 primer R2)	AGGCAACAGCGGCTTTAGAT
∆atpIBEFHAGDG genotyping (Figure 1 primer	
F3)	aatcggcgctaagaaccatc
AatpIBEFHAGDG genotyping (Figure 1 primer	
R3)	
Active 2020 (Figure 1 primer R4)	CAGCAGAGGAATCAGG
Latpip::L3S2P56 genotyping (Figure 1 primer	CCAATCCACTTCCTATCACC
fimA + cloning pSI I10 HindIII EcoPI forward	
fimA+ cloning pS019 Hindui EcoRi folward	
crDNA CED Bsal control Ew. to clone target	guagioaattettattoataetoaaeettoaaooteo
sequence	
crRNA GEP Bsal control Ry to clone target	
sequence	agacTCCTGGTCGAGCTGGACGGCGACGa
crRNA1 fimA Bsal Fw to clone target sequence	tagatAAGTGAACGGTCCCACCATTAACC
crRNA1 fimA Bsal Rv to clone target sequence	agacGGTTAATGGTGGGACCGTTCACTTa
crRNA2 fimA Bsal Ew to clone target sequence	tagatAAGGGGAAGTTGTTAACGCCGCTT
crRNA2 fimA Bsal Ry to clone target sequence	agacAAGCGGCGTTAACAACTTCCCCCTTa
crRNA3 fimA Bsal Ew to clone target sequence	tagatATCAACAGAGCCTGCATCAACTGC
crRNA3 fimA Bsal Ry to clone target sequence	anacGCAGTTGATGCAGGCTCTGTTGATa
crRNA4 atpB Bsal Fw to clone target sequence	tagatTGAAGCCATGATGCCTTTTACCCT
crRNA4 atnB Bsal Rv to clone target sequence	agacAGGGTAAAAGGCATCATGGCTTCAa
crRNA5 atnln Bsal Fw to clone target sequence	
crRNA5 atoln Bsal Ry to clone target sequence	anarCTTCGAGGTATGCCGCGTGTCGTAa
aPCR fimA Fw 90 hn recognizes all mutants	
aPCR fimA Ry 90 bp recognizes all mutants	
aPCR fimil Fixed 233nh	TECTECCAATETTECTCTE
aPCP fimi Pov 222ph	
aPCR was Evid 227 pb	
appendix cyse five 237 pb	
apop haat fuid 226 ph	
GPCR lical FWU 230 pD	
UPCR lical Rev 230 pb	
AfimA deletion donor aligonucleatide Ew	
	GTTGCTCCTTCCTGTGCCAGCGATGCGGTACGAACCTGTC##GGCAGCGGCCAGA
AfimA deletion donor oligonucleotide Ry	GCCGCTGTAGAACTGAGGGACAGAGCC
	TGCCACGACGGTTAATGGTGGGACCGTTCACTTTTAAGGGGAAGTTGTTAACGCCG
fimAA106T donor oligonucleotide Fw	CTTGCGCAGTTGAT
	ATCAACTGCGCAAGCGGCGTTAACAACTTCCCCTTAAAAGTGAACGGTCCCACCAT
fimAA106T donor oligonucleotide Rv	TAACCGTCGTGGCA
fimAT103A-T104A donor oligonucleotide Fw with	CTGCCACGACGGTTAATGGTGGGACCGTTCACTAAAAAGGGGAAGTTGTTAACGCC
crRNA2	GCTTGCGCAGTTGA
fimAT103A-T104A donor oligonucleotide Rv with	TCAACTGCGCAAGCGGCGTTAACAACTTCCCCTTTTTAGTGAACGGTCCCACCATT
crRNA2	AACCGTCGTGGCAG
fimAA158T-A159T-A160T-C161A-C162A) donor	GCCGCTTGCGCAGTTGATGCAGGCTCTGTTGATCTTTAAGTTCAGTTAGGACAGGT
fimAA1581-A1591-A1601-C161A-C162A) donor	GCGATGCGGTACGAACCTGTCCTAACTGAACTTAAAGATCAACAGAGCCTGCATCA
AfimA1I 3S2P56 donor oligonucleotide Ew	CAGG
	CCTGTGCCAGCGATGCGGTACGAACCTGTCGGACCAAAACGAAAAAGACGCTTTT
	CAGCGTCTTTTTTCGAAAATTTGGTACCGAGGCTGCTTTCCTTTCAAAAAACTATTTC
∆fimA1::L3S2P56 donor oligonucleotide Rv	ТАА
	CCTGTGCCAGCGATGCGGTACGAACCTGTCGGACCAAAACGAAAAAAGACGCTTTT
	CAGCGTCTTTTTCGAAAATTTGGTACCGAGGGCAGCGGCCAGAGCCGCTGTAGAA
∆fimA75::L3S2P56 donor oligonucleotide Fw	CTGAG
	CCTGTGCCAGCGATGCGGTACGAACCTGTCGGACCAAAACGAAAAAAGACGCTTTT
Afim A 75.01 2020EC domentation	
LINNA 13. L332430 UONOT ONGONUCIEOTIDE RV	

Table 2 (continues)

Afin AZEUL 202041 dener elizeruslastida Eu	CTCAGTTCTACAGCGGCTCTGGCCGCTGCCAAAAAAAAAA
ATIMA75::L3S3P41 donor oligonucleotide FW	
	CCTGTGCCAGCGATGCGGTACGAACCTGTCGGGAGACCAAAAAAAA
AfimA75::L3S3P41 donor oligonucleotide Rv	CGTTAGGGTGTTTTTTTTTGGCAGCGGCCAGAGCCGCTGTAGAACTGAG
	CTCAGTTCTACAGCGGCTCTGGCCGCTGCCCCAATTATTGAAGGCCTCCCTAACGG
	GGGGCCTTTTTTGTTTCTGGTCTCCCGACAGGTTCGTACCGCATCGCTGGCACAG
∆fimA75::L3S3P21 donor oligonucleotide Fw	G
	CCTGTGCCAGCGATGCGGTACGAACCTGTCGGGAGACCAGAAACAAAAAAGGCC
	CCCCGTTAGGGAGGCCTTCAATAATTGGGGCAGCGGCCAGAGCCGCTGTAGAACT
∆fimA75::L3S3P21 donor oligonucleotide Rv	GAG
	CTCAGTTCTACAGCGGCTCTGGCCGCTGCCTTTTCGAAAAAACACCCCTAACGGGTG
AfimA75.1 3S3P56 donor oligonucleotide Ew	TTTTTTGTTCTGGTCTCCCGACAGGTTCGTACCGCATCGCTGGCACAGG
Afim A7E:: L2S2DE6 donor oligopuolootido Du	
AfimA75::Bba_B0062 donor oligonucleotide Fw	CTGACAGGTTCGTACCGCATCGCTGGCACAGG
	CCTGTGCCAGCGATGCGGTACGAACCTGTCagaaatcatccttagcgaaagctaaggattttttttatct
∆fimA75::Bba_B0062 donor oligonucleotide Rv	gGGCAGCGGCCAGAGCCGCTGTAGAACTGAG
	CTCAGTTCTACAGCGGCTCTGGCCGCTGCCGGGCGGTCAGATGATCGCCCTTTTTT
∆fimA75::L2U1H10 donor oligonucleotide Fw	TTTGACAGGTTCGTACCGCATCGCTGGCACAGG
	CCTGTGCCAGCGATGCGGTACGAACCTGTCAAAAAAAAGGGCGATCATCTGACC
∆fimA75::L2U1H10 donor oligonucleotide Rv	GCCCGGCAGCGGCCAGAGCCGCTGTAGAACTGAG
	CTCAGTTCTACAGCGGCTCTGGCCGCTGCCACGGCCCTAGATAGGGCCGTTTTTT
AfimA75.1 2111H09 donor oligonucleotide Ew	TTTGACAGGTTCGTACCGCATCGCTGGCACAGG
Afim A75::1 21 11 1400 dopor oligonuolootido Dv	
AfimA75::L2U3H03 donor oligonucleotide Fw	
	CCTGTGCCAGCGATGCGGTACGAACCTGTCCTCAACAAATAGCGTGACCGATGCG
AfimA75::L2U3H03 donor oligonucleotide Rv	CCGGTCACGCTAGGCAGCGGCCAGAGCCGCTGTAGAACTGAG
	CTCAGTTCTACAGCGGCTCTGGCCGCTGCCTAGCGTGCGAACAGCACGCTATTGTT
∆fimA75::L2U5H11 donor oligonucleotide Fw	GTATGACAGGTTCGTACCGCATCGCTGGCACAGG
	CCTGTGCCAGCGATGCGGTACGAACCTGTCATACAACAATAGCGTGCTGTTCGCAC
∆fimA75::L2U5H11 donor oligonucleotide Rv	GCTAGGCAGCGGCCAGAGCCGCTGTAGAACTGAG
°	CTCAGTTCTACAGCGGCTCTGGCCGCTGCCgacgaacaaTAAGGCCTCCCAAATCGG
AfimA75::pheA-1 donor oligonucleotide Ew	GGGGCCTTTTTTATTgaTaacaaaaGACAGGTTCGTACCGCATCGCTGGCACAGG
AfimA75nheA-1 donor oligonucleotide Ry	
ataland 2020E6 dapar aligapualaatida Ew	IlyaliciaayuullaaayaaayiiiiiACTCGGTACCAAATTTTCGAAAAAGACGCTGAAAAGC
stalaul 000DEC damag aliananuda stida Du	
atpip::L3S2P56 donor oligonucleotide RV	CGAAAATTTGGTACCGAGTAAAACtttCtttaaggCttagagtca
	gaacagggttagcagaaaagtcgcaattgtatgcactggaaaaatatttaaacatcaccggcttgaaaagcacaaaagc
∆atpIBEFHAGDG donor oligonucleotide Fw	cagtctggaaacaggctggcttttttttgcg
	cgcaaaaaaaagccagcctgtttccagactggcttttgtgcttttcaagccggtgatgtttaaatatttttccagtgcatacaatt
∆atpIBEFHAGDG donor oligonucleotide Rv	gcgacttttctgctaaccctgttc
	TTTGGTGCTGGTGGTTCAGATACTGGCACCGGCTGTAATTAACAACAAAGGGTAAttt
∆atpB donor oligonucleotide Fw	accaacactactacqttttaactgaaacaaactggagactgtcATGGAAAAC
	GTTTTCCATgacagtctccagtttgtttcagttaaaacgtagtagtagtagtagtagtagtagtagtagtagtagtag
AatoB donor oligonucleotide Ry	ACAGCCGGTGCCAGTATCTGAACCACCAGCACCAAA
AatnB···I 3S3P41 donor oligonucleotide Ew	TTTTTTTTTCGTCTCCCtttaccaacactactaccatttaccattaccattactaccattactac
Asta Dul 2020/11 departalizantus lastida Du	
Laipd.LSSSF41 UUTUI UIIUUIUUUUUUU KV	

Fig. S2. Efficiency of fimA mutagenesis with Cas12a. **A** 10/10 E. coli colonies isolated after cotransformation with crRNA1 and the donor oligonucleotide carrying homology arms to introduce a 97 bp fimA deletion tested positive (lanes 1-10) for a mutation as detected by colony PCR using primers F1 and R1. **B** 3/10 E. coli colonies isolated after co-transformation with crRNA1 and the donor oligonucleotide carrying homology arms to insert a 57 bp terminator beside the 97 bp fimA deletion at position 75 of the fimA (Δ fimA₇₅::L3S2P56) gene tested positive (lanes 1, 5 and 7 marked with *) as detected by colony PCR using primers F1 and R1. **C** 1/10 E. coli colonies isolated after co-transformation with crRNA1 and the donor oligonucleotide carrying homology arms to insert a 57 bp terminator sequence beside the 172 bp fimA deletion at position 1 of the fimA (Δ fimA₁::L3S2P56) gene tested positive (lane 5, marked with *) as detected by colony PCR using primers F2 and R2. Lane 11 shows a PCR product on WT *E. coli* DNA template as detected with primers F1 and R1. Lanes labeled as L were loaded with a double-stranded DNA ladder containing fragments of different lengths in base pairs (bp).

Fig. S3. Atomic force microscopy (AFM) of bacteria grown in static cultures. **A** AFM imaging of *E. coli* cells with the $\Delta fimA_{75}$ allele carrying the empty vector pSU19. A *E. coli* cell showing no type 1 fimbriae is shown in the inset. **B** AFM imaging of the $\Delta fimA_{75}$ mutant *E. coli* carrying a plasmid containing a *fimA*⁺ allele for transcomplementation. A *E. coli* cell showing type 1 fimbriae is shown in the inset. Scale bars: A-B) 4 µm. A-B) insets 2 µm.

Fig. S4. Thermodynamic properties of terminator sequences. Correlation of the efficiency of mutagenesis and the following thermodynamic parameters: **A** Free energy for the closure of the hairpin loop (Δ GL). **B** Free energy of the hairpin folding (Δ GH). **C** Free energy of the extended hairpin (Δ GA). **D** Free energy of the base of the stem (Δ GB). **E** Free energy of the U-tract (Δ GU), **F** length (bp).

References

1. Guyer MS, Reed RR, Steitz JA, Low KB. Identification of a sex-factor-affinity site in E. coli as $\gamma\delta$. In: Cold Spring Harbor symposia on quantitative biology. Cold Spring Harbor Laboratory Press; 1981; 135–140.

2. Sansonetti PJ, Kopecko DJ, Formal SB. Involvement of a plasmid in the invasive ability of Shigella flexneri. Infection and immunity. 1982;35(3):852–860.

3. Chen Y-J, Liu P, Nielsen AA, Brophy JA, Clancy K, Peterson T, et al. Characterization of 582 natural and synthetic terminators and quantification of their design constraints. Nature methods. 2013;10:659-666.