Supplementary file 2

Table S1. Disease and demographic inputs and parameters used in the SEIR model

Parameters	Definition	Values	References
Susceptible	Susceptible individuals to getting the	At time 0 (start of	1,2
S(t)	infection at any time	the epidemic,	
		January 21)	
		n = 10 million for	
		Tehran (capital)	
		n = 83 million for	
		the national model	
Exposed	Exposed individuals to the virus at	At time 0 (start of	
E(t)	any time	the epidemic,	
		January 21)	
		n = 70 in Tehran	
		n = 1170 in the	
		national model	
Infected	Infected individuals at any time	At time 0	
I(t)		n = 5 in Tehran	
		n = 90 in the	
		national model	
Isolated	Individuals who become home-	At time 0	
Is(t)	isolated after getting the infection	Value = 0	
	without hospitalization		
Recovered	Individuals who are recovered from	At time 0	
R(t)	the infection	Value = 0	
Hospital	Individuals who are hospitalized	At time 0	
H(t)		Value = 0	
Death	Individuals who died of the infection	At time 0	
D(t)		Value = 0	
Temporary	TIU individuals who are discharged	At time 0	
Isolation	from hospitals	Value = 0	
Units			
T(t)			
N	Country total population	N = 10 million for	1,2
		Tehran (capital)	
		N = 83 million for	
		the national model	
С	The average number of contacts for	The values of these	
	each uninfected individual	parameters are	

Parameters	Definition	Values	References
		reported in	
		Appendix B Table	
		2.	
B (Beta)	Transmission probability (the	Ranged from 0.0423	3–5
	probability of getting the infection	in 21 January to	
	when an infected individual contact	0.025813 in 19 June	
	with an uninfected individual)	Seasonality	
		distribution: (((Sin	
		$(2 \times 3.14 \times (Time +$	
		110) / 365)) + 1) ×	
		((0.045 - 0.02) / 2))	
		+ 0.02	
II(t)	Infected individuals with the potential	I+(0.1×T)+(0.02×H)	
	to infect uninfected people		
SE	The average number of people from	B×C× (II/N)× S	
	susceptible individuals are added to		
	exposed individuals (per day)		
EI	The average number of people from	E×(1/D1)	
	exposed individuals are added to		
	infected individuals (per day)		
D1	The average duration taken for an	Normal (5.33,	6
	exposed individual becomes an	0.445) ^a	
	infected individual		
I.Is	The number of people who become	$(I)\times(I.Is.R)\times(1/D6)$	
	home-isolated (per day)		
D6	The average duration taken for an	Normal (3, 0.5) ^a	Expert Opinion
	infected individual becomes home-		
	isolated		
I.Is.R	% of infected individuals becomes	According to the	
	isolated	possible scenarios in	
		the text	
IsR	The number of people who become	(Is)/D7	
	recovered after isolation (per day)		
D7	The duration taken for an isolated	Normal (7.91,0.5) ^a	6
	individual becomes recovered		
I.R	The total number of infected cases	$(I)\times(I.R.R)\times(1/D8)$	
	who become recovered (without		
	isolation and without hospitalization)		
	<u> </u>	1	

Parameters	Definition	Values	References
I.R.R	% of infected cases who become recovered (without isolation and without hospitalization)	According to the possible scenarios	
D8	The average duration taken for an infected case becomes recovered (without isolation and without hospitalization)	Normal (10.91, 0.50) ^a	6
IH	Number of infected individuals who are hospitalized (per day)	I× (1/D2)×(IH.R)	
IH.R	% of infected individuals who are hospitalized	Normal (0.05, 0.01) ^a	National Data and Expert Opinion
D2	The average duration taken for an infected individual stays in hospital	Normal (2, 0.5) ^a	Expert Opinion
HT	Number of hospitalized cases who are discharged from hospital (per day)	(HT.R)×(H)×(1/D4)	
HT.R	% of hospitalized cases who discharged from hospital	Normal (0.9, 0.01) ^a	National Data and Expert Opinion
D4	The average duration taken for a hospitalized individual to be discharged	Normal (5, 0.5) ^a	National Data and Expert Opinion
TR	Number of individuals who are on recovery after discharge	(T)×(TR.R)×(1/D5)	
TR.R	% of infected cases who recovered after discharge	N(0.995, 0.001) ^a	National Data and Expert Opinion
D5	The average duration taken to be recovered after discharge	Normal (7, 0.5) ^a	National Data and Expert Opinion
HD	Number of hospitalized, infected cases who die in hospital (per day)	(H)×(1/D3)×(HD.R)	
HD.R	% of hospitalized, infected cases who die in hospital	1 – HT.R	
D3	The average duration taken for a hospitalized, infected case to die in hospital	Normal (5, 0.5) ^a	Expert Opinion

Parameters	Definition	Values	References
ID	Number of infected cases who die	$(I)\times(ID.R)\times(1/D9)$	
	from the infection without being		
	hospitalized		
ID.R	% of infected cases who die from the	scenario A,B and C:	Expert Opinion
	infection without being hospitalized	0.005	
		scenario D: 0.002	
		scenario E: 0	
D9	The average duration taken to be died	Normal (11, 0.50) ^a	⁷ justify with
	from the infection for infected		expert opinion
	individuals without being hospitalized		
TD	Number of infected cases who die	$(T)\times(TD.R)\times(1/D10)$	
	after discharge (per day)		
TD.R	% of infected cases who die from the	N(0.005, 0.001) ^a	National Data
	infection after discharge (ie, 5 deaths		Expert Opinion
	in 1000 discharged cases)		
D10	The average duration taken to be died	Normal (7, 0.50) ^a	Expert Opinion
0.27	after discharge		

^a Normal refers to the normal distribution (mean, SD)

Table S2. The values considered for effective contact rate (ie, C) within four months of the COVID-19 epidemic stratified by Tehran and national models

Months and 10-day intervals	Contact rate (C)		Reference
	Tehran model	National model	
From Jan 21, 2020, to Jan 30, 2020	14	13	7–11
From Jan 31, 2002, to Feb 9, 2020	13	12	
From Feb 10, 2020, to Feb 19, 2020	12	11	
From Feb 20, 2020, to Feb 29, 2020	10	9	
From Mar 1, 2020, to Mar 20, 2020	5	5	
From Mar 21, 2020, to Mar 31, 2020	6*	6*	
From Apr 1, 2020, to June 19, 2020	5	5	

^{*} Contact rates were assumed to increase due to the Nowruz holidays within these periods

References

- 1. Iran population. https://knoema.com/atlas/Iran/Population. Accessed April 10, 2020.
- Statistical Centre of Iran. Selected Findings of the 2016 National Population and Housing Census.;

- https://www.amar.org.ir/Portals/1/census/2016/Census_2016_Selected_Findings.pdf. Accessed April 11, 2020.
- 3. Wan H, Cui J, Yang G-J. Risk estimation and prediction by modeling the transmission of the novel coronavirus (COVID-19) in mainland China excluding Hubei province. *medRxiv*. 2020.
- 4. Burke RM, Midgley CM, Dratch A, et al. Active Monitoring of Persons Exposed to Patients with Confirmed COVID-19 United States, January-February 2020. *MMWR Morb Mortal Wkly Rep.* 2020;69(9):245-246. doi:10.15585/mmwr.mm6909e1
- 5. Haghdoost AA, Gooya MM, Baneshi MR. Modelling of H1N1 flu in Iran. 2009.
- 6. You C, Deng Y, Hu W, et al. Estimation of the time-varying reproduction number of COVID-19 outbreak in China. *Available SSRN 3539694*. 2020.
- 7. Mossong J, Hens N, Jit M, et al. Social contacts and mixing patterns relevant to the spread of infectious diseases. *PLoS Med.* 2008;5(3):0381-0391. doi:10.1371/journal.pmed.0050074
- 8. Ibuka Y, Ohkusa Y, Sugawara T, et al. Social contacts, vaccination decisions and influenza in Japan. *J Epidemiol Community Heal*. 2016;70(2):162-167. doi:10.1136/jech-2015-205777
- 9. Tang B, Bragazzi NL, Li Q, Tang S, Xiao Y, Wu J. An updated estimation of the risk of transmission of the novel coronavirus (2019-nCov). *Infect Dis Model*. 2020;5:248-255. doi:10.1016/j.idm.2020.02.001
- Arregui S, Aleta A, Sanz J, Moreno Y. Projecting social contact matrices to different demographic structures. *PLoS Comput Biol*. 2018;14(12):e1006638. doi:10.1371/journal.pcbi.1006638
- 11. Hoang T, Coletti P, Melegaro A, et al. A systematic review of social contact surveys to inform transmission models of close-contact infections. *Epidemiology*. 2019;30(5):723-736.