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Fig. S1: Lifetime and µρ posteriors for data simulated with lifetimes of 0.8 and 3.6 ns, uniform µρ of 0.2 and 0.05 µm−3

and total photon counts of 500, 1,000 2,000 and 5,000. (a) Lifetime posteriors. (b) µρ posteriors. The blue and brown
curves, respectively, represent posteriors of species with µρ of 0.2 and 0.05 µm−3. The black dashed lines represent the
ground truths.
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Fig. S2: Cross-sections of 3D non-uniform µρ profiles along x-axis. The first and second rows represent resulting µρ
from data sets simulated with two species and a large gap in lifetimes (0.8, 3.6) ns. The third and fourth rows show
resulting µρ from data sets with more similar lifetimes (2.5, 3.6) ns. (a-d), (e-h) and (i-l), respectively, depict results
from simulated data with 50, 100 and 200 photons per pixel. The data used in the first and third rows were simulated
using a pixel size of 0.2 µm and pixel size for the second and last rows was 0.4 µm. All the data were generated over a
region of 32×32 pixels.
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Fig. S3: Lifetimes of non-uniform profiles corresponding to the µρ profiles in Fig. S2. The black dashed lines and the
solid yellow lines show the ground truth lifetimes and the used priors, respectively. The used priors are also depicted in
Fig. S19. The same line-style convention is followed throughout the SI.
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Fig. S4: An example of 3D profiles used in Fig. S2. 3D plots in panels a and b depict the ground truth and the median of
µρ profiles sampled from the posterior for a data simulated with two species, lifetimes of 0.8 and 3.6 ns and 100 photons
per pixel over 32×32 pixels. The cross sections shown in Fig. S2e was taken from the profiles shown here. The µρ profiles
do not vary along the z-direction. Grids represent the pixel centers.
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Fig. S5: Sub-nanosecond lifetime resolution. (a) Cross-sections of 3D µρ profiles for non-uniform profiles along x-axis
simulated with lifetimes of (2, 2.5) ns, 200 photons per pixel over 10×10 pixels and pixel size of 0.2µm. (b) Histogram
of the sampled lifetimes.
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Fig. S6: Lifetime similar to σIRF (0.66 ns). (a) Cross-sections of 3D µρ profiles for non-uniform profiles along x-axis
simulated with lifetimes of (2, 0.66) ns, 100 photons per pixel over 10×10 pixels and pixel size of 0.2µm. (b) Histogram
of the sampled lifetimes.
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Fig. S7: Lifetime exceeding the inter-pulse time (∼ 2 times larger than the inter-pulse time, T = 12.8 ns). (a) Cross-
sections of 3D µρ profiles for non-uniform profiles along x-axis simulated with lifetimes of (2, 25) ns, 100 photons per
pixel over 10×10 pixels and pixel size of 0.2µm. (b) Histogram of the sampled lifetimes. While the lifetime larger than
the inter-pulse period is detected and the ground truth falls within the range of the histogram, it is very wide implying
a high uncertainty.
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Fig. S8: Cross-section of 3D µρ profiles for simulated data with 3 species, lifetimes of 0.8, 2.2 and 5.2 ns, 100 photons
per pixel over a region of 20×20 pixels and a pixel size of 0.2 µm. (a) The cross section of µρ profiles along the x-axis.
(b) Histogram of the found lifetimes.
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Fig. S9: Difference of the ground truth and learned µρ profiles shown in Fig. 3. (a,b) Relative differences of the ground
truths and the learned µρ profiles using photons from all pixels. The relative differences was calculated by subtracting
the resulting µρ profiles from the ground truth and dividing by the maximum value in the ground truth. The average
of absolute differences are 1.8% and 3.7% in panels a and b, respectively. (c,d) Difference of the ground truths and the
learned µρ profiles ignoring photons from pixels with even columns and rows. The average of absolute differences are
2.6% and 7% in panels c and d, respectively. Scale bars are 1 µm.
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Fig. S10: Histograms of the relative differences shown in Fig. S9
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Fig. S11: Histogram of lifetime samples for simulated data with two species and heterogeneous µρ profiles shown in Fig.
3.
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Fig. S12: Differences of the learned and ground truth µρ profiles for in vivo data set depicted in Fig. 4. (a) Difference of
the µρ profiles of lysosomes using all the photons. The average of the absolute differences is 2.3%. (b) Difference of the
µρ profiles of mitochondria using photons from pixels with odd indices. The average of the absolute differences is 3.4%.
Scale bars are 1 µm.
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Fig. S13: Phasor approach is used to estimate the in vivo lifetimes of the probes. (a) Experimental design showing the
excitation laser source, absorption (dotted) and emission (colored) curves of the two probes in the sample. The shaded
areas correspond to the three filters used. (b,c) Intensity image and corresponding phasor plot when collecting in the
520/35 band. (d,e) Intensity image and corresponding phasor plot when collecting in the 605/55 band. (f,g) Intensity
image and corresponding phasor plot when collecting with the 500LP filter. The fluorescence lifetime for LysoView 488
was obtained by calculating the lifetime corresponding to the extrapolation of the phasor cluster (panel c) to the universal
circle, corresponding to 5.1 ns. This was done due to the fact that the phasor distribution appears elongated towards
very short lifetimes due to the leakage of laser excitation through the emission filters. The lifetime for TMRM could
not be obtained as a pure lifetime on this dataset due to the bleedthrough of LysoView 488 fluorescence in the 605/55
emission filter. For this reason, to estimate the lifetime of TMRM, we considered the extrapolation to the universal circle
along the direction of maximum variance of the cluster (panel e), which corresponds to 1.6 ns.
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Fig. S14: Histogram of lifetime samples obtained form the mixture of two species in vivo data with intricate µρ profiles
shown in Fig. 4.
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Fig. S15: Lifetimes at different locations. (a) Histograms of lifetime samples obtained form different subregions of the in
vivo data in Fig. 4i. Lifetime samples with different colors are associated with different selected subregions. The dashed
lines show lifetimes obtained by the phasor approach using all of the photons from the entire field of view. (b) The FLIM
image data. The sub-regions used to obtain the lifetimes in panel a are included within the brown windows. Scale bar is
4 µm.
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Fig. S16: Scanning the sample in continuous trajectories versus discrete steps. (a) Data simulated by assuming an
illumination spot moving with constant speed, scanning the mixture of simulated profiles shown in Figs. 3a-b. (b-c)
Resulting µρ profiles by analyzing the data in (a) assuming an illumination spot moving in discrete steps. (d) Data
simulated by assuming an illumination spot moving in discrete steps, scanning the mixture of simulated profiles shown
in Figs. 3a-b. (e-f) Resulting µρ profiles by analysing the data in (d) assuming an illumination spot moving in discrete
steps. All scale bars are 1 µm.
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Fig. S17: Difference of the ground truth and the resulting µρ profiles obtained from data sets assuming illumination
spots moving with a constant speed, Fig. S16a, and in discrete steps, Fig. S16d. (a-b) Difference of the ground truth,
shown in Figs. 3a-b, and the resulting profiles from data simulated assuming an illumination spot moving in constant
speed shown in Figs. 16b-c. The average of the absolute differences are 2% and 3.8% in panels a and b, respectively.
(c-d) Difference of the ground truth, shown in Figs. 3a-b, and the resulting profiles from data simulated assuming an
illumination spot moving in discrete steps shown in Figs. 16e-f. The average of absolute differences are 2.4% and 5.7%
in panels c and d, respectively. All scale bars are 1 µm
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Fig. S18: The Gaussian IRF combined with an exponential decay profile fits (red curve) the calibration data (histogram)
with a known lifetime. The calibration data is collected from an in vitro experiment using coumarin6 with lifetime of 2.5
ns. The offset (τIRF), the width (σIRF) of the Gaussian IRF and the inter-pulse time (T ) are, respectively, 10.4, 0.66 and
12.8 ns.

19



Fig. S19: Priors on (a) lifetimes and (b) uniform µρ profiles. The priors are shown in Figs. S3, S5, S7, S8, S11 and S14
but they appear to be very close to the axis due to scaling. The used priors are very broad and are effectively flat over
the interval of the estimated parameters so that they have almost no impact on the final results.
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Supplementary Note 1: Methods Description

Supplementary Note 1.1: Photon Arrival Time Likelihood

Fig. S20: Sequence of the laser pulses. The red boxes and the dashed lines, respectively, show the laser pulses and times
of different events. tkpulse, t

k−n
pulse, text,k, tems,k and tdet,k are, respectively, times of the kth and k − nth pulses, the time

that a molecule absorbs a photon and gets excited, the time that the excited molecule emits a photon and returns to the
ground state, and the time that the emitted photon is detected. n counts the pulses before the kth pulse. T and ∆tik are,
respectively, the time interval between two consecutive pulses and the arrival time of the photon detected after the kth
pulse. Note that the detector reports the photon arrival time with respect to the immediate previous excitation pulse.

In this section, we derive the likelihood of photon arrival times by taking into account details of FLIM experiments.
A photon arrival time (∆tik) is recorded with respect to the immediate previous excitation pulse. However, a detected
photon might, in general, come from a fluorophore that was excited in a pulse preceding to the immediate previous pulse.
The total time from the excitation up to the times that a photon is detected by the detector is the sum of three periods:
(1) the time that the excited fluorophore spends in the excited state (∆tiext,k); (2) the difference of the excitation time
and the center of the excitation pulse; (3) the time that it takes to record the arrival time after the photon arrives to the
detector [1]. The combination of the last two times is called the instrument response time (IRF; denoted by ∆tiIRF,k).
Considering Fig. S20, the relation between these different time intervals and the arrival time can be written as follows

∆tiext,k = tems,k − text,k (S1)

∆tiIRF,k =
(
text,k − tk−npulse

)
+ (tdet,k − tems,k) (S2)

∆tik = (tems,k − text,k) +
(
text,k − tk−npulse

)
+ (tdet,k − tems,k)− nT (S3)

∆tik = ∆tiext,k + ∆tiIRF,k − nT. (S4)

where T is the inter-pulses time and n counts the preceding pulses. Since there is a discrete set of multiple options for n
(instead of two options), it follows a categorical distribution. Additionally, the time spent in the excited state (∆tiext,k)

and the IRF-time (∆tiIRF,k), respectively, follow an exponential distribution and an approximate normal distribution, see
Fig. S18.

Now that we have introduced different time intervals involved in a photon arrival time, we proceed to construct the
photon arrival time likelihood. The arrival time, ∆tik, is given by the sum of the parameters ∆tiext,k,∆t

i
IRF,k and nT , as

given by eq. (S4). Thus the likelihood can be calculated by the convolution (shown by ∗) of the distributions of these
parameters

P
(
∆tik|λsk

)
=

[
P
(
∆tiIRF,k

∣∣ τIRF, σ
2
IRF) ∗ P

(
∆tiext,k|λsk

) ]
∗ P (n|N) (S5)

where

P (n|N) = Categorical0:N ([A0, ..., AN ]) (S6)

P
(
∆tiIRF,k

∣∣ τIRF, σ
2
IRF) = Normal(∆tiIRF,k; τIRF, σ

2
IRF) (S7)

P
(
∆tiext,k|λsk

)
= Exponential(∆tiext,k;λsk). (S8)

(S9)

An in eq. (S6) is the probability that a detected photon comes from nth pulse preceding the immediate previous pulse,
given by

An =

∫ (n+1)T

nT

q(t)dt (S10)
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where q(t) is introduced in eq. (S12). In general, n can be any number from zero up to the number of pulses at the time
of detection of the kth photon. However, since the lifetimes are usually about a few nano-seconds and the time interval
between two consecutive pulses is of the order of tens of nano-seconds, it is safe to assume n ∈ [0, N ], where N is an
integer cutoff.

In order to derive the photon arrival time likelihood, we must calculate two convolutions. To calculate these convo-
lutions, it is helpful to define an auxiliary parameter ∆ti?k := ∆tiext,k + ∆tiIRF,k, which is a random variable that follows

a distribution q(∆ti?k) given by the following convolution (first convolution in eq. (S5))

q(∆ti?k) =

[ ∫ ∆ti?k

0

Normal(∆ti?k −∆tiext,k; τIRF, σ
2
IRF)

× Exponential(∆tiext,k;λsk) d∆tiext,k

]
(S11)

=

[
erf

(
τIRF + λsikσ

2
IRF

σIRF

√
2

)
− erf

(
τIRF −∆ti?k + λsikσ

2
IRF

σIRF

√
2

)]

×
λsik
2

exp

(
λsik
2

(
2(τIRF −∆ti?k) + λsikσ

2
IRF

))
(S12)

where erf(.) stands for the error function. We use the approximation

erf

(
τIRF + λsikσ

2
IRF

σIRF

√
2

)
− erf

(
τIRF −∆ti?k + λsikσ

2
IRF

σIRF

√
2

)
' erfc

(
τIRF −∆ti?k + λsikσ

2
IRF

σIRF

√
2

)
(S13)

where erfc(.) = 1−erf(.). This approximation is valid as long as τIRF > 2.5σIRF, which holds because there is no negative
photon arrival times.

Now we are in a position to find the photon arrival time likelihood, which is given by the convolution of q(∆ti?k)
and P (n|N) (second convolution in eq. (S5)). To calculate this convolution, it is helpful to use the substitution ∆ti?k =
∆tik + nT , see eq. (S4), and the likelihood can be obtained as follows

P
(
∆tik|λsk

)
=

[ N∑
n=0

q(∆tik + nT )P (n|N)

]

=

[
N∑
n=0

erfc

(
τIRF −∆tik − nT + λsikσ

2
IRF

σIRF

√
2

)

×
λsik
2

exp

(
λsik
2

(
2(τIRF −∆tik − nT ) + λsikσ

2
IRF

))]
. (S14)

The above expression gives the likelihood of photon arrival times of a photon detected in a non-empty pulse (W i
k=1).

However, there is no detected photon from an empty pulse (W i
k=0) and hence no arrival time and the likelihood is simply

one. Therefore, the arrival time likelihood for both empty and non-empty pulses is given by

P
(

∆tik|λsik ,W
i
k

)
= P

(
∆tik|λsik

)W i
k

. (S15)

Supplementary Note 1.2: Data Simulation and Analysis

To generate data, it is presumed that a confocal microscope scans the sample sequentially over equally spaced spots, ξi.
The probabilities of empty pulses (π0) and probability of exciting a molecule of species m (πm) are given in the Methods
section of the main text. For simulating data, we calculate these probabilities for every individual pulse in the ith pixel
using a cylindrical PSF with a Gaussian profile

PSFξi( ~X) = ωz exp

(
−2

(x− ξx)2 + (y − ξy)2

ω2
xy

)
(S16)

where ωxy and ωz are respectively the full widths at half maximum (FWHM) in lateral and axial directions. Next, we
employ these computed probabilities to generate empty and nonempty pulses, and also the indicator parameters sik for
photons from nonempty pulses sampled from the categorical distribution described in the Methods section. The time that
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an excited fluorophore spends in the excited state is taken from an exponential distribution with a lifetime corresponding
to its indicator sik

∆tiext,k ∼ Exponential(τsik). (S17)

The IRF times are sampled from a normal distribution with the given offset, τIRF, and variance, σ2
IRF

∆tiIRF,k ∼ Normal(τIRF, σ
2
IRF). (S18)

Now we can generate the photon arrival times as follows

∆tik = ∆tiext,k + ∆tiIRF,k − T

⌊
∆tiext,k + ∆tiIRF,k

T

⌋
(S19)

where b c gives the integer part of its content. The data are generated for either a given number of pulses or photons per
pixel. A list of parameter values used in simulating different data sets are given in Table S2.

Now that we have described the data generation, we proceed by explaining the data analysis. In order to analyze
both experimental and simulated data, we initialized the chains by taking random values from their corresponding priors.
The parameters used for the prior and proposal distributions are listed in Table S1.

In order to speed up the algorithm to analyze large regions, namely simulated and experimental data with intricate
profiles shown in Figs. 3-4, we split them to smaller subregions where each subregion were overlapped with its neighbors
to avoid edge artefacts. Each subregion are then processed independently. In the end, the resulting µρ profiles from each
subregion are stitched back together to obtain the entire µρ profile [2].

Supplementary Note 1.3: Characterizing the Instrument Response Function

Instrument response function is due to instrument imperfections, defined in eq. (S2) and Fig. S20. The IRF-time is
a random variable and we assume that it follows a normal distribution (which we simply call IRF distribution) with
an average of τIRF and variance of σ2

IRF as given in eq. (S7). The resulting lifetimes and µρ profiles from our method
are very sensitive to the parameters of the IRF distribution. Therefore, it is essential to accurately characterize these
parameters. However, IRF-times are not directly observed and observations are photon arrival times. Photon arrival
times are combinations of the lifetimes and the IRF-times that follow the distribution given by eq. (S14). Therefore, the
IRF parameters can be calculated using calibration experiments where a trace of photon arrival times is acquired for a
single fluorophore species with a known lifetime; see Fig. S18.

To characterize the IRF given calibration data, we developed a MCMC algorithm to learn the IRF mean (τIRF) and
variance (σ2

IRF) by sampling from the posterior of these parameters. The posterior is proportional to the likelihood given
by eq. (S14) and the priors over the parameters of interest, namely τIRF and σ2

IRF. We take uniform priors for both of
these parameters and the resulting posterior is therefor proportional to the likelihood. We used the Metropolis Hasting
(MH) algorithm [3,4] to sample from this posterior where the acceptance ratio is given by

A =
P
(

∆t|τpropIRF , σpropIRF , λ
)

P
(

∆t|τoldIRF, σ
old
IRF, λ

) (S20)

where P
(

∆t|τpropIRF , σpropIRF , λ
)

is the likelihood of the set of given arrival times. Here, we dropped the the subscript sik of

λ since there is only one fluorophore species in the calibration data. After taking adequate samples, the mean τIRF and
variance σ2

IRF is calculated by taking averages of the drawn samples.

Supplementary Note 2: Description of the Inference Framework

Supplementary Note 2.1: Prior Distributions

In the Bayesian framework, priors are included on all the unknown parameters. Here, these parameters are: the inverse
of lifetimes λm, the indicator parameters sik, the concentrations ρm (we learn µρ rather than the concentration ρ), and
the mean of GP prior νm. In the following, We describe the priors used in our inference framework.

Prior on inverse of lifetimes

Since the inverse of lifetimes are positive, we put a gamma prior on this parameter to restrict them to positive values

λm ∼ Gamma(αλ, βλ), m = 1, ... ,M (S21)

where αλ and βλ are shape and scale parameters, in turn.
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Prior on the indicator parameters

The indicator parameter sik is a discrete variable that accept values from 1 to M (total number of species). It therefore
follows a categorical distribution as described in the Methods section

sik ∼ Categorical1:M ({πm}m). (S22)

This distribution is also conjugate to the likelihood and results in a closed form for the posterior (derived in the next
section), which permits direct sampling of this parameter.

Prior on non-uniform µρ

Non-uniform µρ profiles are comprised of a set of correlated random variables. Therefore, we put a Gaussian process
(GP) prior on these profiles

µρm ∼ GP(νm,K) (S23)

where νm and K, respectively, are the mean and covariance matrix. The covariance matrix of the GP prior is given
by [5–7]

K
(
X,X ′

)
= σ2

GP exp

[
−1

2

(
X −X ′

L

)2
]

(S24)

where σGP and L are positive parameters, and X is the set of x and y locations used to calculate correlations.

Prior on the mean of GP prior

We also learn the mean of GP prior νm and therefore we must put a hyper-prior on this parameter as well. We use a
normal distribution with mean zero as the prior for νm

νm ∼ Normal(0, σν). (S25)

Prior on uniform µρ profiles

Uniform µρ profiles do not vary across space and therefore can be learned as a scalar value. Since µρ is positive, we use
a gamma prior which is flexible and also guarantees that µρ does not take negative values

ρm ∼ Gamma(αρ, βρ) (S26)

where αρ and βρ are shape and scale parameters, respectively.

Summary of all equations

Fig. S21: Graphical model describes the conditional dependence between different parameters in our method. The gray,
blue and blank circles, respectively, indicate observations, unknown parameters and intermediate parameters. k, i and
m, respectively, count pulses, pixels and species. W i

k and ∆tik reports if a pulse was empty or not and the arrival time of
a photon from the kth pulse in ith pixel, in turn. sik is the indicator parameter for a photon from the kth pulse in the ith
pixel and can be an integer from 1 to M . ρm and τm are respectively the concentration and lifetime of the mth species.
νm is the mean of GP prior on the mth concentration profile.
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For concreteness, we summarize the entire set of distributions used in this formulation, including hyper-priors, priors and
the likelihood, in the following.

Hyper-priors:

νm ∼ Normal(0, σν). (S27)

Priors:

λm ∼ Gamma(αλ, βλ), (S28)

µρm|νm ∼ GP(νm,K), (S29)

sik|{πim}m ∼ Categorical1:M ({πim}m). (S30)

(S31)

Likelihoods:

∆tik|λsik ,W
i
k ∼

[
N∑
n=0

λsik
2

exp

(
λsik
2

(
2(τIRF −∆tik − nT ) + λsikσ

2
IRF

))

× erfc

(
τIRF −∆tik − nT + λsikσ

2
IRF

σIRF

√
2

)]W i
k

, (S32)

W i
k|πi0 ∼ Bernoulli(1− πi0). (S33)

Supplementary Note 2.2: Description of the Sampling Framework

The joint posterior of all the parameters of interest is shown by P ({µρm, νm, τm}m, s|W,∆t) where the curly bracket
with the subscript m indicates the set of the parameters inside the bracket for all the species indexed by m, and s with
over-lines represent the set of all indicator parameters for every pulse (indexed by k) and pixel (indexed by i). This joint
posterior is proportional to the product of the likelihood and the priors described before. In order to make inference
about the system, we use the MCMC technique. Our MCMC technique implements the Gibbs sampling by sequentially
taking samples from the posterior of every parameter conditioned on the rest of parameters, which is called either the
target distribution or full conditional distribution [8, 9]. Here, the set of parameters of interest are {µρm}m, {νm}m, s
and {λm}m which are sampled as follows:
1) The set of µρm profiles are jointly sampled using the MH algorithm;
2) The set of hyper-parameters, νm, are jointly sampled using the MH algorithm;
3) The set of indicator parameters, sik, are directly sampled;
4) The set of lifetimes, τm, are jointly sampled using the MH algorithm.
In the following, we introduce the target distribution for each of theses parameters and discuss our sampling scheme in
further detail.

Supplementary Note 2.2.1: Sampling λm

The target distribution of {λm}m is given by (Fig. S21)

{λm}m ∼ P
(
{λm}m|s,∆t,W , {µρm, νm}m

)
(S34)

∝ P
(

∆t|s,W, {λm}m
)
P ({λm}m) (S35)

=

[∏
i

∏
k

P
(

∆tik
∣∣W i

k, λsik

)]∏
m

P (λm) (S36)

=

[∏
i

∏
k

[ N∑
n=0

λsik
2

exp

(
λsik
2

(
2(τIRF −∆tik − nT ) + λsikσ

2
IRF

))

×erfc

(
τIRF −∆tik − nT + λsikσ

2
IRF

σIRF

√
2

)]W i
k

][∏
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where the likelihood of the entire set of photon arrival times is simply the product of the likelihood of every individual
photon arrival time, eq. (S14), due to their independence. The above expression does not have a closed form and therefore
the MH algorithm is used to sample {λm}m. We take the proposed lifetimes, λprop

m , from a gamma distribution

λm ∼ Gamma

(
αprop
λ ,

λold
m

αprop
λ

)
, m = 1, ..., M (S38)

and the MH acceptance ratio is given by

A =
P
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∆t|s,W, {λprop
m }m

)
P ({λprop

m }m) Gamma
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{λold
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m }m
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λ

)
P
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∆t|s,W, {λold
m }m

)
P ({λold

m }m) Gamma
(
{λprop

m }m;αprop
λ ,

{λold
m }m
αprop
λ

) . (S39)

Supplementary Note 2.2.2: Sampling sik

The target distribution of sik is given by (Fig. S21)

sik ∼ P
(
sik|∆tik,W i

k, {λm, µρm, νm}m
)

(S40)

∝ P
(
∆tik|W i
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P
(
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)
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where πim is given in the Methods section. Samples can be directly taken from the above distribution since it has a closed
form.

Supplementary Note 2.2.3: Sampling non-uniform µρm

The target distribution of {µρm}m is given by (Fig. S21)

{µρm}m ∼ P
(
{µρm}m|∆t, s,W , {λm, νm}m

)
(S44)

∝ P
(
s|{µρm}m

)
P
(
W |{µρm}m

)
P ({µρm}m|{νm}m) (S45)

where
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(S46)

where πi0 and πim are introduced in the Methods section of the main text. We use GP priors on the species µρ profiles,
given in (S23). In the following, we first give a short theoretical background for GPs and then describe our implementation
of GPs to learn the µρ profiles.
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The objective of GPs is making inference about a generic function, f , which is considered to be comprised of an infinite
set of correlated random variables. The correlation between these random variables is described by the correlation function
K. In practice, dealing with infinite number of random variables is formidable and therefore a finite subset of test points,

Xt, is picked and we make inference about the function values at these set of test points, f t = f
(
Xt
)

[5–7]. The function

f is usually hidden and observations are noisy measurements, y, of this function at a set of observation points Xo, where

y ∼ P
(
y|fo

)
(S47)

fo = f
(
X0
)
.

A system with Gaussian noise is described by a Gaussian likelihood which is conjugate to the GP prior and results in
a closed form posterior that can be directly sampled [5–7]

P
(
y|fo

)
= Normal

(
y; fo, Iσ

)
(S48)

P
(
f t, fo

)
= Normal

([
fo

f t

]
;

[
µo0
µt0

]
,

[
Ko,oKo,t

Kt,oKt,t

])
(S49)

where Ko,o,Kt,t and Kt,o are, respectively, covariance matrices, which is given by (S24), between subsets fo and itself,
f t and itself, and fo and f t. µo0 and µt0 are the mean values at observation points and test points, respectively, which
are usually taken to be zero. I denotes the identity matrix with size the same as K. Marginalization over fo results in
a multi-variate normal distribution with the following mean and covariance matrix

µ̂ = µt0 + Kt,o (Ko,o + σI)
−1

(y − µo0) (S50)

K̂ = Kt,t −Kt,o (Ko,o + σI)
−1

Ko,t. (S51)

The above framework allows implementation of a direct sampling to make inference about f , where f can be learned
with a desired resolution by taking a more densely spaced set of test points. Note that the most intensive computational
calculation in GPs is computing the matrix inverse and multiplications in the above formula, which is of order of O

(
n3
)

for n observations. For big data sets with more than 100K data points, these calculations become intractable. One way
to ameliorate this difficulty is introducing a set of inducing points Xc [10], where the number of inducing points is smaller
than the set of data/observation points, and f

c
= f

(
Xc

)
. The function values at the test points, f t, are deterministically

related to the function values at the inducing points, f c, by

f t = Kt,c(Kc,c)−1f c (S52)

where Kt,c is the covariance matrix between the sets of inducing points and test points. Once the function values at
inducing points are learned, the function values at test points are updated using eq. (S52).

Now that we have discussed GP prior for conjugate likelihoods, we proceed by the more challenging but more common
case of non-conjugate likelihoods. Any system with non-Gaussian noise is described by non-conjugate likelihoods to
Gaussian processes and thus the posterior does not have a closed form. Therefore, the MH algorithm is employed to learn
the function values at the inducing points where the acceptance ratio of a proposed jump is [11]

A =
P
(
y|f cj+1

)
P
(
f cj+1

)
P
(
y|f cj

)
P
(
f cj
) Q

(
f cj |f cj+1

)
Q
(
f cj+1|f cj

) (S53)

where j counts jumps and Q is the proposal distribution. A better approximate of the likelihood can be made by using
the test points, which have a better resolution than the inducing points, to calculate the likelihood and hence [11]

A =
P
(
y|f tj+1

)
P
(
f cj+1

)
P
(
y|f tj

)
P
(
f cj
) Q

(
f cj |f cj+1

)
Q
(
f cj+1|f cj

) . (S54)

While GP priors allow negative values, molecular µρ profiles are positive quantities and thus we use the following
substitution to assure that the proposed values are always non-negative

µρm = exp(χm) (S55)

where χm takes both negative and positive values. We learn χm employing the GP method and then find µρ using eq.

(S55). The likelihood of {χm}m, P
(
s,W |{χm}m

)
, is obtained by replacing µρm with exp(χm) in the calculations. The

27



resulting likelihood is non-conjugate to the GP prior and the posterior does not have a closed form. Therefore, we employ
the MH algorithm described above to make inference about {χm}m. We use a multivariate normal distribution centered
at zero and a GP with a scalar mean, νm, as the proposal and prior distributions, respectively. The covariance matrix
of the multivariate normal proposal distribution is taken to be the same as the GP prior. The mean of the GP prior is
learned independently. This procedure is described by the following steps:
Step 1
Select the set of inducing points to be the center of pixels and pick the set of test points according to the desired resolu-
tion. Initialize χm at inducing points to χcm,j=1.

Step 2
Update χm at inducing points for all species by taking samples from the GP proposal distribution using the Cholesky
decomposition [12] as follows

χcm,j+1 = χcm,j + Lu (S56)

LLT = Kc,c (S57)

where u is a set of random numbers drawn from a normal distribution.

Step 3
Update χm values at the test points, χtm, given the set of inducing points χcm,j+1 using (see eq. (S52))

χtm,j+1 = Kt,c(Kc,c)−1χcm,j+1 (S58)

Step 4
Accept the proposed χtm,j+1 by calculating the acceptance ratio (S54)

A =
P
(
s,W |{χtm,j+1}m

)
GP

(
{χtm,j+1}m; {νm}m,K

)
P
(
s,W |{χtm,j}m

)
GP

(
{χtm,j}m; {νm}m,K

) (S59)

where {νm}m are the means of GP priors. Note that the proposal distributions are canceled. These steps are repeated
in every iteration.

Supplementary Note 2.2.4: sampling νm

The target distribution of {νm}m is described by (Fig. S21)

P ({νm}m|{χm}m) ∝ P ({χm}m|{νm}m)P ({νm}m)

= GP ({χm}m; {νm}m,K)
∏
m

Normal
(
νm 0, σ2

ν

)
(S60)

where σ2
ν is the variance of the normal prior. The values of {νm}m are modified using the MH method where the

acceptance ratio is

A =
GP ({χm}m; {νm,j+1}m,K)

∏
m Normal

(
νm,j+1, 0, σ

2
ν

)
GP ({χm}m; {νm,j}m,K)

∏
m Normal (νm,j , 0, σ2

ν)
(S61)

and the new values are proposed using a random walk.

Supplementary Note 2.2.5: Sampling uniform µρm

To learn uniform µρ profiles, we employ a regular MH sampling technique, which is much less computationally intense
than GP. We take the proposal distribution and the priors on {µρm}m to be gamma distributions

{µρm}m ∼ Gamma

(
αProp
ρ ,

{µρold
m }m

αProp
ρ

)
, m = 1, ..., M (S62)

P ({µρm}m) = Gamma ({µρm}m;αρ, βρ) , m = 1, ..., M. (S63)
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The acceptance ratio of the proposed µρprop, is given by
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P
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m }m
)

Gamma ({µρprop
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m }m
)

Gamma ({µρold
m }m;αρ, βρ) Gamma

(
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m }m;αprop
ρ ,

{µρoldm }m
αprop
ρ

) (S64)

where the likelihood is given by (S46).

Supplementary Note 3: Additional Results using Smoothly Varying Pro-
files

To further assess our method’s performance–with respect to photon counts, pixel size, lifetimes, and number of lifetime
components–we generated data sets with smoothly varying µρ profiles where we also varied: 1) photon counts per pixel;
2) pixel size; 3) number of lifetime components; and 4) lifetimes; Fig. S2-S8.

To examine the performance of our algorithm with respect to pixel size and photon counts, simulated data sets were
generated with two µρ profiles that vary between 0.2 and 0.6 µm−3 over a region of 32×32 pixels; pixel sizes of 0.2 or
0.4 µm; lifetimes of (0.8 3.6) or (2.5 3.6) ns; and 50, 100 and 200 photons per pixel, Figs. S2-4. To assess the lifetime
resolution achieved by our method, a data set with two lifetimes of (2, 2.5) ns, which differ by only 0.5 ns, and 200
photons per pixel was simulated over a region of 10×10 pixels giving 20K photon counts in total, Fig. S5. To evaluate
the performance of our algorithm in learning lifetimes similar to the IRF width and exceeding the inter-pulse time, we
generated data sets similar to the previous ones except we used lifetimes of (2, 25) and (0.66, 2) ns, Figs. S6-7. We also
simulated a data set with three µρ profiles smoothly varying between 0 and 0.2 µm−3 over 20×20 pixel; lifetimes of 0.8,
2.2 and 5.2 ns; 100 photon count per pixel, and pixel size of 0.2 µm, Fig. S8.

To process these data sets, we used a 2D grid of test points (see Supplementary Note 2.2) with a grid size of 0.06 µm
which gives resolutions of 1/3 and 1/6 of the pixel sizes for the small and large pixels in Fig. S2, respectively. Furthermore,
for all data sets we assumed molecules can be excited up to N = 5 previous pulses except for the data set with a lifetime
larger than the inter-pulse time where we used N = 20, Fig. S7. Slices of the resulting µρ profiles from our algorithm
are depicted in Fig. S2 where the blue regions, solid pink curves and dashed black curves, respectively, represent the
posterior’s 95% confidence interval (i.e., credible interval), the median and the ground truth of µρ.

We proceed by discussing the performance of our method with respect to lifetimes. The first and second two rows in
Figs. S2 and 3, respectively, depict the results for lifetimes of (0.8, 3.6) ns and (2.5, 3.6) ns. For the simpler case with
pair of more dissimilar lifetimes, our method learns both µρ and lifetimes, Figs. S2-S3. For the case of more challenging
pair of lifetimes, (2.5, 3.6) ns, the ground truths of µρ reside within the 95% confidence regions. However, the size of
95% confidence intervals are larger and the median of the learned µρ slightly deviates from the ground truths by less
than 18 percent for data sets with 50 and 100 photons per pixel; Figs. S2c,g-h. The deviation for Fig. S2d is larger than
18 percent. The peaks of histograms for the lifetime samples also deviates from the ground truths by about 0.3 ns, Fig.
S3. c-d,g-h. This is due to: 1) the number of available photons per unit of area is small; 2) the lifetimes are very similar
and difficult to discriminate. We further assessed the performance of our algorithm in resolving lifetimes that differ by
only 0.5 ns (the lifetime difference in this case is 25%) using more photons per pixel over a smaller region, Fig. S5. The
algorithm learns both concentration profiles and lifetimes with ∼ 5% error, Fig. S5. We also evaluated the performance
of our algorithm in learning lifetimes over a wide range of values, namely lifetimes similar to the IRF width and larger
than the inter-pulse interval, Figs. S6-S7. To do so, we generated data sets with two lifetimes and smoothly varying
concentration profiles. In both data sets, one of the lifetimes used was 2 ns while the other lifetimes were either 0.66 ns
(similar to the IRF) or 25 ns (∼ 2 times larger than the inter-pulse time). Our algorithm learns both µρ profiles and
lifetimes for these data sets, see Figs. S6-S7, where the difference of the mean of the sampled lifetimes and the ground
truth for the lifetime larger than the inter-pulse time is ∼ 3.7% with a standard deviation of 3.45 ns, Table S3. Although
the reported uncertainty is high the reported mean is very close to the ground truth (3.7% difference). Therefore, while
our method learns lifetimes over a wide range, the reported uncertainties increase for larger lifetimes, Table S3.

Next, we examine the results with respect to photon counts and pixel sizes. The first, second and third columns in
Figs. S2-S3 show results using simulated data sets with 50, 100 and 200 photons per pixel, in turn. Larger photon counts
result in smaller 95% confidence regions for the learned µρ, Fig. S2, and sharper lifetime histograms, Fig. S3. The first
and third rows show results from data sets simulated with a pixel size of 0.2 µm and the pixel size for the data sets used
in the second and fourth rows was 0.4 µm. The width of 95% confidence regions increase for cases with the larger pixel
size due to the decrease in the number of collected photon per unit of area.

To show an example of the entire simulated smoothly varying µρ profiles, a 3D plot of the generated ground truths
with lifetimes of 0.8 and 3.6 ns are presented in Fig. S4a. Fig. S4b shows a 3D plot of the median of sampled µρ profiles
for the simulated data set synthesized using concentration profiles in the panel a. The grids show pixels with a size of
0.2 µm.
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We also assessed our method’s performance employing synthesized data with 3 lifetime components, shown in Fig. S8.
Slices of the learned µρ profiles are depicted in Fig. S8a. The ground truths of µρ reside within the 95% confidence area
of the learned µρ; Fig. S8a. Moreover, our method infers the corresponding lifetimes of the concentration profiles where
the histogram of the samples are shown in Fig. S8b.
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Supplementary Note 4: Table of Parameter Values used for Data Analysis

Parameter ωxy ωz σIRF τIRF T αλ βλ αpropλ σGP L αρ βρ αpropρ σν
Unit µm µm ns µm ns - ns - µm µm - µm3 - µm

Fig. 2 0.15 0.24 0.66 10.4 12.8 1 100 5,000 - - 1.01 150 20,000 50
Fig. 3 0.3 1 0.66 10.4 12.8 1 100 3,000 1 0.4 - - - 50
Fig. 4 0.3 1 0.66 10.4 12.8 1 100 3,000 1 0.4 - - - 50

SI Fig. 1 0.15 0.24 0.66 10.4 12.8 1 100 5,000 - - 1.01 150 20,000 50
SI Fig. 2-4 0.3 1 0.66 10.4 12.8 1 10 2,000 1 3 - - - 50
SI Fig. 5 0.3 1 0.66 10.4 12.8 1 10 3,000 1 0.8 - - - 50
SI Fig. 6 0.3 1 0.66 10.4 12.8 1 50 5,000 1 0.8 - - - 50
SI Fig. 7 0.3 1 0.66 10.4 12.8 1 10 2,000 1 0.8 - - - 50
SI Fig. 8 0.3 1 0.66 10.4 12.8 1 10 2,000 1 0.75 - - - 50

Table S1: Table of the the parameter values used for the analysis of the data.
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Supplementary Note 5: Table of Parameter Values used in Data Simula-
tion

Parameter ωxy ωz σIRF τIRF T δt µ τ ρ
Unit µm µm ns µm ns ns ns−1 ns µm−3

Fig. 2a-b 0.15 0.24 0.66 10.4 12.8 0.1 10−3 2.5, 3.6 0.5K, 2K
Fig. 3 0.3 1 0.66 10.4 12.8 0.1 10−3 1.5, 5 Profiles

SI Fig. 1 0.15 0.24 0.66 10.4 12.8 0.1 10−3 0.8, 3.6 0.5K, 2K
SI Fig. 2-3a-b,e-f,i-j 0.3 1 0.66 10.4 12.8 0.1 10−3 0.8, 3.6 Profiles
SI Fig. 2-3c-d,g-h,k-l 0.3 1 0.66 10.4 12.8 0.1 10−3 2.5, 3.6 Profiles

SI Fig. 4 0.3 1 0.66 10.4 12.8 0.1 10−3 0.8, 3.6 Profiles
SI Fig. 5 0.3 1 0.66 10.4 12.8 0.1 10−3 2,2.5 Profiles
SI Fig. 6 0.3 1 0.66 10.4 12.8 0.1 10−3 0.66, 2 Profiles
SI Fig. 7 0.3 1 0.66 10.4 12.8 0.1 10−3 2, 25 Profiles
SI Fig. 8 0.3 1 0.66 10.4 12.8 0.1 10−3 0.8, 2.2, 5.2 Profiles

Table S2: Table of parameter values used in generation of the simulated data.
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Supplementary Note 6: Table of Results

µρ1 std µρ2 std τ1 std τ2 std τ3 std
Fig. 2a-b (500 photon) 0.205 0.024 0.049 0.024 3.79 1.13 2.32 0.48 - -
Fig. 2a-b (1K photon) 0.207 0.018 0.042 0.017 3.85 1.02 2.59 0.17 - -
Fig. 2a-b (2K photon) 0.206 0.026 0.057 0.025 3.78 0.75 2.48 0.19 - -
Fig. 2a-b (5K photon) 0.203 0.017 0.047 0.015 3.56 0.45 2.51 0.08 - -
Fig. 2c-d (500 photon) 0.188 0.016 0.053 0.013 3.48 0.25 2.40 0.57 - -
Fig. 2c-d (1K photon) 0.195 0.010 0.049 0.010 3.37 0.20 2.37 0.46 - -
Fig. 2c-d (2K photon) 0.19 0.010 0.065 0.007 3.54 0.23 2.57 0.39 - -
Fig. 2c-d (5K photon) 0.197 0.006 0.046 0.005 3.70 0.12 2.60 0.41 - -
SI Fig. 1 (500 photon) 0.202 0.011 0.054 0.01 3.90 1.02 0.79 0.078 - -
SI Fig. 1 (1K photon) 0.203 0.015 0.058 0.013 4.05 1.22 0.86 0.08 - -
SI Fig. 1 (2K photon) 0.197 0.09 0.056 0.008 3.80 0.60 0.83 0.05 - -
SI Fig. 1 (5K photon) 0.203 0.006 0.054 0.006 3.60 0.36 0.83 0.03 - -

SI Fig. 3a - - - - 3.62 0.07 0.82 0.018 - -
SI Fig. 3b - - - - 3.66 0.07 0.82 0.017 - -
SI Fig. 3c - - - - 3.41 0.07 2.43 0.097 - -
SI Fig. 3d - - - - 3.97 0.19 2.65 0.06 - -
SI Fig. 3e - - - - 3.65 0.05 0.81 0.012 - -
SI Fig. 3f - - - - 3.46 0.05 0.78 0.014 - -
SI Fig. 3g - - - - 3.48 0.06 2.42 0.075 - -
SI Fig. 3h - - - - 3.48 0.06 2.40 0.072 - -
SI Fig. 3i - - - - 3.62 0.03 0.80 0.009 - -
SI Fig. 3j - - - - 3.46 0.04 0.77 0.011 - -
SI Fig. 3k - - - - 3.69 0.08 2.50 0.029 - -
SI Fig. 3l - - - - 3.61 0.06 2.46 0.028 - -
SI Fig. 5b - - - - 2.45 0.06 1.89 0.06 - -
SI Fig. 6b - - - - 2.00 0.04 0.67 0.026
SI Fig. 7b - - - - 1.92 0.06 25.92 3.45 - -
SI Fig. 8b - - - - 5.28 0.015 2.12 0.05 0.79 0.012
SI Fig. 10 - - - - 5.11 0.05 1.46 0.012 - -
SI Fig. 13 - - - - 5.58 0.24 1.57 0.04 - -

Table S3: Table of mean values and standard deviations of the last fifth of the chains of samples for scalar variables.
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Supplementary Note 7: Table of Notations

Indices Description
m Index indicating species, it takes a value from 1, ...,M
k Index referring to a pulse or a photon detected after this pulse
lm Index of a molecule of species m
i Index of pixels
n Index counting the preceding pulses to a pulse where a photon is detected

Spatial Coordinates Description
~X Molecule locations with elements (x, y, z)
ξi Center of the ith confocal spot/pixel with elements (ξix, ξ

i
y, ξ

i
z)

Auxiliary Parameters Description
πim Probability of detecting a photon from species m in the ith pixel
πi∗ Probability of excitation of more than a single fluorophore during a

pulse in the ith pixel

p0m,lm Probability of the lth molecule of type m located at ~Xlm not excited
P0m Probability of no molecule from species m being excited

∆tiext,k Time that an excited fluorophore spends in the excited state

∆tiIRF,k IRF time of a photon detected after the kth pulse in the ith pixel

∆ti?k The arrival time of a photon detected after the kth pulse, ∆ti?k = ∆tiems,k + ∆tiIRF,k

χm Logarithm of concentration of the mth species, χm = log(ρm)
Random Variables Description

ρm Absolute concentration of species m
{ρm}m Set of all absolute concentrations
τm Average lifetime of excited state of species m
{τm}m Set of all lifetimes
λm Inverse of the lifetime, 1/τm
{λm}m Set of inverse of lifetimes for all species
νm Mean of GP prior on χm
{νm}m Set of means of all GP priors on {χm}m
sik Indicator parameter indicating a photon from pulse k in the ith pixel

is associated to what species
si The collection of the indicator parameters for pulses in the ith pixel
s The collection of the indicator parameters for all pulses and pixels

Data Description
∆tik Arrival time of a photon detected from the ith pixel and kth pulse

∆t
i

The collection of photon arrival times from the ith pixel

∆t The collection of all photon arrival times during course of the experiment
W i
k Binary label indicating if the kth pulse from the ith pixel was empty or not

W
i

The collection of binary labels for all the excitation pulses in the ith pixel

W The collection of binary labels for all the excitation pulses during course of the experiment
Experimental Parameters Description

δt Average duration of laser pulses
µ̂m Excitation rate of species m
µm Average number of excited fluorophores of type m per excitation pulse, µm = µ̂mδt
τIRF Offset of instrument response function
σ2

IRF Variance of instrument response function
T Time interval between two consecutive laser pulses

PSFξi( ~X) Excitation and detection point spread function (PSF)
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Priors Hyper-parameters aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaDescription aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
αλ Shape parameter of gamma prior on inverse of lifetimes
βλ Scale parameter of gamma prior on inverse of lifetimes
αρ Shape parameter of gamma prior on uniform concentrations
βρ Scale parameter of gamma prior on uniform concentrations
K Covariance matrix of GP priors
σGP Parameter of covariance matrix of GP priors
L Parameter of covariance matrix of GP priors
νm Mean of GP prior on χm
σ2
ν Variance of Normal prior on νm

Proposal Parameters Description
αprop
λ Parameter of gamma proposal distribution for inverse of lifetimes
αprop
ρ Parameter of gamma proposal distribution for uniform concentrations

Table S4: Table of notations used in the mathematical formulation.
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Supplementary Note 8: Table of Abbreviations

Abbreviation Description
FLIM Fluorescence Lifetime Imaging Microscopy
FRET Fluorescence Resonance Energy Transfer
NADH Nicotinamide Adenine Dinucleotide + H

CW Continuous Wave
BNP Bayesian NonParametric
IRF Instrument Response Function
PSF Point Spread Function
K Kilo

GP Gaussian Process
MCMC Markov Chain Monte Carlo

MH Metropolis-Hastings
FWHM Full Width at Half Maximum

Table S5: Table of abbreviations used in this manuscripts.
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Supplementary Note 9: Table of Distribution

Distribution Notation Density Function Mean Variance

Normal Normal(µ, σ2) 1√
2πσ2

e−
(x−µ)2

2σ2 µ σ2

Exponential Exponential(λ) λe−λx λ λ2

GP GP(ν,K) 1√
(2π)ddet(K)

e−(X−ν)TK−1(X−ν) ν K

Gamma Gamma(α, β) xα−1

Γ(α)βα e
− xβ αβ αβ2

Bernoulli Bernoulli(q) (q − 1)δ0(x) + qδ1(x) q q(1-q)

Poisson Poisson(λ) λxe−λ

x! λ λ

Table S6: Table of used Distributions in the model formulation.
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