
Supplementary Materials for
Reassessing hierarchical correspondences between brain and deep networks 

through direct interface

Nicholas J. Sexton and Bradley C. Love

Corresponding author: Nicholas J. Sexton, n.sexton@ucl.ac.uk

Sci. Adv. 8, eabm2219 (2022)
DOI: 10.1126/sciadv.abm2219

This PDF file includes:

Figs. S1 to S10
Tables S1 to S3



SI Figures

Figure S1: Standard approaches to relating primate ventral stream and DCNNs evaluate vari-
ance shared between data from each brain region and unit activations on each DCNN layer.
They have been taken as evidence that earlier ventral stream regions (e.g., V4) correspond to
earlier DCNN layers and later regions (e.g., IT) correspond to later DCNN layers. Here, we
present a shared-variance based analyses of directly recorded spiking neural activity (16) and
VGG-16 using an established method (20) Higher correlations reflect more shared variance be-
tween brain region and model layer.



Figure S2: Comparison of the brain-DCNN interface as a neural pattern classifier, compared
with standard linear classifiers typically used in multi-voxel pattern analysis (MVPA). We
present classification performance (AUC) directly on neural patterns, on the Generic Object
Decoding (A) and BOLD5000 (B) datasets, for simple classifiers (support vector machine with
linear kernel, multiclass logistic regression, and a 1-nearest neighbour classifier) with results for
interface with each layer of the DCNN presented for comparison. Performance of the simple
classifiers is generally near chance (0.5), we attribute this to the large number of image classes
(150, 958 respectively) and few available examples (2, 8 per class) which severely limit the
available training data. Because the brain-DCNN interface learns a general mapping between
brain region and model, it does not suffer this limitation, making it an appealing novel approach
for MVPA.



Figure S3: Learning a mapping directly from neural measures to DCNN activation space pro-
duces a general mapping, rather than being dependent on training examples. The neural inter-
face has an in-built ability to generalise to novel classes. This is demonstrated by presenting
classification performance (AUC) on the BOLD5000 dataset, by comparing cross-validation
(CV) strategies. Error bars represent 95% confidence intervals across 3 subjects. Stratified 8-
fold CV (the default, used in all other analysis) ensures each training partition contains at least
one example of each class. Leave-one-class-out CV involves the same number of CV folds
as there are classes, each time training on all data except one class, which is withheld for the
validation set. Performance is equivalent or better (LOC) when generalising to novel classes,
which we attribute to more training data per CV fold. Due to the training time, this analysis was
restricted to layer 5a.



Figure S4: Alternative ‘backprop mode’ for training the transformation matrix W mapping
from neural space to DCNN activation space. Classification performance (AUC) on the
BOLD5000 dataset follows a qualitatively similar pattern to the main analysis (compare fig.
2B), albeit with lower absolute accuracy. The default analysis trains W independently as a re-
gression problem, using layer activations as supervision targets directly. Instead, this approach
uses W as a weights matrix for a new neural network that takes neural data from a brain region
as input, connected to the latter part of the DCNN, and training the network using the class
labels as supervision targets, with all other DCNN weights frozen.



Figure S5: Alternative procedure for training linear mapping. Model activations on the
BOLD5000 dataset are projected down to first 5000 principal components, with the linear map
trained to predict in this reduced-dimensionality latent space, before being projected back up to
native dimensionality for each layer. Analyses repeated for different levels of ℓ2 regularisation.
Results show a similar pattern to the main analysis, with lower absolute accuracy. Best results
are obtained with zero ℓ2 penalty.



Figure S6: Interfacing pixel-level data from BOLD5000 stimulus images with DCNN in place
of neural data. These results demonstrate correspondence of early layers with early layer-like
information.

Figure S7: Perturbation analysis. Base model activations on each layer were perturbed by
adding Gaussian noise, with MSE of unit activations on a downstream layer (Conv5c) evaluated
against those evoked by nonperturbed activations. The distribution of Conv5c MSE across the
BOLD5000 image stimulus dataset is plotted for each layer. These results suggest the greatest
downstream effect comes from perturbing the immediately preceding layer’s activations, with
perturbations further upstream having a minor effect.



Figure S8: Fit (mean squared error) of the linear projection from brain data to DCNN acti-
vations on each layer, for training and evaluation phases. (A) Generic Object Decoding (B)
BOLD5000 (C) Linear Weighted Sums. Note that MSE is affected by dimensionality and scal-
ing based on learned weights on each layer, therefore may not be directly comparable across
layers.



Figure S9: Downstream error: For neural data input into model layer n, the figure shows the
distance (MSE) in model activations computed on the n+1 convolutional layer, compared with
those evoked by image-input on the BOLD5000 dataset. Note that, confirming results from the
perturbation analysis (S7), downstream error is smaller than the linear map error (S8).



Figure S10: Top 5 accuracy of predictions from brain data (A: Generic Object Decoding, B:
BOLD5000) showing a similar pattern to evaluation using AUC. Note that for the number of cat-
egories (958 and 150 categories respectively), corresponding chance accuracy levels are 0.52%
and 3.3%.



SI Tables

Dataset Generic Object Decoding(16) BOLD5000(15) Linear Weighted Sums(17)

Stimuli experiment ‘train’ phase: 1916 images from 3200 greyscale
1200 images from 150 958 categories composite images, 64
categories (ImageNet (ImageNet ILSVRC 2012 objects in 8 categories,)

Fall 2011) non-congruent
background

Task one-back repetition valence judgement passive viewing, RSVP
detection (‘like’, ‘neutral’, ‘dislike’) presentation 100ms/100ms

Subjects 5 human fMRI 3 human fMRI 2 Macaque monkeys
(partial data from (vectors concatenated)

subject 4 excluded) multi-unit recording
Time indices full 9s of image presentation TR3-4 70-170ms
Brain region V1 (1004, 757, 872, 719, 659) EarlyVis (495, 495, 1218) IT (168 = 58 + 110)

(dimensionality V2 (1018, 944, 1031, 855, 891) LOC (342, 888, 1027) V4 (88 = 70 + 18)
per subject) V3 (759, 810, 861, 929, 907) OPA (288, 180, 392)

V4 (740, 544, 754, 704, 860) PPA (331, 370, 273)
LOC (540, 834, 996, 668, 566) RSC (229, 421, 394)
PPA (356, 316, 496, 398, 550)
FFA (568, 435, 928, 725, 929)

Stimulus 12◦ 4.6◦ 8◦

field of view (6◦ after cropping)

Table S1: Neural datasets For further dataset details, such as how regions were defined, we
refer readers to the original publications



Block Layer Dimensions (h× w × c) Filter Size

Input 64× 64× 3

1 1a 64× 64× 64 3× 3
1b 64× 64× 64 3× 3

max pool 1 2× 2
2 2a 32× 32× 128 3× 3

2b 32× 32× 128 3× 3
max pool 2 2× 2

3 3a 16× 16× 256 3× 3
3b 16× 16× 256 3× 3
3c 16× 16× 256 3× 3

max pool 3 2× 2
4 4a 8× 8× 512 3× 3

4b 8× 8× 512 3× 3
4c 8× 8× 512 3× 3

max pool 4 2× 2
5 5a 4× 4× 512 3× 3

5b 4× 4× 512 3× 3
5c 4× 4× 512 3× 3

max pool 5 2× 2
FC FC1 4096

dropout 1
FC2 4096

dropout 2
FC3 (output) 1000 softmax

Table S2: DCNN Architecture: Layer configuration and dimensions of the DCNN used for
all analyses.

Training Set Top 1 Accuracy Top 5 Accuracy

Imagenet ILSVRC 2012 (1000 classes) 57.64% 80.53%
Imagenet Fall 2011 (21841 classes) 37.74% 62.51%

Table S3: DCNN Performance. Base DCNN (64x64) accuracy on training datasets.
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