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Supplementary Fig. 1: Topology of TMC1. A) Schematic representation of the 10-TM topology of TMC1. Parts of 
the N-terminus (residues 100-130 in mouse TMC1) as well as the intracellular loop between TM helices 2-3 (residues 
300-350) have been implicated in binding to the auxiliary channel subunit CIB2 20,46 . B) Schematic for the predicted 
arrangement of the helices in the dimeric structural models. Models based on X-ray and cryo-EM structures of 
TMEM16 proteins5, 3 suggest that the subunit interface is near TM10 and may be at least partly filled with lipid or 
perhaps by auxiliary proteins. A top to down view of the dimeric channel is shown with each TM helix represented as 
a circle and colored as in panel A. Subunit B shows TM helix numbers. The approximate position of the pore cavity 
is marked with a + sign in each subunit.  

 



 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
  
  

 
 
Supplementary Fig. 2 Confidence metrics for the AlphaFold2 prediction. A) AlphaFold2-generated per-residue 
confidence scores (plDDT) between 0 and 100 are plotted as a function of residue number. TM domains show pIDDT 
values >80.  B) The expected position error map (PAE) from AlphaFold2 also indicates uncertainty in the N-terminal 
and loop structures but confidence in the fold of the transmembrane domains C) Overlay of the TM2-3 loop (residues 
300-350) from the published crystal structure (in cyan, PDB id: 6WUD) with the predicted fold of this domain (in 
magenta). 
 
 



 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
 
Supplementary Fig. 3. Open-like and closed-like predicted structural models. A) The permeation pathway 
model generated with the HOLE program for the predicted open-like (pink) and closed-like (blue) structures. The 
estimated pore radius is plotted against the pore length Z, from outside to inside. The approximate position of the 
constriction site in the open-like structure, about 10 Å in, corresponds to approximately N404 on TM4 and L524 on 
TM6. Loops and termini (including residues 1-174, 212-266, 294-351, 466-511, 545-566, 617-625, 655-696, 725-
756) are not shown for simplicity. B) A thin cross section of the protein parallel to the membrane at the Z-level of 
approximately N404 on TM4 and L524 on TM6 for the open-like and closed-like structural predictions (pink and blue, 
respectively). C) Contact maps for residues 165-680 in TMC1 predicted by EVcoupling analysis (black dots) are 
mapped onto contact maps from open-like and closed-like predicted structures (pink and blue, respectively). 
Evolutionarily coupled (EC) pairs that are found in proximity only in the closed state are indicated to the right: they 
connect TM4 to TM6 (notably S408-T531 and F413-Y533), and the TM1-2 loop to TM4 (Q245 on TM1-2 loop and 
M403 on TM4). The transmembrane domains corresponding to the residues along the axes are numbered 1-9 (TM10 
not shown). The EVcoupling analysis suggests that these residue pairs are likely to interact; the AlphaFold2 
structures also predict interaction but only in the closed-like conformation. EC 528-601 between TM6 and TM8, which 
is the second strongest coupling out of all possible analyzed pairs, is circled in red. D) nhTMEM16 transition from 
closed (blue)  to intermediate (cyan) state involves TM4 moving away from TM5, while nhTMEM16 transition to the 
open state (wheat color) involves TM4 moving away from TM6. Predicted TMC1 states are shown for comparison.   
 
 



 
 

 
 

  

 

 
 
Supplementary Fig. 4. Effects of G539A/A544G mutation. A) The average maximum transduction currents for hair 
cells virally expressing WT-TMC1, TMC1-G518A, TMC1-G539A, TMC1-G539I and TMC1-G539A/A544G.  
Amplitudes are all similar. B) Sequence alignment of the mouse TM6 helix in orthologs TMC1, 2 and 3.   TMC1 and 
TMC2 have glycine at position 539; TMC3 does not but has a glycine at position 544. C) Representative currents 
from hair cells expressing TMC1-G539I/A544G. D) Normalized open probability curve for G539I/A544G compared 
to the WT control, G539A and G539I. E) Fitting parameters for the four TMC variants.  None are significantly different 
(p =0.1, 0.4 and 0.8 for X0, and 0.7, 0.6 and 0.7 for Z, relative to WT).   
 
 
 
 
 
 



 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 
 
Supplementary Fig. 5. Location and interactions of D528 in the structural model. A) Electrostatic surface charge 
distribution of pore-lining TM6 and TM7 helices, viewed from inside the pore. TM6 contacts the lipid, TM7 is within 
the protein core. WT-TMC1 and TMC1-D528N structures were generated with AlphaFold2. The D528N mutation 
substantially reduces the negative charge that might enhance passage of cations.  B) Extracellular view of the 
selected residues D528 and R601. The approximate locations of the permeation pathway (+) and the lipid bilayer 
(black curve) are indicated. In this conformation, the side chain of D528 forms a salt bridge with the side chain of 
R601. C) The position of deafness mutations M412 and D569 are indicated. In the closed-like conformation, these 
sites would be inaccessible to extracellular solution (Supplementary Fig. 2A), consistent with their limited accessibility 
in the closed state as assessed with cysteine-modifying reagents3. 



 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
 
Supplementary Fig. 6. Average maximum transduction currents for hair cells virally expressing WT-TMC1, 
TMC1-D528A, TMC1-D528N, TMC1-D528E, TMC1-R601A and TMC1-D528N/R601F. There is variability among 
these variants in whole cell currents among.  Variability is expected because most of the mutations are likely to alter 
the charge distribution within the permeation pathway.  
 
 
 
 



 
 

 
 

 
 
 
 
Supplementary Table 1: TMC1 Mutants Packaged in AAV9-PHP.B 
 

 
 
 
 
 
  
 
 
 
 
 
 
   
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Mutation  Titer (vg/ml) Location  

G518A  1.19E+13 TM6 

G411A 3.04E+14 TM4 
G539A 7.65E+13 TM6 
G539I/A543G 8.64E+13 TM6 
G539I  1.76E+14 TM6 
D528A 4.83E+13 TM6 
D528N  3.69E+13 TM6 
D528E  1.48E+14 TM6 
R601A  6.36E+13 TM8 
R601H  4.50E+14 TM8 
R601F/D528N 2.17E+14 TM8/6 
R523H  1.66E+14 TM6 
WT-TMC1-HA 3.12E+13 N/A 



 
 

 
 

 
 
 
Supplementary Table 2: Fitting Parameters. X0 and Z values  
 
 WT G411A G518A G539A G539I 

X0 374±33 507±28 493±19 518±30 478±25 

Z 0.027±0.0027 0.017±0.0014 0.021±0.0023 0.024±0.0023 0.024±0.0020 

 
 
 WT D528A D528N D528E R601A R601F/D528N 

X0 374±33 581±73 340±25 510±29 580±25 510±46 

Z 0.027±0.0027 0.017±0.0022 0.016±0.0018 0.020±0.0011  0.025±0.0030 0.014±0.0015 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Supplementary Table 3: Occurrence of the indicated amino acids at the positions 
corresponding to 518, 539 and 544. The amino acids found in the mouse TMC1 sequence are 
underlined. The frequencies represent those occurring in a multiple sequence alignment of 
5,050 TMC sequences (see Methods). 
 

 G518 G539 A544 

A   27% 

G 98% 50% 11% 

R   34% 

K   19% 

I/V  41%  

 
 



 
 

 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Video 1: A proposed gating trajectory. The trajectory is based on the two 
groups of AlphaFold2 structures possibly representing closed and open states of TMC1. 
 

Supplementary Table 4: Frequency of finding the indicated amino acids at the positions 
corresponding to 523/528/601 within the mouse TMC1 sequence. The frequencies represent 
those occurring in a multiple sequence alignment of 5,050 TMC sequences (see Methods).  
 
523/528/601  
K/D/K 30% 
R/D/K 20% 
R/D/R 17% 
K/D/R 7% 
K/N/F 6% 
other 20% 
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