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Supplementary Figure 1. Schematic overview of Sei model architecture. 4096bp sequences, one-hot
encoded, are the input to the model (bottom) and the predicted 21,907 cis-regulatory profiles are the
output (top).



Supplementary Figure 2. Sei model performance on predicting 21907 cis-regulatory profiles on
holdout chromosomes. a, AUROC curves; b, precision-recall curves; c, precision-recall curves
normalized by the proportion of positives. For all plots, the median score is represented by the colored



line.  The darker shaded region represents the 25th and 75th percentiles. The lighter shaded region
(dashed lines) represents the 10th and 90th percentiles.

Supplementary Figure 3. Visualizing the rank-transform of pairwise Spearman correlations for the
21,907 cis-regulatory profiles in Sei. Sei model predictions share a highly similar correlation structure
with the experimental observations. 

Supplementary Figure 4. Sei model performance comparison with DeepSEA. Performance on the
shared 2002 DeepSEA “Beluga” (2018) cis-regulatory profiles are compared.



Supplementary Figure 5. Comparison of sequence classes and Louvain community clustering with
resolution = 0.5. For each sequence class, the proportion of overlap was computed between sequence
classes and a lower resolution clustering. The lower resolution clustering is largely consistent with the
original sequence classes, with some clusters combining several related enhancer sequence classes into
one. 



Supplementary Figure 6. Comparison of sequence classes and Louvain community clustering with
resolution = 1.5. For each sequence class, the proportion of overlap was computed between sequence
classes and a higher resolution clustering. The higher resolution clustering closely resembles the current
sequence class clusters.



Supplementary Figure 7. Enrichment of tissue/cell type-specific H3K4me3 (promoter mark)
profiles in sequence classes. Log fold change enrichment over genome-average background is shown in
the heatmap. No overlap is indicated by the gray color in the heatmap.



Supplementary Figure 8. Enrichment of tissue/cell type-specific H3K4me1 (enhancer mark) profiles
in sequence classes. Log fold-change enrichment over genome-average background is shown in the
heatmap. No overlap is indicated by the gray color in the heatmap.



Supplementary Figure 9. Enrichment of tissue/cell type-specific H3K27ac (enhancer mark) profiles
in sequence classes. Log fold-change enrichment over genome-average background is shown in the
heatmap. No overlap is indicated by the gray color in the heatmap.



Supplementary Figure 10. Enrichment of tissue/cell type-specific H3K27me3 (Polycomb mark)
profiles in sequence classes. Log fold-change enrichment over genome-average background is shown in
the heatmap. No overlap is indicated by the gray color in the heatmap.



Supplementary Figure 11. Enrichment of tissue/cell type-specific H3K9me3 (heterochromatin
mark) profiles in sequence classes. Log fold-change enrichment over genome-average background is
shown in the heatmap. No overlap is indicated by the gray color in the heatmap.



Supplementary Figure 12. Enrichment of tissue/cell type-specific H3K36me3 (transcription mark)
profiles in sequence classes. Log fold-change enrichment over genome-average background is shown in
the heatmap. No overlap is indicated by the gray color in the heatmap.



Supplementary Figure 13. Genome sequence proportion covered by each sequence class. The
proportion of each sequence class is shown in the pie chart. Genome-wide sequence class assignments
were based on Louvain clustering of Sei predictions of sequence tiling the genome with 100bp step size.
The clusters unassigned to sequence classes due to the small size (below top 40 clusters) were categorized
as “Unassigned”.



Supplementary Figure 14. Comparison of sequence classes and Louvain community clustering of
the chromatin profiling data. For each sequence class, the proportion of overlap was computed between
sequence classes and Louvain community clustering of the chromatin profiling data. The clustering is
highly concordant with the current sequence class clusters.



Supplementary Figure 15. Sequence-class-specific enrichment of ENCODE chromatin states. Log
fold-change enrichment over genome-average background is shown in the heatmap. Top 2 chromatin
states enriched were selected for each sequence class.



Supplementary Figure 16. Sequence-class-specific enrichment of tissue-specific DHS vocabulary 27.
Log fold-change enrichment over genome-average background is shown in the heatmap.

Supplementary Figure 17. Regulatory sequence-class-level variant effects for SNPs with PIP > 0.95
are predictive of directional GTEx variant gene expression effects. Variants assigned to sequence

https://paperpile.com/c/a2Omld/Wx5V


classes based on the sequence class annotation for the reference genome. The x-axis shows Spearman
correlations between the predicted sequence-class-level variant effects and the signed GTEx variant effect
sizes (slopes) and the y-axis shows the corresponding log10 p-values. The dotted gray line denotes the
Benjamini-Hochberg FDR < 0.05 threshold.

Supplementary Figure 18.  Population allele frequency profiles for variants in heterochromatin, low
signal, Polycomb, and transcription sequence classes. Comparison of common variant frequencies of
1000 Genomes variants (n=81,501,608) assigned to different sequence classes and variant effect bins. The
common variant threshold is >0.01 allele frequency (n=12,803,919) across the 1000 Genomes population.
Error bars show +/-  1 standard error (SE), and the center of error bars represents the mean. The
sequence-class-level variant effects are assigned to 6 bins (+3: top 1% positive, +2: top 1-10% positive,
+1, top 10-100% positive, -3: top 1% negative, -2: top 1-10% negative, -1, top 10-100% negative).
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Supplementary Figure 20. Enrichment of histone marks, transcription factors, and repeat annotations for the full set of 61 clusters output by Louvain community clustering. Log fold-change enrichment 
over genome-average background is shown in the heatmap. No overlap is indicated by the gray color in the heatmap. Top 1-2 histone mark and TF annotation enrichments were selected for each sequence class.
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Supplementary Figure 21. Detailed Sei model architecture specification.


