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Figure S1: FAD mutations on the transmembrane domain of APP according to
https://www.alzforum.org/ (A) lllustration of the position of FAD mutant points (red)
mapping into helical, loop and B-sheet domains based on the secondary structure
resolved in the C83-bound Cryo-EM structure. (PDBID 61YC) (B) Table of FAD
mutations reported on https://www.alzforum.org.

(A) | (B)

h& —— D385@HD2-G1753@C
---------- D385@HD2-V1754@C

0 200 400 600 800
Time (ns)

Figure S2: Slmulatlon of the Notch-bound y-secretase complex with D385-
protonated PS1 starting with the structure derived from PDBID 6IDF. (A)
Schematic view of at the catalytic center (snapshot). Waters within 5A from V1754 are
drawn in the CPK representation. Note that the bond between G1753 and V1754 is
the correct S3 site to be cleaved (1). (B) Distances between the protonated D385 and
the carbonyl group of G1753 (solid) of V1754 (dotted) of Notch1.
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Figure S3: Comparison of C99-bound complex simulations with a non-bonded
cutoff distance 9 A (black) or 12 A (orange). (A) RMSF of PS1. (B) RMSD of y-
secretase (black), the catalytic unit presenilin-1 (PS1, blue) and substrate (orange) for
the 12A cutoff (two independent simulations indicated by solid and transparent lines).
(C) RMSF of C99 (trajectory with highest difference selected). (D) Catalytic hydrogen
bond frequency. (E) Secondary structure analysis averaged over 2 independent
trajectories. Note that the higher RMSF at the N-terminal half of C99 in the 9A cutoff
simulation (shown in C) was only observed in one simulation. In all other simulations,
the substrates showed an RMSF lower than 2 A at the N-terminal half of the substrate,
including the most unstable substrate AB40y37 (see Figure S22A).
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Figure S4: RMSD of y-secretase (black), the catalytic unit presenilin-1 (PS1,
blue) and substrate (orange) vs. time in apo- and bound-states. (A) C99 or Notch-
bound states. (B) The apo-form with PDBID 61YC or 5FN2 as the initial and reference
structure. (C) RMSD vs. time during the €48 binding pose simulations. (D) RMSD vs.
time during simulation of C99 mutants in bound states. The results for the first replica
of each system is shown as the solid line and for the second replica as transparent
line. The third replica of the apo-state simulation is shown as an even lighter
transparent line. The protonation states of PS1 residues D385" and D257 are
indicated.
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Figure S5: RMSD of y-secretase (black), the catalytic unit presenilin-1 (PS1,
blue) and substrate (orange) vs. time in complex with various AR peptides. (A)
RMSD vs. time for simulations with different AR peptides bound to the D385" y-
secretase, (B) RMSD vs. time for simulations with different AR peptides bound to the
D257 y-secretase, and (C) RMSD vs. time for simulations with different AB40 mutants
bound to either D385" or D257 y-secretase. The results for the first replica of each
system is shown as the solid line and for the second replica as transparent line.
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Figure S6: Simulations of the Notch, C99 and y-secretase in the bound and apo
(free) forms with D257-protonated PS1. (A) Probability density distribution of the
catalytic hydrogen bond distance. (B) Residue-wise root-mean-square fluctuation
(RMSF) of the y-secretase catalytic subunit PS1. Apo-form y-secretase structures are
derived from PDB entry 61YC. (C) Top-view at the PS1 internal docking site in the C99-
bound (top) and Notch-bound (bottom) y-secretase complexes. PS1 is shown in the
blue cartoon representation and substrate in grey and Notch in orange. The subpocket
formed by TMD2-TMD3 is shown as green surface, and the subpocket formed by
TMD3-TMD5 and TMD7 is shown as white surface. Residues that form part of these
two pockets are listed in Table 2 in the main text. Water molecules are shown in the
vdw-+bond representation. V44, 145 and the backbone of L49 of C99 and F1748, F1749
and the backbone of G1753 of Notch are shown in the licorice representation. The
catalytic hydrogen bond is shown as the red dashed line between the substrate scissile
bond and the protonated aspartic acid. (D) Secondary structure analysis of C99 (black)
and Notch (orange) in y-secretase bound form (solid line) and free form (transparent
line). Helical (top) and B-sheet (bottom) occupations are calculated by averaging over
two replicas. (E) Residue-wise binding energy decomposition between y-secretase
and C99 (black) or Notch (blue). Backbone (top) and sidechain (bottom) contributions
are averaged over two replicas.



B. C99-bound

Figure S7: Schematic views of the post-cleavage site B-sheet cluster in the Apo
(A), C99-bound (B), and Notch-bound (C) y-secretase complexes with D385-
protonated PS1. The corresponding residues of each 3-strand component are listed
in Figure 1A of the main text.
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Figure S8: Comparison of PS1 RMSF between the Apo-state starting from the
5FN2 structure (grey), the C99-bound (black), and the Notch-bound (orange)
states with D385-protonated PS1.
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Figure S9: Pocket detection analysis on the y-secretase Apo-state simulation
with PDBID 61YC as initial structure. (A) The top view and (B) side view of the Apo-
state y-secretase and pockets detected inside y-secretase. The proposed internal
docking site is highlighted in red. (C) Time evolution of the internal docking site pocket
volume. (D) Time evolution of the internal docking site pocket apolar surface area. (E)
Time evolution of the internal docking site pocket polar surface area. Three replicas of
Apo-state simulations are shown in black, orange, and dark-blue, respectively. Solid
lines show the averaged values over every 5ns from the transparent lines with 1ns
time interval.
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Figure S10: Time evolution of secondary structure of the substrates during
simulations. (From left to right) Top: Free state Notch, free state C99, bound state
Notch, bound state C99. Bottom, variants: C99s-1, C99es-2, C99vasc, C99usc,
C99%:e.

Figure S11: Top view at the PS1 internal docking site at the C99.49 binding pose
with A42 and 141 well aligned to the PS1 internal docking site.
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Figure S12: Residue-wise binding energy decomposition between y-secretase and
substrate C99 (black) or Notch (orange). Backbone (top) and sidechain (bottom)
contributions are averaged over the trajectories of two MD simulations.
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Figure S13: Rotation of the C99 helical domain observed in the C99gs-1

simulation. Snapshots of the rotational movement at (A) 30ns, (B) 100ns, and (C)

140ns. PS1 is shown in blue and C99 is shown in orange. (D) The center-of-mass

(COM)-COM distance between V44 of C99 and W165 of PS1 during each 600ns

simulation of C99¢49 (black and gray), C99es-1 (orange), and C99e4s-2 (darkblue)

binding to y-secretase. The representative time frames of C99.4g-1 are encircled and
shown in (A)-(C). The animated process is shown in Video S1.
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Figure S14: Analysis of the residue-wise binding energy decomposition (A) and
secondary structures (B) in the V44G (orange), 145G (dark blue), and V44G+I45G
(GG, brown) mutated complexes in comparison to the wild type C99 (black) with

D385-protonated PS1.
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Figure S15: Rotation of the C99 helical domain observed in one of the C99¢¢
simulation. Snapshots of the rotational movement at (A) 5ns, (B) 450ns, and (C)
550ns. PS1 is shown in blue and C99¢c is shown in brown. (D) The center-of-mass
(COM)-COM distance between V46 of C99 and W165 of PS1 during each 600ns
simulation of C99¢49 (black and gray), C994s-1 (orange), and C994s-2 (dark-blue)
binding to y-secretase. The representative time frames of C99gs are encircled and
shown in (A)-(C).
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Figure S16: Glycine mutations at the internal docking site disturb the E-S
interaction with D257-protonated PS1. (A) Top-view at the PS1 internal docking site
of C99vasc bound y-secretase complex. (B) Top-view at the PS1 internal docking site
C99usc bound y-secretase complex with a zoom-in view shows the dissociated (-
strand. Atomic representations are similar as described in Figure S6C. (C) Probability
density of the catalytic hydrogen bond distance, (D) RMSF of the substrate TMD, and
(E) secondary structure analysis. of C99w (black), C99vasc (orange), and C99ussc (dark
blue) in y-secretase bound form.
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wise binding energy decomposition and

(B) secondary structures in the V44G (orange) and 145G (dark blue) mutated
complexes in comparison to the wildtype C99 (black) with D257-protonated PS1.

Figure S17: Analysis of the (A) residue



PS1-D385" PS1-D257"

Figure S18: Top view of different A peptides binding to the PS1 internal docking
site with (left) D385-protonated or (right) D257-protonated. From top to bottom:
AB49:46, AB46ya3, AB43y40. Atomic representations are similar as described in Figure

S6C.
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Figure S19: Z-axis position of substrate (A) K28 and (B) P6 in complex with y-
secretase with D385-protonated vs. simulation time. Two replicas are represented

by solid and transparent lines in the same color. The averaged phosphate groups are
located at z=18A plane (see Figure 5D in the main text).
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Figure S20: Fitting of the membrane thickness distributed alone the radial
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Figure S21: Calculated MMGBSA interaction energy between different A
substrates and y-secretase with the D385-protonated PS1. (A) Residue-wise
binding energy decomposition between y-secretase and C99g9 (black), ABR49:46
(orange), AB46y43 (dark blue), AB43y40 (magenta), AB40y37 (green). Backbone (top)
and sidechain (bottom) contributions are averaged through two replicas. (B) Residue-
wise binding energy decomposition between y-secretase and AB40y37 with wild-type
(solid) G33I (brown), and K28A (yellow) mutated sequences. Backbone (top) and
sidechain (bottom) contributions are averaged over two replicas. (C) Summation of
substrate P5 and P6 sidechain binding energy contribution. The corresponding amino
acids at P6 and P5 are annotated at the top of each bar.
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Figure S22: Properties of AB substrate bound with

D385-protonated y-

secretase. (A) RMSF of the substrate TMD. (B) Residue-wise water accessibility. (C)
Secondary structure analysis of C99 and A peptides.
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Figure S23: Evolution of secondary structure of the substrates in time. From left
to right: (Top) AB49¢4s, AB46y43, AB43y40, (Bottom) AB40y37, AB40y37,6331, AB40y37 k8.
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Figure S24: Comparative modeling and simulations of ABn-y-secretase
complexes with D257-protonated PS1. (A) Probability density of the catalytic
hydrogen bond distance. (B) Distribution of the calculated membrane electron/atom
density (left), membrane-anchoring residue K28 (middle) and substrate P6 (right)
along the z-axis in different ABn-y-secretase complexes. (C) Average z-axis of the
POPC phosphate on the extracellular side distributed along the radial distance pyxykos.
(D) View into the PS1 internal docking site in the AB40,s7-bound y-secretase. (representation
same as in Figure S6C).
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Figure S25: Binding energy between different substrates and y-secretase with
the D257-protonated PS1. (A) Residue-wise binding energy decomposition between
y-secretase and C99:49 (black), AB49:e (orange), AB46ys3 (dark blue), AB43yao
(magenta), AB40y37 (green). Backbone (top) and sidechain (bottom) contributions are
averaged through two replicas. (B) Residue-wise binding energy decomposition
between y-secretase and ApR40y37 with wild-type (solid) G33I (brown), and K28A
(yellow) mutated sequences. Backbone (top) and sidechain (bottom) contributions are
averaged through two replicas. (C) Summation of substrate P5 and P6 sidechain
binding energy contribution. The corresponding amino acids at P6 and P5 are
annotated at top of each bar.
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Figure S26: Fitting the membrane thickness distributed alone the radial distance
on the xy plane from K/A28 of substrates with D257-protonated PS1. (A) Fitting
the hydrophobic mismatch profile with hydrophobic mismatch amplitude a, radial
decaying rate B, and harmonic oscillation y. (B) Comparison of the hydrophobic
mismatch amplitude a calculated from (A) in different Ap-bound y-secretase
structures.
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Figure S27: Z-axis position of substrate (A) K28 and (B) P6 in complex with y-
secretase with D257-protonated vs. simulation time. Two replicas are represented
by solid and transparent lines in the same color. The averaged phosphate groups are
located at z=18A plane (see Figure S23C).
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Figure S28: Z-axis position of substrate (A) K28 and (B) 132 in complex with y-
secretase with D385-protonated vs. simulation time. Two replicas are represented
by solid and transparent lines in the same color. The averaged phosphate groups are
located at z=18A plane (see Figure 7C of the main text).
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Figure S29: Influence of the APP mutations G33l and K28A on the AB40,3;
binding pose with D257-protonated PS1. (A) Probability density of the catalytic
hydrogen bond distance. (C) Distribution of the substrate K/A28 (middle) and substrate
P6 (right) along the z-axis in different ABn-y-secretase complexes. (D) Average z-axis
of the POPC phosphate on the extracellular side distributed along the radial distance
Pxy,K28.
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Figure S30: Z-axis position of substrate (A) K28 and (B) P6 in complex with y-
secretase with D257-protonated vs. simulation time. Two replicas are represented
by solid and transparent lines in the same color. The averaged phosphate groups are
located at z=18A plane (see Figure S23C).



' D1 contact residues:

. NCT: G241, 1242
LgPS1: L192, F176, F177, 1180, V236

DI IAPP: G25-K28

D2 contact residues:

NCT: 1242, N243
PS1: F105, Y106, K109-1114, M139, F177,

1180, M233-F237, K239, W240
APP: D22-131

D3 contact residues: Ps1
PS1: Y154, Y159, 1162, H163, L166, H213-W215, Q222, L226

T281-T292, G382,L383

Figure S31: Probing of the potential ligand docking sites D1, D2, and D3 with
Fpocket. Possible contacting residues in PS1 are indicated.



