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Supplementary Figure 1: Example metabolic model that explicates the underlying under-
determination of constraints-based models. This example metabolic network is made of: 3 
metabolites (A, B, C) and 5 reactions whose fluxes are defined as v1, v2, v3, v4 and v5. Assuming 
that the input flux of A is non-zero (v1>0), the reaction v2 (>0) leads to the production of B. At 
this point, B may be excreted through the exchange reaction v3 (>0) or transformed in C via the 
reaction v4 (>0). In the same way, once C is produced it can be excreted through the exchange 
reaction v5 (>0). In our computational approach, we calculate the maximum exchange flux for 
each output metabolite, and, as a result, we predict both B and C may be potentially produced. 
However, it may happen that just one of them is produced. A real-life scenario in which this can 
happen is when an intermediate metabolite (B in Supplementary figure 2) is quickly transformed 
into another one (C in this case) and, therefore, it is not present in the sample, even though it 
was actually produced because is needed to obtain C. Without additional -omics data, we cannot 
distinguish and correctly characterize these cases. This underdetermination can be observed in 
the high number of false positives for few predicted output metabolites in the lentil 
fermentation study, e.g. protocatechualdehyde (see Figure 4 in the main text).  

  



 

 

Supplementary Figure 2: Distribution of chemical similarity between source compounds and 
reaction rule’s substrates. RetroPath RL1 provides a parameter defining a chemical cut-off value 
related to the similarity between the molecule of interest and the substrate of the template to 
limit the application of the algorithm. In order to define that value, we computed the similarity 
between source compounds and reaction rule’s substrate, using the rdkit package2 and the 
Morgan fingerprint3 with a radius equal to 2. In the representation of the similarity values 
distribution is marked in red the selected threshold at 0.6. Since more than 97% is below this 
cut-off value, proper analysis of the metabolic space is permitted not introducing excessive 
promiscuity. Source Data is provided as a Source Data file.  

  



Supplementary Note 1: Manual curation of predicted reactions by RetroPath RL 

Change of the stoichiometry of annotated reactions. In the process of balancing the 

predictions by RetroPath RL1, we found out that the predictions related to the reaction below 

(obtained from literature and included in AGREDA_1.04) were inconsistent at the 

stoichiometric level. Therefore, we revised this reaction and its corresponding predictions. 

Mirtillin -> D-glucose + Gallate + Phloroglucinol 

The reaction under analysis is a multistep reaction, which can be divided into 3 parts: 

deglycosylation, C-ring fission and dehydroxylation5, and decarboxylation and methyl 

transference, namely: 

1. Deglycosylation: 

Mirtillin + Water -> Delphinidin + D-glucose 

2. C-ring fission and dihydroxylation: 

Delphinidin + Water -> 3,5-Dihydroxyphenylacetic acid + Gallate + H 

3. Decarboxylation and methyl transference: 

3,5-Dihydroxyphenylacetic acid + H2O -> Phloroglucinol + CO2 + Methane 

In summary, the complete reaction should read: 

Mirtillin + Water -> D-glucose + Gallate + Phloroglucinol + H + CO2 + Methane 

We observed that, with the first step of this reaction, source compounds could directly reach 

several sink compounds. Therefore, when at the first step of the pathway it was possible to 

create metabolites already present in the reconstruction, we changed the prediction with that 

transformation, avoiding the complexity of the multistep pathway. Instead, in case it was not 

possible, the whole balanced pathway was introduced replacing the original prediction. 

Following the correct balance of the multistep reaction, the template was also changed in both 

AGREDA_1.04 and AGREDA_1.1. 



Revising output metabolites in the predicted reactions.  After the balancing process, we 

carried out a manual revision of the results of RetroPath RL1. In some of the predicted 

reactions, we noticed that the product metabolites were incorrectly substituted with other 

molecules of high similarity. One example involved a glucoside group where the D-Glucose is 

broken out, but the products included D-Galactose instead. 

As a verification step, we calculated the pairwise similarity between the predicted metabolites 

and the ones that, according to our curation, would make more sense in the given reaction. In 

order to do so, we used the circular fingerprint3 of the rdkit2 package in python. The value of 

the similarity was equal to 1.0 in all cases, meaning that the algorithm was unable to make a 

difference between them. Given this limitation of RetroPath RL1, we manually curated the 

equations involving sugars and replaced the predicted outputs with the appropriate ones. 

Resolving predicted metabolites. In several cases the predicted reactions had compounds 

marked as present in the sink, but there was a lack of information, being written just with their 

InChI Key ID. For each of them, a similarity analysis with the metabolite in the sink was carried 

out. For some compounds the similarity returned more than one positive result. In those cases, 

we selected the most coherent compound with the predicted transformation. 

In other situations, the predicted reactions had intermediate compounds not present in the 

sink, being only provided with their chemical structure. A manual curation in several databases 

was carried out. We updated the information of the compounds present in databases and 

removed those molecules with no information and their associated reactions.   

New input exchange fluxes. We introduced an input exchange reaction for the metabolite 1-

Feruloyl-D-glucose. This compound is a key component in some reactions that RetroPath RL1 

predicted, but its production was possible only using reactions without any associated 

taxonomy. In order to avoid this type of reactions, we added the input exchange reaction for 



such metabolite. It was possible to introduce this input because the metabolite under analysis 

can be assimilated through the diet, since it is found in different fruits of vegetables6-7. 

Reaction directionality definition. Inconsistent reaction directionality was found during the 

analysis of the results. Some of the newly defined metabolic reactions that were found for 

phenolic compounds by RetroPath RL1 happened to be the same as irreversible reactions 

already contained in the universal database generated with our previous methods4, but using 

the opposite direction of the versions contained in that database. This issue stemmed from: a) 

the differential definitions of reaction directionality contained in the RetroRules8 with respect 

to the universal database that we created, and b) RetroRules contains reversed rules to apply 

on retrosynthesis applications8. While this second reason is part of how the application works, 

we studied reaction directionality consistency in order to ensure that the initial databases that 

were used to create the rules used by RetroPath RL1 made sense. 

We compared the data of origin that each of these two databases used to define the reactions. 

On the one hand, RetroRules8 extracted the metabolic reactions from MNXref 3.09 to generate 

reaction rules in the SMARTS format. The data contained in MNXref9 itself comes from a 

collection of Genome-Scale Metabolic Networks that have been reconciled for consistent 

metabolite, reaction and protein information by comparing them with information from 

various sources10–19. These sources include The Model SEED13 and Recon3D20. The Model 

SEED13 was one of the sources that was used to create our universal database, which ensured 

consistency with our rules. On the other hand, our other large source of metabolic 

information, AGORA21, defined reaction directionality using the same Gibbs Free energy 

estimation carried out for Recon3D22. While these estimations have greatly reduced errors22, 

their calculations are dependent on environmental conditions, which can vary across 

reconstructions. MNXref9, which acts as the base for RetroRules8, provides reactions that have 

been reconciled9 across databases, and thus will not always provide reaction directions that 

are consistent with the original metabolic networks. Given this, we accept the new reactions 



even though their directionality might not match with the universal database that we started 

with. 
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