Supporting Information for

Original Article

Remodeling "cold" tumor immune microenvironment *via* epigenetic-based therapy using targeted liposomes with *in situ* formed albumin corona

Yang He^{a,b,c,d,†}, Yuefei Fang^{a,e,†}, Meng Zhang^{a,f}, Yuge Zhao^a, Bin Tu^{a,b}, Mingjie Shi^a, Bahtiyor Muhitdinov^{a,g}, Akmal Asrorov^{a,g}, Qin Xu^e, Yongzhuo Huang^{a,b,c,h,*} ^aState Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China

^bUniversity of Chinese Academy of Sciences, Beijing 100049, China

^cZhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China

^dDepartment of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China

^eArtemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510450, China

^fWomen's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China

^gInstitute of Bioorganic Chemistry, Uzbekistan Academy of Sciences, Tashkent 100125, Uzbekistan

^hNational Medical Products Administration, Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai 201203, China

Received 27 July 2021; received in revised form 21 September 2021; accepted 22 September 2021

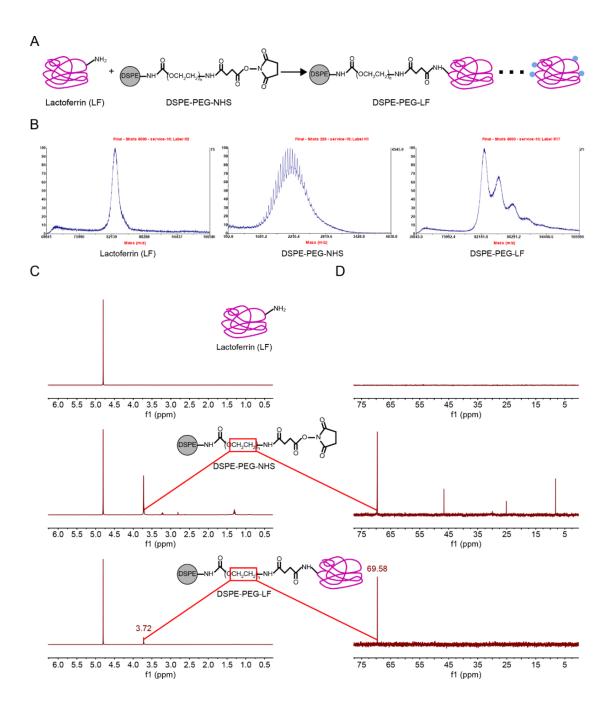
*Corresponding author. Tel./fax: +86 2120231981.

E-mail address: <u>yzhuang@simm.ac.cn</u>(Yongzhuo Huang).

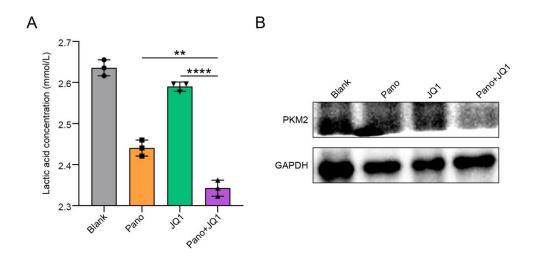
[†]These authors made equal contributions to this work.

Time	Flow rate	Acetonitrile	0.1% Phosphoric	Wavelength
(min)	(mL/min)		acid	(nm)
0		5%	95%	
2		5%	95%	
12	1	65%	35%	280
14		5%	95%	
15		5%	95%	

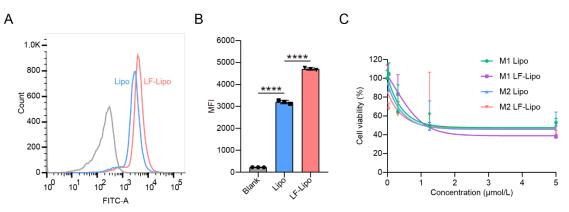
Table S1 The HPLC condition of Pano: gradient elution method.

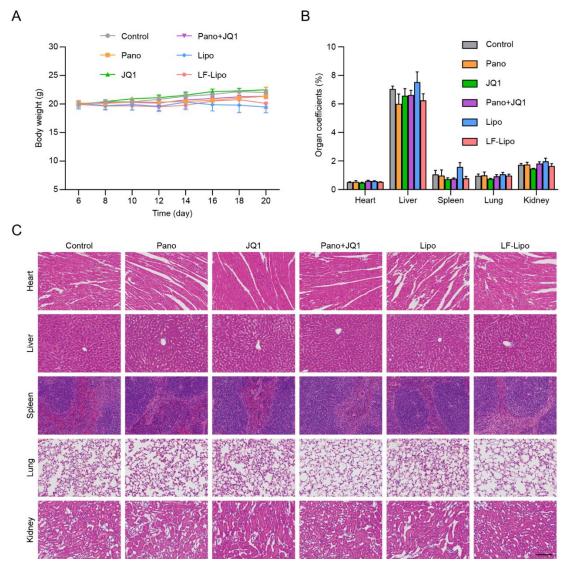

Table S2 The HPLC condition of JQ1: isocratic elution method.

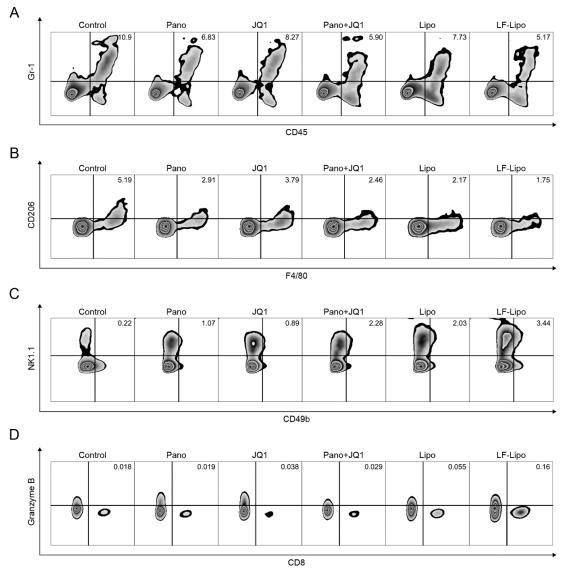
Flow rate (mL/min)	H ₂ O	Acetonitrile	Wavelength (nm)
1	40%	60%	254

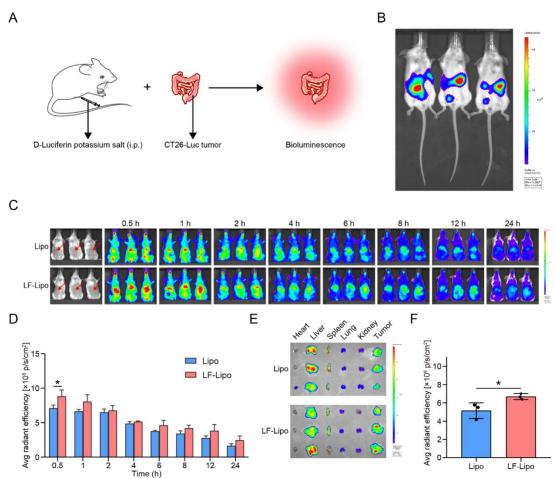

Table S3 The combination index of various ratios of Pano and JQ1 in CT26 tumorcells.

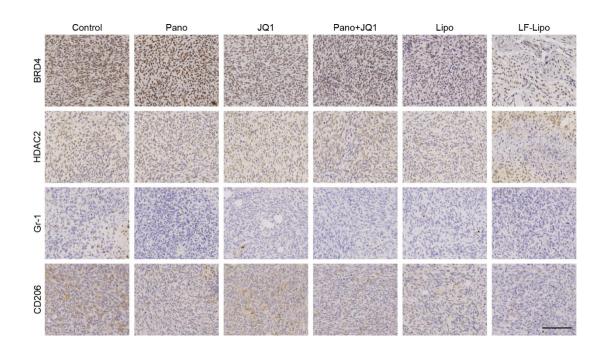
Pano/JQ1 (molar ratio)	Combination index	
4:1	0.64	
2:1	0.40	
1:1	0.38	
1:2	0.25	
1:4	0.31	


Figure S1 Characterization of the materials. A) Schematic diagram of the synthesis of DSPE-PEG-LF. B) MALDI-TOF of lactoferrin (left), DSPE-PEG-NHS (middle), and DSPE-PEG-LF (right). C) Characteristic ¹H-NMR spectra of lactoferrin (top), DSPE-PEG-NHS (middle), and DSPE-PEG-LF (bottom). D) Characteristic ¹³C-NMR spectra of lactoferrin (top), DSPE-PEG-NHS (middle), and DSPE-PEG-LF (bottom).


Figure S2 Glycolysis regulation in macrophages after treatment with Pano and JQ1. A) The reduced lactic acid production in M2 Φ after treatment. B) Expression of PKM2 in M2 Φ after treatment. Data are presented as mean ±SD (*n*=3). ***P*<0.01, ******P*<0.0001.


Figure S3 Cellular uptake and *in vitro* cytotoxicity of the liposomes in BMDMs. A) Cellular uptake of Lipo and LF-Lipo in M2 Φ cells. B) Statistical analysis of cellular uptake efficiency in M2 Φ cells. C) Cytotoxicity test in BMDMs after treatment. Data are presented as mean ±SD (*n*=3). *****P*<0.0001.


Figure S4 Preliminary safety evaluation in CT26 subcutaneous tumor-bearing mouse model. A) The body weight changes during the treatment. B) The organ coefficients. C) Histological examination of the major organs (scale bar=100 μ m). No obvious lesion was found in all groups. Data are presented as mean ±SD (*n*=6).


Figure S5 Immune cell assay in the CT26 subcutaneous tumor. The percentage of $CD45^+$ Gr-1⁺ (A), F4/80⁺ CD206⁺ (B), CD49b⁺ NK1.1⁺ (C), CD8⁺ granzyme B⁺ (D) cells in the tumor tissues.

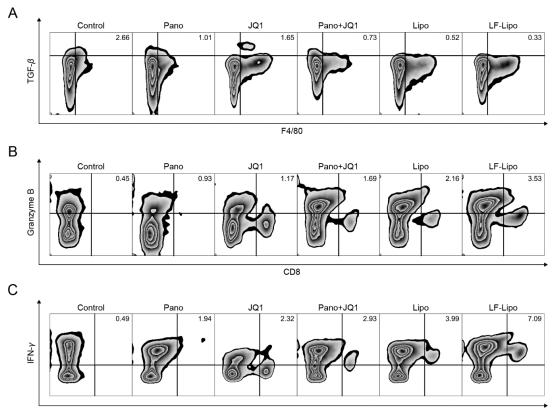

Figure S6 *In vivo* imaging and biodistribution of the liposomes in CT26 peritoneal tumor model. A) Schematic diagram of the detection of the CT26 peritoneal tumor. B) Bioluminescence imaging of CT26 peritoneal tumor. C) *In vivo* imaging from 0.5 h to 24 h. D) *In vivo* real-time radiant efficiency at the tumor sites. E) *Ex vivo* imaging of major organs and CT26 peritoneal tumors. F) *Ex vivo* radiant efficiency of the CT26 peritoneal tumors. Data are presented as mean \pm SD (*n*=3). **P*<0.05.

Figure S7 Immunohistochemical staining (brown color) of BRD4, HDAC2, Gr-1, and CD206 in CT26 peritoneal tumors after treatment (scale bar= $100 \mu m$).

Figure S8 Immune cell assay in the CT26 peritoneal tumor model. The percentage of F4/80⁺ TGF- β^+ (A), CD8⁺ granzyme B⁺ (B), and CD8⁺ IFN- γ^+ (C) cells in the tumor tissues.

