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GENOTYPING AND IMPUTATION 

Methods description for study populations at deCODE genetics (Iceland, Denmark, 

Sweden, Norway) 

Whole-genome sequencing 

Preparation of samples. Three different sample preparation kits were employed. TruSeq 

Nano from Illumina (Method A), TruSeq PCR-Free from Illumina (Method B), NEBNext 

Ultra™ II PCR-free from New England Biolabs (Method C). Methods A and B:  In short, 

either 50 ng (Method A) or 1 μg (Method B) of genomic DNA, isolated from either frozen 

blood samples or buccal swabs, was fragmented to a mean target size of 350-450 bp using the 

Covaris E220 instrument. End repair, generating blunt ended fragments was performed 

followed by size selection using different ratios of AMPure XP magnetic purification beads. 

3’-Adenylation and ligation of indexed sequencing adaptors containing a T nucleotide 

overhang was performed, followed either by AMPure purification alone (Method B) or 

purification followed by PCR enrichment (10 cycles) using appropriate primers (Method A).  

The quality and concentration of all sequencing libraries was assessed using either the 

Agilent 2100 Bioanalyzer (12-samples) or the LabChip GX (96-samples) instrument from 

Perkin Elmer. Sequencing libraries were diluted and stored at −20 °C. Further quality control 

of sequencing libraries was done by multiplexing and pooling 96 samples and sequencing 

each pool on an Illumina MiSeq instrument to assess optimal cluster densities, library insert 

size, duplication rates and library diversities.  

Method C: In short, 0.5-1 μg of genomic DNA was fragmented to a mean target size of 450-

500 bp using a Covaris LE220plus instruments and 96-well TPX-AFA plates (Covaris Inc). 

End repair and A-tailing was performed in a single step followed by ligation of unique dual 
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indexed sequencing adaptors (IDT for Illumina) and two rounds of SPRI-bead purification 

(0.6X) using the Hamilton STAR NGS liquid handler. Quality (concentration and insert size) 

of sequencing libraries was determined using the LabChip GX (96-samples) instrument 

(Perkin Elmer). Sequencing libraries were pooled appropriately for sequencing using 

Hamilton STARlet liquid handlers. 

All steps in the workflows described above were monitored using an in-house laboratory 

information management system (LIMS) with barcode tracking of all samples and reagents. 

DNA whole genome sequencing. Paired-end sequencing-by-synthesis (SBS) was performed 

on Illumina sequencers, HiSeq 2000/2500, HiSeq X and NovaSeq6000 instruments, 

respectively. Readlengths depended on the instrument and/or sequencing kit being employed 

and varied from 2x101 cycles to 2x151 cycles of incorporation and imaging. Real-time 

analysis involved conversion of image data to base-calling in real-time. For the HiSeq 

instruments, the sequencing libraries were hybridized to the surface of the flowcells using the 

Illumina cBot™, with a single sample per lane. For the NovaSeq6000, on-board clustering 

was performed using appropriately pooled samples. Paired-end sequencing on the S4 flowcell 

(v1.0 chemistry) was performed with a readlenght of 2x151 cycles of incorporation and 

imaging, in addition to 2*8 index cycles.  

Reference. As previously described in detail1, the reference sequences used to map reads are 

based on the human genome assembly GRCh38, not including alternate assemblies 

(GCA_000001405.15_GRCh38_no_alt_analysis_set.fna on ftp.ncbi.nlm.nih.gov ) in addition 

to sequences determined to represent common contaminants in our sequencing pipeline. 

These sequences are the sequences of the bacteriophage PhiX 

(ftp://ftp.ncbi.nlm.nih.gov/genomes/Viruses/enterobacteria_phage_phix174_sensu_lato_uid1
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4015/NC_001422.fna ), the bacteria Ralstonia Pickettii (Ralstonia_pickettii_12D_uid58859) 

and two sequences from the human microbiome 

(Coprobacillus_D7_uid32495/NZ_EQ999972.fna, 

Coprobacillus_D7_uid32495/NZ_EQ999922.fna). 

Sequence alignment1. The raw sequences where aligned against the reference described above 

with BWA version 0.7.10 mem2. The sequences in the BAM files were realigned around 

indels with GenomeAnalysisTKLite/2.3.93 using a public set of known indels and a set of 

indels previously discovered in the Icelandic data1. PCR duplicates were marked with Picard 

tools 1.117. 

Filtering of BAM files1. The sequencing data of each individual was organized into one BAM 

file per lane on the flowcell. The sequencing data generated for each individual from HiSeqX 

machines largely derives from single lanes while the sequencing data coming from other 

machines is derived from multiple lanes. In the following, BAM files created before and after 

the merging per individual will be referred to as BM- and AM-BAM files, respectively. A 

pileup using samtools BM-BAM files was performed at all sites where the sample is 

homozygous according to their chip genotypes. These pileups were combined for each 

sample and a mismatch rate was calculated as the number of bases not matching the chip 

genotype divided by the number of chip typed bases. BM-BAM files with mismatch rates 

above 2% or if they failed any of the following criteria were excluded: 1) Mean base quality 

<25, 2) Percent marked duplicate >50, 3) Mean N per read >30, 4) Percent mapping quality 

below 20 >11, 5) Percent reads unmapped >40, 6) Percent both reads in a pair unmapped 

>40, 7) Percent first read in a pair unmapped >40, 8) Percent second read in a pair unmapped 

>40. BM-BAM files that passed all the criteria were merged into single AM-BAM files based 

on unique individual and sample type source combinations.  
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Sequence variant calling. For the Swedish, Danish and Norwegian cohort, AM-BAM files as 

described above were collected from samples of Northwestern-European origin and for the 

Icelandic cohort (50,306 AM-BAM files of Icelandic origin). Duplicate samples were 

discarded based on sequencing yield. Only samples with a genome-wide average coverage of 

over 20X were considered. Samples that were contaminated (according to the read_haps 

tool4) were discarded. This left 17,683 samples from the Swedish, Danish and Norwegian 

cohort and 49,962 Icelandic samples for variant calling. Joint variant calling was performed 

using Graphtyper (version 1.4)5, separately on the two datasets. 

Chip genotyping and long range phasing.  

Swedish, Danish and Norwegian cohort. Chip genotypes for 604,064 samples of 

Northwestern-European origin were collected. The majority of the samples were chipped 

using chips from the Illumina Global Screening Array (gsa) family of chips (n=434,595) with 

the remaining samples having chip data coming from the older OmniExpress (omni) family 

of chips. Individual genotype arrays were discarded if the total yield was below 98%. Sample 

duplicates were discarded thus: A fingerprint of ~160 common variants was created for each 

array. If two or more arrays had a fingerprint similarity above a certain threshold, a kinship 

analysis with KING (version 2.1.5)6 was performed. For duplicates, a sample with 

sequencing data associated was kept, if possible. Otherwise the array with the highest yield 

was kept. After removal of low yield chips and duplicates, chips for 570,100 samples were 

left for long range phasing. Only variants which had previously been seen as polymorphic in 

in-house sequencing data were analysed. For each array family (omni or gsa) variants were 

excluded if they showed an allele frequency bias between the array family subtypes in the 

Norwegian sample cohort. Variants with a missing rate greater than 2% or MAF less than 

0.5% were discarded. The samples were phased using Eagle (version 2.4.1)7 on a per 
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genotyping array family and chromosome basis. Missing genotypes and non-overlapping 

variants were then imputed between the two chip families (omni, gsa) using a viterbi 

algorithm giving the most probable haplotype reconstruction using haplotype sharing in a 

Hidden Markov Model based on a Li and Stephens model8 similar to the one used in 

IMPUTE29. Finally the two chiptype-specific genotype sets were combined after imputation 

and phased again using Eagle, resulting in a panel of 570,100 samples with chip genotypes. 

Icelandic cohort. Chip genotypes for 166,467 Icelandic samples were collected. The majority 

of the samples were chipped using chips from the Illumina OmniExpress family (n=129,108) 

with the remaining samples having chip data coming from the older HumanHap family of 

chips. Individual genotype arrays were discarded if the total yield was below 98%, leaving 

chips for 166,364 samples for long range phasing. Only variants which had previously been 

seen as polymorphic in inhouse sequencing data were analyzed. For a given array family 

(omni or humanhap) variants were excluded if they showed an allele frequency bias between 

the array family subtypes. The chip genotypes were then phased using the algorithm 

described by Kong et al.10, resulting in a panel of 166,281 samples with LRP chip genotypes. 

Phasing and imputation 

Sequence variants passing filters were phased, creating a haplotype reference panel, using the 

long-range phased chip data. The haplotype reference panel was then used to impute each 

sequence variant into all chip genotyped samples, again using the long-range phased chip 

data. The imputation consists of estimating, for each haplotype, haplotype sharing with 

haplotypes in the haplotype reference panel, giving haplotype weights for each haplotype. 

These weights, along with allele probabilities for each haplotype in the haplotype reference 
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panel allow imputation with a Li and Stephens model8 similar to the one used in IMPUTE29. 

Estimation of haplotype weights is based on long-range phased chip haplotypes. 

Sequence variant phasing consists of iteratively imputing the phase in each sequenced sample 

using the other sequenced samples and the estimated phase from last iteration. The imputed 

genotypes, along with the original genotypes are weighted together to estimate new allele 

probabilities for the haplotypes. The imputation part is the same as described above. 

Method description for other study populations 

UK Biobank.  

The 500,000 UK Biobank samples were genotyped with a custom-made Affymetrix chip, UK 

BiLEVE Axiom and the Affymetrix UK Biobank Axiom array and imputed using the 

Haplotype Reference Consortium and UK10K haplotype resources.11  

FINNGEN 

FINNGEN was genotyped using the Axiom array (https://www.finngen.fi/en). The Swedish, 

Danish and Norwegian samples were genotyped with various Illumina SNP chips, long-range 

phased using Eagle27 and imputed with a phased haplotype reference panel created from 

17,408 whole-genome sequenced individuals from Northwestern Europe, including 8,635 

Danish, 3,329 Norwegian, and 3,704 Swedish samples. Genotype samples and variants with 

less than 98% yield were excluded. All sequencing and genotyping of the Icelandic, Danish, 

Swedish and Norwegian cohorts was done at deCODE genetics. 
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ANCESTRY ANALYSIS 

Genetic ancestry analysis to identify groups of similar ancestry was performed for the 

Danish, Swedish and Norwegian sample sets separately. First ADMIXTURE v1.2312 was run 

in supervised mode with 1000 Genomes populations CEU, CHB, and YRI13 as training 

samples and Danish, Swedish or Norwegian individuals as test samples, and test samples 

with less than 0.9 assigned CEU ancestry were excluded. Remaining test samples were 

projected onto 20 principal components (PCs) calculated from an in-house European 

reference panel. The UMAP R package 14 was used to reduce the test sample coordinates to 

two dimensions. Additional European samples not in the original reference were also 

embedded into the UMAP space to help identify the ancestries represented in clusters. A 

polygon informed by visual inspection was drawn to include all samples with very similar 

ancestries to the main Danish, Swedish or Norwegian clusters. 

 

ASSOCIATION TESTING 

We used logistic regression in the Icelandic, Swedish, Danish, Norwegian and UK datasets 

separately to test for association of RA overall, seropositive and seronegative RA, with 

sequence variants, using software developed at deCODE genetics.15-17 In the Icelandic 

analysis, we adjusted for sex, county of origin, current age or age at death, blood sample 

availability for the individual, and an indicator function for the overlap of the lifetime of the 

individual with the time-span of phenotype collection. In the Danish, Swedish and Norwegian 

analysis, we adjusted for sex, age, chip-typed and/or sequenced status and 20 principal 

components. In the UK analyses, we adjusted for sex, age, and 40 principal components. We 

used LD-score regression to account for distribution inflation due to cryptic relatedness and 

population stratification.18 After this adjustment, we do not observe inflation in the test 
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statistics for rare variants compared to common variants (both are adjusted with the same 

inflation factor). This can be seen in QQ plots of the test statistics for each cohort 

(Supplementary Information 3).  Likewise, the genomic inflation adjustment for each cohort 

would also remove any inflation due to case-control imbalance. The genomic inflation 

factors, estimated using LD score regression, are  λg = 1.037 for all RA, λg = 1.033 for 

seropositive RA and λg = 1.009 for seronegative RA. We did not adjust the meta-analysis for 

this inflation, but all of our association results remained significant after this adjustment. 

SNP-based heritability (observed scale) was estimated using LD score regression18. In these 

analyses, we used results for about 1.2 million well imputed variants, and for LD information 

we used precomputed LD scores for European populations (downloaded 

from:https://data.broadinstitute.org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2). The 

heritability estimates (total observed scale h2) for RA overall is 0.128 (0.0118), for 

seropositive RA 0.192 (0.0216) and for seronegative RA 0.0989 (0.0192). 

Furthermore, we divided the study population into two subgroups of similar size (Denmark-

Iceland-Finland with 15,976 cases and 554,675 controls; and Norway-Sweden-UK with 

15,337 cases and 440,702 controls) and calculated the genetic correlation between the RA 

subsets. The correlation between seropositive and seronegative RA was (in meta-analysis 

comparing seropositive RA in one subgroup with seronegative RA in the other subgroup, and 

vice versa) rg 0.87, se 0.13, P=4.50E-12 (see Supplementary Table 9 for further information). 

We used a fixed-effects inverse variance meta-analysis19 to combine results from the six 

study groups. Variants with imputation information below 0.8 were excluded. Genome-wide 

significance was determined using class-based Bonferroni significance thresholds adjusting 

for all 64 million variants tested, maintaining an unadjusted significance threshold of 8×10−10. 

Sequence variants were split into five classes based on their genome annotation, with 

significance threshold for each class based on the number of variants in that class (e.g. lower 
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thresholds for loss of function (high impact) and missense variants (moderate impact), as 

previously described20. The adjusted significance thresholds are 1.3×10-7 for variants with 

high impact (splice donor, splice acceptor, stop gained, frameshift, stop lost, initiator codon), 

2.6×10-8 for variants with moderate impact (missense, splice region, stop retained, inframe 

indels), 2.4×10-9 for low-impact variants (synonymous, 5’ UTR, 3’ UTR, up- and 

downstream), 1.2×10-9 for other low-impact variants in DNase I hypersensitivity sites 

(intronic, intergenic, regulatory-region) and 5.92×10-10 for all other variants not in DNase I 

hypersensitivity sites (intronic, intergenic, regulatory-region). 

The primary signal at each genomic locus was defined as the sequence variant with the 

lowest Bonferroni-adjusted P-value using the adjusted significance thresholds described 

above and the results are presented in Table 2 and Supplementary Tables 2-3. Conditional 

analysis was used to identify possible secondary signals within 500 kB from the primary 

signal (excluding the HLA-locus). This was done using genotype data for the Icelandic, 

Swedish, Norwegian, Danish and UK datasets and an approximate conditional analysis 

implemented in the GCTA software21 for the Finnish summary data. Adjusted P-values and 

odds ratios were combined using a fixed-effects inverse variance method. Threshold for 

secondary signal was adjusted P-value less than ten times the class-specific significance 

threshold. The conditional analysis was done separately in RA overall, the seropositive and 

seronegative RA subsets. For significant associations in our study, we searched for 

functionally important variants, affecting protein coding, mRNA expression or protein levels, 

using a multi-omics approach (see below), in order to identify candidate causal genes, and 

highlight those with strongest effect on RA risk. For replication of reported variants, multiple 

testing was accounted for using Bonferroni correction. 

Novelty of the GWAS significant loci was evaluated based on the GWAS catalog 

(https://www.ebi.ac.uk/gwas/home), with significance threshold set at 1.0x10-8 and searching 
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for all variants correlated (r2>0.8) with the primary and secondary signals with RA or its 

subsets. 

 

FUNCTIONAL EVALUATION OF IDENTIFIED SEQUENCE VARIANTS  

We performed a systematic variant annotation of the RA associations to identify candidate 

causal genes, through identification of coding variants and variants affecting mRNA 

expression, as described below. Candidate causal gene refers to the gene that mediates the 

effect on the disease at a given locus with the highest probability, based on either the variants 

or highly correlated variants (r2>0.8) being coding in the candidate causal gene 

(Supplementary Table 4, including likelihood of affecting the protein function, using dbNSFP 

4.1c)22, having the strongest and significant effect on mRNA expression of the candidate 

causal genes (top cis-eQTL, see transcriptomics chapter below) or having significant effect 

on levels of the protein encoded by the candidate causal gene (pQTL, see proteomics chapter 

below). The results of this multi-omics analysis are summarized in Figure 2. 

TRANSCRIPTOMICS 

We tested whether the sequence variants that associated with RA were in strong linkage 

disequilibrium (R2>0.8) with top cis-eQTL variants for genes expressed in whole blood from 

13,175 Icelanders and in adipose tissue from 700 Icelanders.23 For gene expression, 

association was tested using a generalized linear regression, assuming an additive genetic 

effect and quantile-normalized gene expression estimates, adjusting for measurements of 

sequencing artefacts, demographic variables, and hidden covariates.24 We also looked up the 

association with expression in other tissue types in GTEx (https://gtexportal.org ) and in 15 

published accessible data-sources (listed in Supplementary Table 5).  
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PROTEOMICS 

We tested whether disease associating sequence variants associated with levels of 4,789 

proteins in plasma (pQTL), measured on the SomaLogic® platform (SomaLogic, Inc.) in 

35,559 Icelanders with genetic information and biological samples available, as previously 

described (Supplementary Table 7).23 25 26 Multiple testing was accounted for using 

Bonferroni correction. For each pQTL variant we calculated the count and ranks of the 

associated proteins; provided in Supplementary Table 7 in the columns "Rank Proteins per 

pQTL”, "Count Proteins per pQTL”, "Rank pQTL per Protein" and "Count pQTL per 

Protein". 

 

NETWORK ANALYSIS  

We used the Ingenuity Pathway Analysis (IPA) software (QUIAGEN Inc., 

https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis ) to evaluate and 

illustrate whether identified candidate causal genes have experimental evidence for direct 

interaction between the proteins coded by those genes or indirect interaction (e.g. one 

affecting the level of another), supporting biological connection, illustrated as a network 

(Supplementary Figure 3).  

PUBLICLY AVAILABLE SOFTWARE 

Publicly available software that was used in conjunction with the algorithms in the 

sequencing processing pipeline (whole-genome sequencing, association testing, RNA-

sequence mapping and analysis) is listed below (URLs): 

BWA 0.7.10 mem, https://github.com/lh3/bwa 396  

GenomeAnalysisTKLite 2.3.9, https://github.com/broadgsa/gatk/ 397  
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Picard tools 1.117, https://broadinstitute.github.io/picard/ 398  

SAMtools 1.3, http://samtools.github.io/ 399  

Bedtools v2.25.0-76-g5e7c696z, https://github.com/arq5x/bedtools2/ 400  

Variant Effect Predictor, https://github.com/Ensembl/ensembl-vep 401  

Read_haps, https://github.com/DecodeGenetics/read_haps   

IPA software (QUIAGEN Inc.), 

https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis 

In-silico prediction of missense variants, https://sites.google.com/site/ jpopgen/dbNSFP   
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