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Table S1. Thermoelectric properties of the cell-layer/nanostructure model utilized in 
electrothermal simulations.

Material Isotropic thermal 
conductivity (W/mK)

Isotropic resistivity
( cm)

SiO2 1.4 1016

ITO 4 0.0001

PEG 0.285 104

DMEM 0.6667 59.52

Cell 0.6 136

WS2 140 1.52

Table S2. Statistical significance analysis of MCF-7 and MCF-10A cytotoxicity at different 
concentrations (0 – 100 M) of (a) pure WS2 and (b) WS2/PEG compared to control (cells only) 
and within two cell lines. Significance was set based on the Student’s t-test and indicated as: * (p 
< 0.05), ** (p < 0.01), *** (p < 0.001), **** (p < 0.0001). Non-significant results were unmarked.

Concentrations (M)(a) WS2

25 50 75 100

MCF-7 relative to 
control

**** **** ****

MCF-10A relative to 
control

*

MCF-7 relative to 
MCF-10A

* ** **

Concentrations (M)(b) WS2/PEG

25 50 75 100

MCF-7 relative to 
control

*

MCF-10A relative to 
control

MCF-7 relative to 
MCF-10A
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Table S3. References for Figure 4d. 

Ref No. Reference Energy density 
(J/ml)

Electric field 
(kV/cm)

1 Kumar, G.; Shelar, S.; Patel, A.; Roy, A.; 
Sarathi, R.; Singh, R.; Sharma, A. Investigation 
of Effect of Nanosecond Pulsed Electric Field 
on MCF-7 Breast Cancer Cells. J. Drug Deliv. 
Ther. 2021, 11 (3), 43–49. DOI: 
10.22270/jddt.v11i3.4827.

12.75 18 

2 Nuccitelli, R.; McDaniel, A.; Anand, S.; Cha, 
J.; Mallon, Z.; Berridge, J. C.; Uecker, D. 
Nano-Pulse Stimulation Is a Physical Modality 
That Can Trigger Immunogenic Tumor Cell 
Death. J. Immunother. Cancer 2017, 5 (1), 32. 
DOI: 10.1186/s40425-017-0234-5.

5 12

Table S4. References for Figure S5.

Ref No. Reference Type of 
nanostructure

1 Guan, G.; Wang, X.; Li, B.; Zhang, W.; Cui, Z.; Lu, X.; Zou, R.; Hu, 
J. “Transformed” Fe 3 S 4 Tetragonal Nanosheets: A High-Efficiency 
and Body-Clearable Agent for Magnetic Resonance Imaging Guided 
Photothermal and Chemodynamic Synergistic Therapy. Nanoscale 
2018, 10 (37), 17902–17911. DOI: 10.1039/C8NR06507A.

Fe3S4/PVP 

2 Hao, J.; Song, G.; Liu, T.; Yi, X.; Yang, K.; Cheng, L.; Liu, Z. In 
Vivo Long‐Term Biodistribution, Excretion, and Toxicology of 
PEGylated Transition‐Metal Dichalcogenides MS2 (M = Mo, W, Ti) 
Nanosheets. Adv. Sci. 2016, 4 (1), 1600160. DOI: 
10.1002/advs.201600160.

MoS2/PEG
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Table S5. References for Figure S7. 

Ref No. Reference

1 Burford, C. D.; Bhattacharyya, K. D.; Boriraksantikul, N.; Whiteside, P. J. D.; 
Robertson, B. P.; Peth, S. M.; Islam, N. E.; Viator, J. A. Nanoparticle Mediated 
Thermal Ablation of Breast Cancer Cells Using a Nanosecond Pulsed Electric Field. 
IEEE Trans. NanoBioscience 2013, 12 (2), 112–118. DOI: 
10.1109/TNB.2013.2257836.

2 Mi, Y.; Li, P.; Liu, Q.; Xu, J.; Yang, Q.; Tang, J. Multi-Parametric Study of the 
Viability of in Vitro Skin Cancer Cells Exposed to Nanosecond Pulsed Electric Fields 
Combined With Multi-Walled Carbon Nanotubes. Technol. Cancer Res. Treat. 2019, 
18, 1533033819876918. DOI: 10.1177/1533033819876918.
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Figure S1. Raman spectra of pure WS2.

Figure S2. a, b) AFM images of a) pure WS2 and b) WS2/PEG nanostructures. c, d) Diameter and 
thickness distributions of c) pure WS2 and d) WS2/PEG nanostructures. The data were obtained 
from a, b).
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Figure S3. Conductance of pure WS2, WS2/PEG and PEG measured in DMEM (MCF-7 cell 
media). The values were normalized to DMEM conductance, and the error bars represent SEM 
from 3 independent experiments (n = 3). 

Figure S4. a) Absorbance spectra of pure WS2 stored in DMEM for different weeks. b) Variation 
of the normalized absorbance at λ = 875 nm for pure WS2 stored in DMEM in different weeks.

Absorbance spectra with a similar behavior have been demonstrated by the pure transition 
metal dichalcogenide (TMD-) and TMD/PEG-based nanostructures utilized by other research 
groups (the absorbance spectra of TMD exhibit a strong absorbance, which was not affected by 
the PEG modification).1–3 The nanostructures used in this work show a similar set of curves, which 
indicates that our results are similar.

The TMD/ BP nanostructures utilized by other research groups demonstrate absorbance 
spectra with a decrease in absorbance due to degradation.4–6 A similar set of absorbance curves 
were obtained for the nanostructures used in this work, indicating that our studies disclose similar 
results. 
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Figure S5. Comparison of the degradation time of WS2 with that of current nanostructure-based 
systems in physiological media. The information of the references can be found in Table S4.

Figure S6. XPS spectra showing the binding energies of W 4f7/2 of the WS2/PEG stored in DMEM 
for a week. The XPS counts were normalized to background.
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Figure S7. Comparison of the incubation time of WS2/PEG nanostructures with that of current 
thermal-based therapeutic methods and with the use of the time of incubation of nanostructures in 
cells before application of a stimulus as a measure of incubation time. The information of the 
references can be found in Table S5. 

Figure S8. Thermal distribution of a cell-layer/nanostructure model. WS2/PEG was inserted in the 
middle of the cell layer, and a square-wave single-pulse was applied. The cell and material 
structures were constructed on an ITO-on-glass subsystem.
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Figure S9. Thermal profiles of the WS2/PEG-nanostructure AC-pulse model for different types of 
waveforms. Two different waveforms were applied to the cell-layer/nanostructure model. 
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