Supporting Information

WS2/Polyethylene Glycol Nanostructures for Ultra-Efficient MCF-7 Cancer Cell Ablation and Electrothermal Therapy

Maria Prisca Meivita,¹ Sophia S. Y. Chan,¹ Shao Xiang Go,¹ Denise Lee,¹ Natasa Bajalovic,^{1,*} Desmond K. Loke^{1,2,*}

¹Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore ²Office of Innovation, Changi General Hospital, Singapore, 529889, Singapore

> **Correspondence and requests for materials should be addressed to N.B. (email: natasa_bajalovic@sutd.edu.sg) or D.K.L. (email: desmond_loke@sutd.edu.sg)*

Material	Isotropic thermal conductivity (W/mK)	Isotropic resistivity $(\Omega$ cm)	
SiO ₂	1.4	10^{16}	
ITO	4	0.0001	
PEG	0.285	104	
DMEM	0.6667	59.52	
Cell	0.6	136	
WS_2	140	1.52	

Table S1. Thermoelectric properties of the cell-layer/nanostructure model utilized in electrothermal simulations.

Table S2. Statistical significance analysis of MCF-7 and MCF-10A cytotoxicity at different concentrations ($0 - 100 \mu M$) of (a) pure WS₂ and (b) WS₂/PEG compared to control (cells only) and within two cell lines. Significance was set based on the Student's t-test and indicated as: * (*p* (0.05) , ** ($p \le 0.01$), *** ($p \le 0.001$), **** ($p \le 0.0001$). Non-significant results were unmarked.

(a) WS ₂		Concentrations (μM)				
		25	50	75	100	
$MCF-7$	relative to control		****	****	****	
$MCF-10A$	relative to control				\ast	
$MCF-7$	relative to $MCF-10A$		\ast	$**$	$***$	
(b) WS_2/PEG		Concentrations (μM)				
		25	50	75	100	
$MCF-7$	relative to control				*	
$MCF-10A$	relative to control					
MCF-7	relative to MCF-10A					

Table S3. References for Figure 4d.

Table S4. References for Figure S5.

Table S5. References for Figure S7.

Figure S1. Raman spectra of pure WS₂.

Figure S2. a, b) AFM images of a) pure WS₂ and b) WS₂/PEG nanostructures. **c, d)** Diameter and thickness distributions of c) pure WS_2 and d) WS_2/PEG nanostructures. The data were obtained from a, b).

Figure S3. Conductance of pure WS_2 , WS_2/PEG and PEG measured in DMEM (MCF-7 cell media). The values were normalized to DMEM conductance, and the error bars represent SEM from 3 independent experiments $(n = 3)$.

Figure S4. a) Absorbance spectra of pure WS₂ stored in DMEM for different weeks. **b**) Variation of the normalized absorbance at $\lambda = 875$ nm for pure WS₂ stored in DMEM in different weeks.

Absorbance spectra with a similar behavior have been demonstrated by the pure transition metal dichalcogenide (TMD-) and TMD/PEG-based nanostructures utilized by other research groups (the absorbance spectra of TMD exhibit a strong absorbance, which was not affected by the PEG modification).^{1–3} The nanostructures used in this work show a similar set of curves, which indicates that our results are similar.

The TMD/ BP nanostructures utilized by other research groups demonstrate absorbance spectra with a decrease in absorbance due to degradation.^{4–6} A similar set of absorbance curves were obtained for the nanostructures used in this work, indicating that our studies disclose similar results.

Figure S5. Comparison of the degradation time of WS₂ with that of current nanostructure-based systems in physiological media. The information of the references can be found in Table S4.

Figure S6. XPS spectra showing the binding energies of W $4f_{7/2}$ of the WS₂/PEG stored in DMEM for a week. The XPS counts were normalized to background.

Figure S7. Comparison of the incubation time of WS₂/PEG nanostructures with that of current thermal-based therapeutic methods and with the use of the time of incubation of nanostructures in cells before application of a stimulus as a measure of incubation time. The information of the references can be found in Table S5.

Figure S8. Thermal distribution of a cell-layer/nanostructure model. WS₂/PEG was inserted in the middle of the cell layer, and a square-wave single-pulse was applied. The cell and material structures were constructed on an ITO-on-glass subsystem.

Figure S9. Thermal profiles of the WS₂/PEG-nanostructure AC-pulse model for different types of waveforms. Two different waveforms were applied to the cell-layer/nanostructure model.

References

- (1) Cheng, L.; Liu, J.; Gu, X.; Gong, H.; Shi, X.; Liu, T.; Wang, C.; Wang, X.; Liu, G.; Xing, H.; Bu, W.; Sun, B.; Liu, Z. PEGylated WS_2 Nanosheets as a Multifunctional Theranostic Agent for in Vivo Dual-Modal CT/Photoacoustic Imaging Guided Photothermal Therapy. *Adv. Mater.* **2014**, *26* (12), 1886–1893. DOI: 10.1002/adma.201304497.
- (2) Liu, T.; Wang, C.; Gu, X.; Gong, H.; Cheng, L.; Shi, X.; Feng, L.; Sun, B.; Liu, Z. Drug Delivery with PEGylated MoS₂ Nano-Sheets for Combined Photothermal and Chemotherapy of Cancer. *Adv. Mater.* **2014**, *26* (21), 3433–3440. DOI: 10.1002/adma.201305256.
- (3) Feng, W.; Chen, L.; Qin, M.; Zhou, X.; Zhang, Q.; Miao, Y.; Qiu, K.; Zhang, Y.; He, C. Flower-like PEGylated $MoS₂$ Nanoflakes for near-Infrared Photothermal Cancer Therapy. *Sci. Rep.* **2015**, *5* (1), 17422. DOI: 10.1038/srep17422.
- (4) Shao, J.; Xie, H.; Huang, H.; Li, Z.; Sun, Z.; Xu, Y.; Xiao, Q.; Yu, X.-F.; Zhao, Y.; Zhang, H.; Wang, H.; Chu, P. K. Biodegradable Black Phosphorus-Based Nanospheres for in Vivo Photothermal Cancer Therapy. *Nat. Commun.* **2016**, *7*, 12967. DOI: 10.1038/ncomms12967.
- (5) Hu, K.; Xie, L.; Zhang, Y.; Hanyu, M.; Yang, Z.; Nagatsu, K.; Suzuki, H.; Ouyang, J.; Ji, X.; Wei, J.; Xu, H.; Farokhzad, O. C.; Liang, S. H.; Wang, L.; Tao, W.; Zhang, M.-R. Marriage of Black Phosphorus and Cu^{2+} as Effective Photothermal Agents for PET-Guided Combination Cancer Therapy. *Nat. Commun.* **2020**, *11* (1), 2778. DOI: 10.1038/s41467-020- 16513-0.
- (6) Hao, J.; Song, G.; Liu, T.; Yi, X.; Yang, K.; Cheng, L.; Liu, Z. In Vivo Long‐Term Biodistribution, Excretion, and Toxicology of PEGylated Transition‐Metal Dichalcogenides MS2 (M = Mo, W, Ti) Nanosheets. *Adv. Sci.* **2016**, *4* (1), 1600160. DOI: 10.1002/advs.201600160.