Supporting Information

WS₂/Polyethylene Glycol Nanostructures for Ultra-Efficient MCF-7 Cancer Cell Ablation and Electrothermal Therapy

Maria Prisca Meivita,¹ Sophia S. Y. Chan,¹ Shao Xiang Go,¹ Denise Lee,¹ Natasa Bajalovic,^{1,*} Desmond K. Loke^{1,2,*}

¹Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore ²Office of Innovation, Changi General Hospital, Singapore, 529889, Singapore

**Correspondence and requests for materials should be addressed to N.B. (email: natasa_bajalovic@sutd.edu.sg) or D.K.L. (email: desmond_loke@sutd.edu.sg)*

Material	Isotropic thermal conductivity (W/mK)	Isotropic resistivity (Ω cm)
SiO ₂	1.4	1016
ΙΤΟ	4	0.0001
PEG	0.285	104
DMEM	0.6667	59.52
Cell	0.6	136
WS ₂	140	1.52

Table S1. Thermoelectric properties of the cell-layer/nanostructure model utilized in electrothermal simulations.

Table S2. Statistical significance analysis of MCF-7 and MCF-10A cytotoxicity at different concentrations $(0 - 100 \ \mu\text{M})$ of (a) pure WS₂ and (b) WS₂/PEG compared to control (cells only) and within two cell lines. Significance was set based on the Student's t-test and indicated as: * (p < 0.05), ** (p < 0.01), *** (p < 0.001), **** (p < 0.001). Non-significant results were unmarked.

(a) WS ₂		Concentrations (µM)			
		25	50	75	100
MCF-7	relative to control		****	****	****
MCF-10A	relative to control				*
MCF-7	relative to MCF-10A		*	**	**
(b) WS ₂ /PEG		Concentrations (µM)			
		25	50	75	100
MCF-7	relative to control				*
MCF-10A	relative to control				
MCF-7	relative to MCF-10A				

 Table S3. References for Figure 4d.

Ref No.	Reference	Energy density (J/ml)	Electric field (kV/cm)
1	Kumar, G.; Shelar, S.; Patel, A.; Roy, A.; Sarathi, R.; Singh, R.; Sharma, A. Investigation of Effect of Nanosecond Pulsed Electric Field on MCF-7 Breast Cancer Cells. <i>J. Drug Deliv.</i> <i>Ther.</i> 2021 , <i>11</i> (3), 43–49. DOI: 10.22270/jddt.v11i3.4827.	12.75	18
2	Nuccitelli, R.; McDaniel, A.; Anand, S.; Cha, J.; Mallon, Z.; Berridge, J. C.; Uecker, D. Nano-Pulse Stimulation Is a Physical Modality That Can Trigger Immunogenic Tumor Cell Death. <i>J. Immunother. Cancer</i> 2017 , <i>5</i> (1), 32. DOI: 10.1186/s40425-017-0234-5.	5	12

 Table S4. References for Figure S5.

Ref No.	Reference	Type of nanostructure
1	Guan, G.; Wang, X.; Li, B.; Zhang, W.; Cui, Z.; Lu, X.; Zou, R.; Hu, J. "Transformed" Fe 3 S 4 Tetragonal Nanosheets: A High-Efficiency and Body-Clearable Agent for Magnetic Resonance Imaging Guided Photothermal and Chemodynamic Synergistic Therapy. <i>Nanoscale</i> 2018 , <i>10</i> (37), 17902–17911. DOI: 10.1039/C8NR06507A.	Fe ₃ S ₄ /PVP
2	Hao, J.; Song, G.; Liu, T.; Yi, X.; Yang, K.; Cheng, L.; Liu, Z. In Vivo Long-Term Biodistribution, Excretion, and Toxicology of PEGylated Transition-Metal Dichalcogenides MS2 (M = Mo, W, Ti) Nanosheets. <i>Adv. Sci.</i> 2016 , <i>4</i> (1), 1600160. DOI: 10.1002/advs.201600160.	MoS ₂ /PEG

 Table S5. References for Figure S7.

Ref No.	Reference
1	Burford, C. D.; Bhattacharyya, K. D.; Boriraksantikul, N.; Whiteside, P. J. D.; Robertson, B. P.; Peth, S. M.; Islam, N. E.; Viator, J. A. Nanoparticle Mediated Thermal Ablation of Breast Cancer Cells Using a Nanosecond Pulsed Electric Field. <i>IEEE Trans. NanoBioscience</i> 2013 , <i>12</i> (2), 112–118. DOI: 10.1109/TNB.2013.2257836.
2	Mi, Y.; Li, P.; Liu, Q.; Xu, J.; Yang, Q.; Tang, J. Multi-Parametric Study of the Viability of in Vitro Skin Cancer Cells Exposed to Nanosecond Pulsed Electric Fields Combined With Multi-Walled Carbon Nanotubes. <i>Technol. Cancer Res. Treat.</i> 2019 , <i>18</i> , 1533033819876918. DOI: 10.1177/1533033819876918.
2	Mi, Y.; Li, P.; Liu, Q.; Xu, J.; Yang, Q.; Tang, J. Multi-Parametric Study of to Viability of in Vitro Skin Cancer Cells Exposed to Nanosecond Pulsed Electric Fie Combined With Multi-Walled Carbon Nanotubes. <i>Technol. Cancer Res. Treat.</i> 20 <i>18</i> , 1533033819876918. DOI: 10.1177/1533033819876918.

Figure S1. Raman spectra of pure WS₂.

Figure S2. a, b) AFM images of a) pure WS₂ and b) WS₂/PEG nanostructures. **c, d)** Diameter and thickness distributions of c) pure WS₂ and d) WS₂/PEG nanostructures. The data were obtained from a, b).

Figure S3. Conductance of pure WS₂, WS₂/PEG and PEG measured in DMEM (MCF-7 cell media). The values were normalized to DMEM conductance, and the error bars represent SEM from 3 independent experiments (n = 3).

Figure S4. a) Absorbance spectra of pure WS₂ stored in DMEM for different weeks. b) Variation of the normalized absorbance at $\lambda = 875$ nm for pure WS₂ stored in DMEM in different weeks.

Absorbance spectra with a similar behavior have been demonstrated by the pure transition metal dichalcogenide (TMD-) and TMD/PEG-based nanostructures utilized by other research groups (the absorbance spectra of TMD exhibit a strong absorbance, which was not affected by the PEG modification).^{1–3} The nanostructures used in this work show a similar set of curves, which indicates that our results are similar.

The TMD/ BP nanostructures utilized by other research groups demonstrate absorbance spectra with a decrease in absorbance due to degradation.^{4–6} A similar set of absorbance curves were obtained for the nanostructures used in this work, indicating that our studies disclose similar results.

Figure S5. Comparison of the degradation time of WS_2 with that of current nanostructure-based systems in physiological media. The information of the references can be found in Table S4.

Figure S6. XPS spectra showing the binding energies of W $4f_{7/2}$ of the WS₂/PEG stored in DMEM for a week. The XPS counts were normalized to background.

Figure S7. Comparison of the incubation time of WS_2/PEG nanostructures with that of current thermal-based therapeutic methods and with the use of the time of incubation of nanostructures in cells before application of a stimulus as a measure of incubation time. The information of the references can be found in Table S5.

Figure S8. Thermal distribution of a cell-layer/nanostructure model. WS₂/PEG was inserted in the middle of the cell layer, and a square-wave single-pulse was applied. The cell and material structures were constructed on an ITO-on-glass subsystem.

Figure S9. Thermal profiles of the WS₂/PEG-nanostructure AC-pulse model for different types of waveforms. Two different waveforms were applied to the cell-layer/nanostructure model.

References

- Cheng, L.; Liu, J.; Gu, X.; Gong, H.; Shi, X.; Liu, T.; Wang, C.; Wang, X.; Liu, G.; Xing, H.; Bu, W.; Sun, B.; Liu, Z. PEGylated WS₂ Nanosheets as a Multifunctional Theranostic Agent for in Vivo Dual-Modal CT/Photoacoustic Imaging Guided Photothermal Therapy. *Adv. Mater.* 2014, 26 (12), 1886–1893. DOI: 10.1002/adma.201304497.
- (2) Liu, T.; Wang, C.; Gu, X.; Gong, H.; Cheng, L.; Shi, X.; Feng, L.; Sun, B.; Liu, Z. Drug Delivery with PEGylated MoS₂ Nano-Sheets for Combined Photothermal and Chemotherapy of Cancer. *Adv. Mater.* **2014**, *26* (21), 3433–3440. DOI: 10.1002/adma.201305256.
- (3) Feng, W.; Chen, L.; Qin, M.; Zhou, X.; Zhang, Q.; Miao, Y.; Qiu, K.; Zhang, Y.; He, C. Flower-like PEGylated MoS₂ Nanoflakes for near-Infrared Photothermal Cancer Therapy. *Sci. Rep.* **2015**, *5* (1), 17422. DOI: 10.1038/srep17422.
- (4) Shao, J.; Xie, H.; Huang, H.; Li, Z.; Sun, Z.; Xu, Y.; Xiao, Q.; Yu, X.-F.; Zhao, Y.; Zhang, H.; Wang, H.; Chu, P. K. Biodegradable Black Phosphorus-Based Nanospheres for in Vivo Photothermal Cancer Therapy. *Nat. Commun.* **2016**, *7*, 12967. DOI: 10.1038/ncomms12967.
- (5) Hu, K.; Xie, L.; Zhang, Y.; Hanyu, M.; Yang, Z.; Nagatsu, K.; Suzuki, H.; Ouyang, J.; Ji, X.; Wei, J.; Xu, H.; Farokhzad, O. C.; Liang, S. H.; Wang, L.; Tao, W.; Zhang, M.-R. Marriage of Black Phosphorus and Cu²⁺ as Effective Photothermal Agents for PET-Guided Combination Cancer Therapy. *Nat. Commun.* **2020**, *11* (1), 2778. DOI: 10.1038/s41467-020-16513-0.
- (6) Hao, J.; Song, G.; Liu, T.; Yi, X.; Yang, K.; Cheng, L.; Liu, Z. In Vivo Long-Term Biodistribution, Excretion, and Toxicology of PEGylated Transition-Metal Dichalcogenides MS₂ (M = Mo, W, Ti) Nanosheets. *Adv. Sci.* 2016, 4 (1), 1600160. DOI: 10.1002/advs.201600160.